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Highlights: 

 PM10 exposure was associated with risk of low birth weight and small for gestational 

age, but not preterm birth. 

 We provide empirical evidence that there is negligible difference in effect estimates 

after accounting for residential mobility in pregnancy, and is generalizable to past 

studies and other settings for which the spatial variation in assessed exposure was 

regional (e.g., city-wide) and women tend move short distances. 

 Interestingly, women who moved during pregnancy tended to move to areas with 

lower levels of PM10 air pollution. 

 Choice of method of exposure assessment and buffer size had greater influence on 

effect estimates and their precision than the extent of ascertainment of residential 

mobility in pregnancy. 

 



Abstract 

Background: It remains unclear as to whether neglecting residential mobility during pregnancy 

introduces bias in studies investigating air pollution and adverse perinatal outcomes, as most 

studies assess exposure based on residence at birth. The aim of this study was to ascertain 

whether such bias can be observed in a study on the effects of PM10 on risk of preterm birth 

and fetal growth restriction. 

Methods: This was a retrospective study using four pregnancy cohorts of women recruited in 

Connecticut, USA (N=10,025). We ascertained associations with PM10 exposure calculated using 

first recorded maternal address, last recorded address, and full address histories. We used a 

discrete time-to-event model for preterm birth, and logistic regression to investigate 

associations with small for gestational age (SGA) and low birth weight (LBW). 

Results: Pregnant women tended to move to areas with lower levels of PM10. For all outcomes, 

there was negligible difference between effect sizes corresponding to exposures calculated 

with first, last and full address histories. For LBW, associations were observed for exposure in 

second trimester (OR 1.09; 95% CI: 1.04 – 1.14 per 1g/m3 PM10) and whole pregnancy (OR 

1.08; 95% CI: 1.02 – 1.14).  For SGA, associations were observed for elevated exposure in 

second trimester (OR 1.02; 95% CI: 1.00 – 1.04) and whole pregnancy (OR 1.03; 95% CI: 1.01 – 

1.05).  There was insufficient evidence for association with preterm birth. 

Conclusion:  Fetal growth restriction was associated with both SGA and term LBW. However, 

there was negligible benefit in accounting for residential mobility in pregnancy in this study.   

Keywords: residential mobility, pregnancy, preterm birth, fetal growth, exposure 

misclassification 
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Background 

Epidemiological studies indicate that exposures to particulate matter air pollution may have 

adverse effects on pregnancy outcomes 1, 2, with fetal growth and gestational length among the 

outcomes commonly investigated. Most often, ground-level measurements from a government 

monitoring network are used to derive exposure at a single residential address, usually 

recorded at delivery. However, as approximately 9% - 32% of women move during pregnancy 

there is potential for a high degree of exposure misclassification3.  Patterns of residential 

mobility among pregnant women are largely unknown but studies indicate that moving is more 

likely among mothers who are younger 4-6, have lower parity 4, 5, 7, and have lower 

socioeconomic status 4, 5, all of whom have greater risk of delivering smaller babies and 

delivering preterm. Exposure misclassification might be minimal if women tend to move short 

distances (median, <10km)5, 8, 9. In a New York cohort, whole pregnancy exposure to particulate 

matter with aerodynamic diameter <10 µm  (PM10) was essentially unchanged when based on 

residence recorded by maternal interviews (20.11 µg.m-3) compared to that based on the 

residential location recorded at delivery (20.09 µg.m-3)5. In a UK cohort, annual PM10 derived 

using the residential location at delivery was highly correlated with that derived using 

residential locations throughout pregnancy (Pearson r=0.88) 10. In contrast, in another study, 

estimated PM10 exposure based on address at delivery compared to complete residential 

history differed by more than one standard deviation in 16% of pregnancies10.  Consequently, it 

remains unclear as to whether final effect estimates on preterm birth and fetal growth 

restriction are biased by ignoring residential mobility in the derivation of PM10 exposure5, 11-15. 

The aim of this study was to compare effect estimates of particulate matter (PM10) exposure on 

fetal growth and gestational length, with and without accounting for residential mobility using 

four large pregnancy cohorts in Connecticut, between 1988 and 2008. 

Methods 

Study design and setting. This was a retrospective study using four pregnancy cohorts of 

women recruited in Connecticut, USA (N=10,025). Women were interviewed 2-4 times in 

pregnancy. Women were recruited at <25 weeks gestation for the Asthma in Pregnancy study16 

(AIP; 1996-2000; N=2,255) and the Pink and Blue study17 (PAB; 2005-2008; N=2,645) of 

depression in pregnancy. Women were recruited at <16 weeks gestation for the Nutrition in 

Pregnancy study18 (NIP; 1996-1999; N=2,344) and Environmental Tobacco Smoke study19 (ETS; 

1988-1991; N=2,781). Further details of the cohorts have been published previously16-19. 

Participants. We excluded women with at least one address that could not be geocoded 

(N=182). We sequentially excluded records with multiple gestations (N=165), missing sex 

(N=55), and records with missing gestational age (N=1) or gestational age > 42 weeks (N=35), 

which resulted in a study population of 9,587 singleton pregnancies. Women were not explicitly 

asked for their residential histories. Day of residential move was ascertained in the course of 

cohort follow-up from the point of contact at recruitment to the post-partum interview.  



Outcome variables. Preterm birth (PTB) was defined as birth before 37 completed weeks of 

gestation. Period of gestation was obtained from the birth certificate record. This was the 

clinical best estimate of gestational age, based on ultrasound or last menstrual period if 

ultrasound was not available. Births were classified as small for gestational age (SGA) if birth 

weight was <10th centile for gestational age and sex20. Low birth weight was defined as birth 

weight <2,500g.  

Exposure variables. Daily PM10 measurements from the US Environmental Protection Agency 

(EPA) monitoring network were obtained for all monitors within 100km of participants’ 

residential addresses. We calculated exposure using measurements from monitors within 

circular “buffer” radii of 20km, 40km, and 100km from the residential address. At each 

residential location and gestational week of pregnancy we calculated the 7-day average PM10 

concentration using (i) measurements from the closest monitor to the residential location 

within the buffer distance, and (ii) the inverse distance weighted (IDW) average of 

measurements from all monitors within the buffer distance.  These weekly means were then 

used to compute average PM10 concentrations for each trimester (< week 14, weeks 15-26, > 

week 26) and for the whole pregnancy. By definition, pregnancies are not at risk of preterm 

birth after gestational week 36. For this reason, only measurements prior to either birth or 

gestational week 36 (whichever was earlier) were included in the calculation of third-trimester 

and whole-pregnancy exposures for the preterm birth analyses. To ascertain the effects of 

acute exposure on the risk of preterm birth, we calculated mean PM10 exposure for the week of 

delivery and the 6-week period prior to delivery. We calculated exposures using (i) the address 

at recruitment (first address), (ii) the address at delivery (last address), and (iii) all addresses 

updated throughout pregnancy (updated addresses).  

Study size. The full study population of 9,587 singleton pregnancies was used to investigate 

SGA. Preterm birth was investigated separately with (i) the full study population (N=9,587), and 

(ii) further restriction to vaginal deliveries (N=7,334 remaining). By definition, assessment of risk 

of term LBW required restriction to term births (N=8,997 remaining). 

Statistical methods. For all models, adjustment was made for the following variables 

ascertained at study entry: maternal age (<20, 20-24, 25-29, 30-34, 35-39, 40+ years),  

race/ethnicity (White, African American, Hispanic, Asian, other), marital status (married, single, 

divorced/separated), highest level of educational attainment (did not complete high school, 

high school, post-secondary, graduate and above),  parity (0, 1, 2, >=3), pre-pregnancy weight 

(kg), an indicator for smoking (tobacco), and an indicator for alcohol consumption (beer, wine, 

liquor). To adjust for temporal confounding by unmeasured factors such as long-term trends 

and seasonal factors we included an adjustment term for year and season of conception. For 

Term LBW, we also adjusted for final gestational age (weeks) due to accumulating evidence that 

perinatal outcomes continue to vary along the gestational age continuum from 37 weeks21.  

Logistic regression was used to calculate odds ratios (OR) for associations between PM10 

exposure and term LBW and SGA. For PTB, a discrete time-to-event model22 was used to 



calculate hazard odds ratios (HOR).  This model allowed calculation of prospective risk 

estimates that ensured comparisons were restricted to only pregnancies at risk at each week of 

gestation.  Pregnancies entered the risk set at gestational week 20, were followed until the 

earlier of birth or gestational week 36 inclusive, and were censored thereafter. More 

specifically, we modelled Hi(t), the hazard of preterm birth for pregnancy i at week t, as: 

logit(Hi(t)) = logit(P(Yi(t) = 1 | Yi(t-1) = 0)) = h(t) + γZi + βXi(t) + εit 

where Y(t) is an indicator for birth at time t, h(t) are the week-specific intercepts, Z is the matrix 

of adjustment variables with corresponding parameter estimate vector γ, X(t) is the time-

varying PM10 exposure with parameter estimate β, and ε denotes the residuals. 

Bias. Multiple imputation using chained equations with 5 imputations and 5 iterations was used 

to minimize bias due to non-response from missing adjustment variables. Exposure (PM10) 

variables and outcome variables (birth weight and gestational length) were not imputed or 

used in the imputation. Smoking in pregnancy, alcohol consumption in pregnancy, maternal 

ethnicity, maternal education, marital status, pre-pregnancy weight and maternal age were 

imputed and used in the imputation to impute other variables. The variable “sex” is used to 

derive the outcome variable small for gestational age and sex (SGA), and consequently the 

variable “sex” was used to impute other variables but was not imputed itself. The variable 

“parity” and “study cohort indicator” are potential proxies for a time varying confounder and 

consequently were used to impute other variables but were not imputed themselves.  

Results 

Residential mobility. There were 1,061 (11%) women in the study population that moved during 

pregnancy. The median distance moved was 5km (IQR: 2km - 13km). Compared to women that 

did not move, women that moved did not have an elevated risk of delivering preterm (RR 1.03, 

95% CI: 0.80, 1.31) or LBW (RR 0.90, 95% CI: 0.51, 1.48). However, SGA was more likely for 

women that moved (RR 1.40, 95% CI: 1.18, 1.67). 

Exposure. There were 8,323 (87% of sample), 9,502 (99% of sample), and 9,587 (100% of 

sample) women who lived within 20km, 40km and 100km of a monitor during pregnancy. 

Overall exposure estimates were not sensitive to choice of buffer distance or exposure method 

(IDW vs closest monitor) (Tables S1 and S2). The median whole-pregnancy PM10 exposure was 

22 µg.m-3 (IQR: 19-27 µg.m-3) using updated address histories (IDW, 20km buffer).  For movers, 

the influence on exposure estimates of the decision to use first, last or updated address 

histories was sensitive to buffer distance and method. That is, we are less likely to observe 

differences in exposure attributable to using first, last and updated address histories with the 

IDW method as it uses measurements from multiple monitors which introduces greater 

variability in estimates. Similarly, although exposure misclassification might be reduced using 

smaller buffer sizes, there is an associated drop in sample size. Consequently, using the IDW 

method or small buffer distance (20km), exposure estimates were similar using first, last and 

updated address histories. However, using the closest monitor method (lower variance) and 



using larger buffer distances (40 km, greater sample size) we observed a small difference 

between mean whole pregnancy PM10 exposures calculated using the last address (l) and 

updated address (u) histories (l - u = -0.20 µg.m-3: 95% CI -0.37, -0.03 µg.m-3). Using a 40km 

buffer and the closest monitor method, whole pregnancy exposure using the last address was 

consistently less than that calculated using the first (f) address  (l - f = -0.30 µg.m-3: 95% CI -0.59, 

0.02 µg.m-3). That is, the magnitude of the difference was small but the direction of the effect 

was consistent, indicating women who moved tended to relocate to areas with lower levels of 

PM10. 

Associations with pregnancy outcomes. For all outcomes, there was negligible difference 

between effect sizes corresponding to exposures calculated with first, last and updated address 

histories (Figures 1-4). That is, there was near complete overlap in the interval estimates (using 

first, last and updated address histories) for term LBW (Figure 1), SGA (Figure 2), PTB (Figure 3) 

and vaginal PTB (Figure 4).  Effect sizes were consistent for all buffer distances investigated 

(20km, 40km, 100km). The IDW method resulted in less precise interval estimates (i.e. wider 

95% CIs) than using the closest monitor method, with no observable difference (bias) between 

the point estimates. Consequently, we describe hereon the adjusted odds ratios for increases (1 

µg.m-3) in PM10 using updated address histories, a 20km buffer and the IDW method. For LBW, 

statistically significant associations were observed for elevated exposure in second trimester 

(OR 1.09; 95% CI: 1.04 – 1.14) and whole pregnancy (OR 1.08; 95% CI: 1.02 – 1.14) (Figure 1).  

Similarly, for SGA, associations were observed for elevated exposure in second trimester (OR 

1.02; 95% CI: 1.00 – 1.04) and whole pregnancy (OR 1.03; 95% CI: 1.01 – 1.05) (Figure 2).  There 

was insufficient evidence for an association between PTB and exposure to PM10 for cumulative 

exposure in trimesters, cumulative exposure over the whole of pregnancy, or exposure closer in 

the week preceding delivery or 6 weeks preceding delivery (Figure 3, Figure 4). The adjusted OR 

of PTB for whole pregnancy exposure was 1.01 (95% CI: 0.98 – 1.04) and 1.00 (95% CI: 0.99 – 

1.01) for elevated exposure during the week preceding delivery (Figure 3). The results were 

similar for PTB after restricting to vaginal deliveries. The adjusted OR of PTB for whole 

pregnancy exposure was 1.01 (95% CI: 0.98 – 1.03) and 1.00 (95% CI: 0.99 – 1.01) for elevated 

exposure during the week preceding delivery (Figure 4). 

Discussion 

Key results. We compared effect estimates of particulate matter (PM10) exposure on fetal 

growth and gestational length, with and without accounting for residential mobility using four 

large pregnancy cohorts in Connecticut and western Massachusetts, between 1988 and 2008. 

The results indicate that, at the levels of residential mobility observed in this study population 

(11%), the induced level of exposure misclassification for PM10 had a negligible influence on 

overall effect estimates. It is plausible that the influence on final effect estimates of moves over 

short distances is negligible, because residential exposure is intended to be proxy for exposure 

for time spent in the broader region about the residence. Interestingly, women who moved 

tended to move to areas of lower PM10 air pollution, characterized in this study by movement 



away from a city. This observation was not due to decreasing temporal trend because for each 

address, exposure was calculated for the same period. That is, exposure was calculated using 

the first address for each exposure period (trimesters and whole pregnancy), then calculated 

using the last address for each exposure period, and finally calculated using updated address 

histories for each exposure period. Therefore, we could compare spatial differences in results 

independently of temporal trend. 

Interpretation. Exposure misclassification is induced by residential mobility during pregnancy 

when the time of ascertainment of the residential location is not temporally well aligned with 

the exposure period under investigation. We observed that such misclassification had little 

influence on the observed estimates of the effect of PM10 exposure on restricted fetal growth 

and gestational length in this study population. This provides greater credibility to past 

perinatal studies when the particulate matter exposure contrast under investigation is largely 

due to city-wide spatial comparisons and daily temporal comparisons12-15, 23, 24. For fetal growth 

endpoints (SGA and term LBW), choice of method of exposure assessment (closest monitor vs 

IDW) and buffer size had greater influence on effect estimates and their precision than the 

extent of ascertainment of residential mobility in pregnancy.  

Generalisability. A combination of factors contribute to the influence of residential mobility in 

pregnancy on effect estimates. Exposure misclassification increases with the fraction of women 

that move during pregnancy (11% in this study). An inherent assumption is that the process 

that governs residential mobility in pregnancy does not differ by outcome status (e.g. PTB vs 

term birth). The link between residential mobility and socioeconomic factors alone is sufficient 

reason to suggest that this assumption is often violated3, 25. However, this assumption is only 

important to these epidemiological investigations if exposure misclassification from inaccurate 

assessment of residential mobility leads to differential exposure misclassification. Although we 

did not observe differences in effect estimates obtained with and without accounting for 

residential mobility in this study, this result is not necessarily generalizable to other studies. For 

our study, a small fraction of women moved (11%), and women moved short distances (median 

5km) relative to the spatial scale of exposure assessment (city-wide comparisons). Moreover, 

the exposure periods of interest for pregnancy outcomes (e.g., trimesters) are often long 

enough so that the recorded residential address is accurate for at least a portion of that 

exposure period. Naturally, greater misclassification is expected, for example, when residential 

address is recorded at delivery but used to calculate exposure near conception. The choice of 

the outcome itself influences the comparability in levels of residential mobility by outcome 

status. Inherently, preterm birth provides less opportunity to move than a term pregnancy. 

Finally, we note that it remains possible that the influence of residential mobility might not be 

observable overall but might be observable for sub-populations already at elevated risk of 

restricted fetal growth or gestational length e.g., socioeconomically disadvantaged groups. 

Assessment of this a posteriori hypothesis requires selecting a sample that targets such sub-

populations, rather than the population representative samples used in this study. 



Limitations. As this study was based on pregnancy cohorts, residential mobility prior to 

recruitment was not ascertainable. Therefore, our results are most relevant for differences in 

PM10 exposure and associated effects of this exposure after first trimester. This limitation is 

addressable in future pregnancy cohort studies by retrospective assessment of residential 

histories at recruitment. In some settings, residential histories can be more objectively 

ascertained via linkage to national health surveillance systems26. However, these systems tend 

to record residential location at the time of health service contact, not the time of the move.   

Diurnal activity patterns influence time spent at home, with 3.5 more hours per day at home for 

pregnant women who do not work, 2.6 hours more time spent at home for those with low 

income and 1.5 hours more time spent at  home for those already at home with children27. It 

remains uncertain as to whether diurnal activity patterns changed after residential movement 

and whether this change was associated with both a consistent directional bias in PM2.5 

exposure and risk of adverse perinatal outcome (SGA, LBW, PTB).  

Conclusion 

In general, pregnant women tended to move to areas with lower levels of PM10.  The influence 

of residential mobility on effect estimates will be a function of the moving patterns in the 

population, or subpopulation, and the exposure of interest. In this study, there was negligible 

benefit in accounting for residential mobility in pregnancy as the observed effects of PM10 

exposure on fetal growth and gestational length remained unchanged.  
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 N women % 

Age    
<20 years 575 6 
20-24 years 1,120 12 
25-29 years 2,623 27 
30-34 years 2,807 29 
35-39 years 1,503 16 
40+ years 243 3 
Missing 812 8 
Race/ethnicity   
White 7,337 76 
African American 721 7 
Hispanic 1,241 13 
Asian 183 2 
Other 190 2 
Missing 11 0 
Marital Status   



Table 1. Maternal Characteristics at Study 

Entry 

Married 7,418 77 
Single 2,003 21 
Divorced/separated 260 3 
Missing 2 0 
Education (highest level)   
Did not complete High School 819 8 
Completed High School 1,601 17 
Post-secondary 4,864 50 
Graduate and above 2,394 25 
Missing 5 0 
Parity   
No children 4,251 44 
1 child 3,522 36 
2 children 1,419 15 
≥3 children 491 5 
Pre-pregnancy weight   
<56 kg 2,432 25 
56 – 62 kg 2,328 24 
63 – 72 kg 2,556 26 
≥ 73 kg 2,202 23 
Missing 165 2 
Smoking in pregnancy   
Smoked tobacco 1,657 17 
Missing 1,074 11 
Alcohol consumption in pregnancy    
Consumed beer, wine or liquor 4,184 43 
Missing 4 0 
Cohort   
AIP 2,169 22 
ETS 2,688 28 
NIP 2,213 23 
PAB 2,613 27 



Figure 1. Adjusted log odds ratios for term LBW for a 1 µg.m-3 increase in PM10 in each trimester (T1, T2, T3) and 

whole pregnancy (P) ascertained with first address, last address and updated histories. Results presented for each 

buffer distance (20km, 40km, 100km) and method of exposure assessment (closest monitor, inverse distance 

weighted). 

 

  



Figure 2. Adjusted log odds ratios for SGA for a 1 µg.m-3 increase in PM10 in each trimester (T1, T2, T3) and whole 

pregnancy (P) ascertained with first address, last address and updated histories. Results presented for each buffer 

distance (20km, 40km, 100km) and method of exposure assessment (closest monitor, inverse distance weighted). 

 

 

 

  



Figure 3. Adjusted log hazard odds ratios for PTB for a 1 µg.m-3 increase in PM10 in each trimester (T1, T2, T3), 

whole pregnancy (P), week of birth (lag 0) and the 6-week period prior to birth (lag 05). Exposure was ascertained 

with first address, last address and updated histories. Results presented for each buffer distance (20km, 40km, 

100km) and method of exposure assessment (closest monitor, inverse distance weighted). 

 

 

  



Figure 4. Adjusted log hazard odds ratios for PTB for a 1 µg.m-3 increase in PM10 in each trimester (T1, T2, T3), 

whole pregnancy (P), week of birth (lag 0) and the6-week period prior to birth (lag 05). Exposure was ascertained 

with first address, last address and updated histories. Results presented for each buffer distance (20km, 40km, 

100km) and method of exposure assessment (closest monitor, inverse distance weighted). Pregnancies were 

restricted to vaginal births. 

 

 

 



Table S1. Pearson correlations and median exposure (25th centile, 75th centile) by method of exposure assessment (closest monitor, inverse distance weighted (IDW)), 
addresses used (first address, last address, updated address histories), and buffer distance (20km, 40km, 100km) for estimated whole pregnancy exposure PM10. For all 
correlations p<0.001.  

  

Method Address Buffer Median µg/m
3
 (IQR) ID a b c d e f g h i j k l m n o p q r 

Closest monitor First 20km 21.24 (18.70, 26.57) a 1                  

Closest monitor First 40km 21.06 (18.45, 26.64) b 0.99 1                 

Closest monitor First 100km 21.04 (18.41, 26.59) c 0.99 1.00 1                

Closest monitor Last 20km 21.24 (18.72, 26.52) d 0.98 0.97 0.97 1               

Closest monitor Last 40km 21.06 (18.46, 26.56) e 0.97 0.97 0.97 0.99 1              

Closest monitor Last 100km 21.03 (18.40, 26.53) f 0.97 0.97 0.97 0.99 1.00 1             

Closest monitor Updated 20km 21.25 (18.71, 26.53) g 0.99 0.98 0.98 0.99 0.98 0.98 1            

Closest monitor Updated 40km 21.07 (18.47, 26.58) h 0.99 0.99 0.99 0.98 0.99 0.99 0.99 1           

Closest monitor Updated 100km 21.05 (18.42, 26.54) i 0.99 0.99 0.99 0.98 0.99 0.99 0.99 1.00 1          

IDW First 20km 22.50 (18.99, 27.31) j 0.86 0.85 0.85 0.85 0.84 0.84 0.86 0.85 0.85 1         

IDW First 40km 22.07 (19.00, 25.92) k 0.80 0.81 0.81 0.79 0.80 0.80 0.80 0.81 0.81 0.94 1        

IDW First 100km 21.39 (19.02, 24.55) l 0.76 0.75 0.75 0.75 0.74 0.74 0.75 0.75 0.75 0.90 0.96 1       

IDW Last 20km 22.47 (19.01, 27.29) m 0.85 0.84 0.84 0.86 0.85 0.85 0.86 0.85 0.85 0.99 0.93 0.89 1      

IDW Last 40km 22.06 (19.01, 25.90) n 0.80 0.80 0.80 0.80 0.81 0.81 0.80 0.81 0.81 0.94 0.99 0.95 0.94 1     

IDW Last 100km 21.36 (19.03, 24.51) o 0.75 0.74 0.74 0.75 0.74 0.75 0.75 0.75 0.75 0.89 0.95 0.99 0.90 0.96 1    

IDW Updated 20km 22.49 (19.00, 27.29) p 0.86 0.84 0.84 0.85 0.84 0.84 0.86 0.85 0.85 1.00 0.94 0.90 1.00 0.94 0.90 1   

IDW Updated 40km 22.06 (19.00, 25.9) q 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.81 0.81 0.94 1.00 0.95 0.94 1.00 0.95 0.94 1  

IDW Updated 100km 21.39 (19.02, 24.52) r 0.75 0.74 0.75 0.75 0.74 0.75 0.76 0.75 0.75 0.90 0.95 1.00 0.90 0.95 1.00 0.90 0.96 1 



 
Table S2. Pearson correlations and median exposure (25th centile, 75th centile) for women who moved during pregnancy, by method of exposure assessment (closest 
monitor, inverse distance weighted (IDW)), addresses used (first address, last address, updated address histories), and buffer distance (20km, 40km, 100km) for estimated 
whole pregnancy exposure PM10. For all correlations p<0.001.  

 

Method Address Buffer Median µg/m
3
 (IQR) ID a b c d e f g h i j k l m n o p q r 

Closest monitor First 20km 21.23 (18.48, 27.08) a 1                  

Closest monitor First 40km 21.13 (18.32, 27.08) b 1.00 1                 

Closest monitor First 100km 21.15 (18.31, 27.09) c 1.00 1.00 1                

Closest monitor Last 20km 21.22 (18.55, 26.53) d 0.77 0.75 0.75 1               

Closest monitor Last 40km 21.13 (18.32, 26.53) e 0.76 0.75 0.75 0.99 1              

Closest monitor Last 100km 21.09 (18.30, 26.51) f 0.76 0.75 0.75 0.99 1.00 1             

Closest monitor Updated 20km 21.43 (18.52, 26.77) g 0.94 0.92 0.92 0.91 0.89 0.88 1            

Closest monitor Updated 40km 21.34 (18.41, 26.69) h 0.94 0.94 0.94 0.91 0.90 0.90 0.98 1           

Closest monitor Updated 100km 21.34 (18.38, 26.70) i 0.94 0.94 0.94 0.91 0.90 0.90 0.98 1.00 1          

IDW First 20km 22.61 (18.62, 27.23) j 0.87 0.86 0.86 0.76 0.75 0.75 0.86 0.85 0.85 1         

IDW First 40km 22.01 (18.73, 26.05) k 0.83 0.83 0.83 0.74 0.75 0.75 0.82 0.83 0.83 0.97 1        

IDW First 100km 21.71 (18.85, 24.87) l 0.78 0.77 0.77 0.71 0.72 0.72 0.77 0.78 0.78 0.93 0.96 1       

IDW Last 20km 22.28 (18.74, 27.03) m 0.77 0.75 0.75 0.85 0.84 0.84 0.84 0.84 0.84 0.91 0.9 0.87 1      

IDW Last 40km 21.85 (18.83, 25.94) n 0.76 0.76 0.76 0.81 0.82 0.82 0.81 0.82 0.83 0.91 0.93 0.92 0.96 1     

IDW Last 100km 21.42 (18.97, 24.56) o 0.72 0.72 0.72 0.76 0.77 0.77 0.76 0.77 0.78 0.87 0.91 0.94 0.92 0.96 1    

IDW Updated 20km 22.50 (18.74, 27.13) p 0.84 0.82 0.82 0.81 0.8 0.79 0.88 0.86 0.86 0.98 0.94 0.9 0.96 0.94 0.89 1   

IDW Updated 40km 21.87 (18.74, 25.96) q 0.81 0.81 0.81 0.78 0.79 0.79 0.83 0.85 0.85 0.95 0.98 0.95 0.94 0.98 0.94 0.96 1  

IDW Updated 100km 21.64 (18.95, 24.62) r 0.76 0.76 0.76 0.74 0.75 0.75 0.78 0.79 0.80 0.91 0.95 0.98 0.90 0.95 0.98 0.92 0.96 1 


