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Abstract— Transceiver designs have been a key issue in
guaranteeing the performance of multiple-input multiple-output
(MIMO) relay systems, which are, however, often subject to
imperfect channel state information (CSI). In this paper, we
aim to design a robust MIMO transceiver for nonregenerative
MIMO relay systems against imperfect CSI from a worst-
case robust perspective. Specifically, we formulate the robust
transceiver design, under the minimum mean-squared error
(MMSE) criterion, as a minimax problem. Then, by decomposing
the minimax problem into two subproblems with respect to the
relay precoder and destination equalizer, respectively, we show
that the optimal solution to each subproblem has a favorable
channel-diagonalizing structure under some mild conditions.
Based on this finding, we transform the two complex-matrix
subproblems into their equivalent scalar forms, both of which
are proven to be convex and can be efficiently solved by our
proposed methods. We further propose an alternating algorithm
to jointly optimize the precoder and equalizer that only requires
scalar operations. Finally, the effectiveness of the proposed robust
design is verified by simulation results.

Index Terms— Multiple-input multiple-output (MIMO) relay
systems, minimum mean-squared error (MMSE), worst-case
transceiver design, imperfect channel state information (CSI).

I. INTRODUCTION

In recent years, relaying techniques have gained a remark-
able interest from both academic and industrial fields, due to
the fact that relay-assisted systems can provide more reliable
link quality and also expand the coverage compared to the
direct transmission scheme [1], [2]. Such benefits can be
greatly enhanced by incorporating multiple-input multiple-
output (MIMO) techniques, leading to so-called MIMO relay-
ing [3], [4]. In general, there are mainly two classes of relaying
strategies: regenerative and nonregenerative ones, where the

This work was supported by the 973 Program under 2013CB329204,
2013CB336600, National Natural Science Foundation of China under
61201174, 61101087, Natural Science Foundation of Jiangsu, China under
BK2012325, the Fundamental Research Funds for the Central Universities, the
Scientific Research Foundation of Graduate School of Southeast University
under YBJJ1327. The work of Y. Rong was supported in part by the
Australian Research Council’s Discovery Projects funding scheme (project
number DP110100736). The authors acknowledge research support from the
Jiangsu Talent Introduction Project and Jiangsu Creativity Promotion Program.

H. Shen, J. Wang, W. Xu and C. Zhao are with National Mobile Commu-
nications Research Laboratory, Southeast University, Nanjing 210096, China.
(e-mail: shenhongseu@gmail.com, jhwangee@gmail.com, wxu@seu.edu.cn,
cmzhao@seu.edu.cn). H. Shen was also a visiting PhD student with the
Department of Electrical and Computer Engineering, University of California,
Davis, CA 95616, USA.

Y. Rong is with the Department of Electrical and Computer Engineering,
Curtin University of Technology, Bentley, WA 6102, Australia (e-mail:
y.rong@curtin.edu.au).

regenerative strategy decodes and re-encodes relayed signals,
whereas the nonregenerative relaying simply performs linear
processing on the received signals and retransmits them to
the destination. Compared with the regenerative strategy, the
nonregenerative relaying receives more attention because of
its simplicity and easy implementation.

The full potential of MIMO relaying depends on proper
transceiver designs exploiting available channel state informa-
tion (CSI), which has been a focus of a number of recent
works [5]–[11]. In particular, the optimal relay precoder that
maximizes the mutual information (MI) has been investigated
independently in [5] and [6], and the mean-squared error
(MSE) based transceiver design has been well studied in [7]
and [8]. Apart from the MI and MSE criteria, relay designs
aiming to maximize the signal-to-noise-ratio (SNR) were
also discussed in [8] and [9]. Recently a unified framework
accommodating many commonly used design objectives was
developed in [10] for nonregenerative MIMO relay systems.
Revealed in most of the above works is an interesting phe-
nomenon that the eigenmode transmission is often optimal,
just as in traditional point-to-point MIMO systems, and the
channel is diagonalized by the transceiver. With this important
conclusion, the original matrix-variable transceiver design can
be simplified into a much simpler power allocation problem.

A common assumption made in the aforementioned works
is that CSI is perfectly known by the transceiver. In practical
systems, due to many factors such as quantized feedback, feed-
back delay and channel estimation errors, one can only access
imperfect CSI in general, which often results in considerable
performance degradation. In order to alleviate the impact of
imperfect CSI, it is necessary to design robust transceivers
taking the imperfection of CSI into account. In the literature,
there are generally two classes of imperfect CSI models
widely used for robust designs: the stochastic and deterministic
models. The stochastic model [12]–[21] assumes that the
instantaneous values of CSI are unknown but its statistics,
such as mean or/and covariance, are known, where the robust
design usually uses the average or outage performance as the
design objective. In contrast, the deterministic model [22]–[32]
makes no presumption on the distribution of CSI uncertainties
and assumes that the instantaneous value of CSI, although
unknown, lies in a known set of possible values, e.g., a norm
ball. In this case, the design goal is often to optimize the
worst-case performance and achieve the so-called worst-case
robustness.

Under the stochastic imperfect CSI model, the robust
transceiver design for point-to-point MIMO systems has been
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well established in [12]–[14]. The authors in [15]–[20] further
developed a robust transceiver for nonregenerative MIMO
relay systems with statistical CSI errors. An interesting finding
made by most of these studies is that the optimal statistically
robust transceiver diagonalizes the channel, as it does under
the perfect CSI case. On the other hand, the worst-case robust
design based on the deterministic model has been considered
for a direct MIMO transmission in [22]–[24], where the
authors proved that eigenmode transmission is still optimal
for some specific design objectives, e.g., worst-case SNR [22]
or MSE with fixed receivers or equalizers [23], [24]. In light
of these existing findings, it is natural to consider whether this
favorable property still holds in nonregenerative MIMO relay
systems with deterministic imperfect CSI. So far as we know,
this question has not been answered in the literature.

In this paper, we investigate a robust transceiver design
for a two-hop nonregenerative MIMO relay system in the
presence of deterministic imperfect CSI. Adopting worst-case
robustness, we formulate the robust transceiver design as a
minimax problem in order to achieve the minimum worst-case
MSE. Our main contributions are summarized as follows:

• We first decompose the minimax problem into two sub-
problems with respect to the relay precoder and destina-
tion equalizer, and show that the optimal robust precoder
and equalizer have a channel-diagonalizing structure un-
der some mild conditions. This conclusion is a non-trivial
generalization of the result with regard to the robust
transceiver for point-to-point MIMO systems in [24]. The
introduction of relay node leads to a more complicated
objective function and power constraint, and thus makes
it difficult to characterize the inherent structure of the
precoder and equalizer.

• Built on the channel-diagonalizing structure, we further
show that the robust relay precoder and destination equal-
izer optimization can be equivalently transformed into
two convex scalar-valued problems, respectively. We then
propose efficient numerical methods to find the optimal
solution to both problems.

• In light of the favorable structure of robust transceiver and
the related power allocation problems, we devise an alter-
nating algorithm to jointly optimize the robust transceiver
which simply requires scalar operations and converges
with only a few iterations. Simulation results show that
our proposed robust transceiver design outperforms the
non-robust schemes by considerable gains in terms of
both MSE and bit-error-rate (BER).

We would like to point out that, different from a recent work
[31] where a similar topic was studied, we find the channel-
diagonalizing structure of robust transceiver which provides
an important insight into the robust design. In addition, based
on this structural knowledge, we also propose an efficient
alternating algorithm that only relies on scalar operations.

The paper is organized as follows. A system model for
nonregenrative MIMO relaying is introduced in Section II.
In Section III, we study the optimal structure of worst-
case robust transceiver for nonregenerative MIMO relaying.
We then investigate the transceiver design based on scalar
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Fig. 1. A nonregenerative MIMO relay system.

optimization in Section IV. Simulation results are presented in
Section V and some concluding remarks are given in Section
VI.

Notation: We denote matrices and vectors by uppercase
and lowercase boldface letters, respectively. AT , AH , A−1

and A† represent the transpose, conjugate transpose, inverse
and pseudo inverse of matrix A, respectively. We use vec(A),
rank(A), tr(A) and R(A) to denote the vectorization, rank,
trace and range space of A, respectively. A ≽ 0 or A ≻ 0
means the matrix A is positive semidefinite or definite. (A)i,j
denotes the (ith, jth) element of A. The spectral norm and
Frobenius norm of A are denoted by ∥A∥2 and ∥A∥F ,
respectively. The Euclidean norm of vector a is represented
by ∥a∥. diag{a} denotes a diagonal matrix whose diagonals
are the elements of a and blkdiag{A,B} stands for a block
diagonal matrix with diagonals being A and B. Rn×m and
Cn×m denote the ensemble of all n × m real and complex
matrices, respectively. 1 denotes the all-ones vector. Notations
⊗, ℜ(·) and E{·} represent the Kronecker product, the real
part of a complex number and the expectation operation,
respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a dual-hop nonregenerative MIMO relay sys-
tem shown in Fig. 1, where the source node has Ns antennas,
the relay node is equipped with Nr antennas, and the destina-
tion node has Nd antennas. The direct link between the source
and destination nodes is assumed to be sufficiently weak so
that it can be ignored. At the first hop, the symbol vector
s ∈ CNs with E{ssH} = I is transmitted to the relay node.
The received signal yr ∈ CNr at the relay can be expressed
by

yr =

√
Ps
Ns

H̃srs+ nr = Hsrs+ nr (1)

where Ps is the source transmit power, H̃sr ∈ CNr×Ns

represents the source-relay channel, Hsr =
√

Ps

Ns
H̃sr is the

equivalent source-relay channel and nr ∈ CNr is the additive
white Gaussian noise (AWGN) vector at the relay node with
zero mean and covariance matrix Rnr = σ2

rI. At the second
hop, the relay multiplies the received signal yr by a precoding
matrix Fr ∈ CNr×Nr . The power constraint imposed on Fr
is

tr(Fr(HsrH
H
sr + σ2

rI)F
H
r ) ≤ Pr (2)

where Pr is the total transmit power at the relay. After
forwarding the signal xr = Fryr from the relay to the
destination, the received signal yd ∈ CNd at the destination is

yd = HrdFrHsrs+HrdFrnr + nd (3)
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where Hrd ∈ CNd×Nr denotes the relay-destination channel
and nd ∈ CNd is the AWGN vector at the destination node
with zero mean and covariance matrix Rnd

= σ2
dI. At the

destination node, a linear equalizer G ∈ CNs×Nd is used to
estimate the transmit signal s from yd, i.e. ŝ = Gyd. To
design proper relay precoder Fr and destination equalizer G,
we adopt MSE between s and ŝ as the performance metric,
which is given by

MSE = E
{
∥ŝ− s∥2

}
= Es,nr,nd

{
∥(GHrdFrHsr − I)s+GHrdFrnr +Gnd∥2

}
= ∥GHrdFrHsr − I∥2F + σ2

nr
∥GHrdFr∥2F + σ2

nd
∥G∥2F .

(4)

In general, it is reasonable to expect that perfect CSI at the
receiver (CSIR) is available with the aid of training signals,
whereas accurate CSI at the transmitter (CSIT) is difficult to
obtain due to, for instance, the existence of quantization and
feedback errors. Therefore, for the nonregenerative relaying,
we assume that the relay node knows the perfect source-relay
channel Hsr but has only imperfect information about the
relay-destination channel Hrd. Note that this assumption has
also been widely adopted in a number of recent works such as
[16]–[18], [25], [30], [31], [33]. To characterize the uncertainty
of the relay-destination channel, we adopt a commonly used
deterministic imperfect CSI model [22]–[32] assuming that
the exact channel lies in the neighborhood of the estimated or
feedback channel. In accordance with this model, the actual
Hrd can be expressed by

Hrd =Ĥrd +∆rd, ∆rd ∈ ξrd (5)

where Ĥrd represents the mismatched channel, ∆rd represents
the channel error and ξrd , {∆rd : ∥∆rd∥F ≤ ϵrd} denotes
a spherical channel uncertainty region.

To provide robustness against the deterministic channel un-
certainty characterized by (5), one needs to guarantee the MSE
performance for all channel realizations within the uncertainty
region, which can be achieved by optimizing the worst-case
MSE. Thereby, the robust design problem is formulated as

min
Fr,G

max
∆rd

∥G(Ĥrd +∆rd)FrHsr − I∥2F

+ σ2
nr
∥G(Ĥrd +∆rd)Fr∥2F + σ2

nd
∥G∥2F

subject to tr(Fr(HsrH
H
sr + σ2

nr
I)FHr ) ≤ Pr

∥∆rd∥F ≤ ϵrd. (6)

The difficulty in solving such a problem is twofold: 1) the
minimax problem contains actually two problems, i.e., the
inner maximization and the outer minimization; 2) the problem
is inherently nonconvex in either Fr and G or ∆rd. Further-
more, our robust design is much more difficult than that in
[24] which considered only a point-to-point MIMO system. As
will be shown later, the more complicated objective function
and power constraint present new challenges in solving the
problem.

III. OPTIMAL STRUCTURE OF ROBUST MMSE
TRANSCEIVER

From this section, we will investigate a tractable method
to handle the non-convex problem (6). As the first step,
we shall study the optimal structure of relay precoder Fr
and destination equalizer G in this section. This structural
knowledge will be utilized to simplify the original matrix-
variable problem into simpler scalar-valued problems in the
next section.

To achieve this goal, we first introduce a slack variable t
and separate the problem (6) into two subproblems, one for
the precoder Fr and one for the equalizer G, respectively. Let
us first consider the subproblem optimizing Fr with G fixed

minimize
Fr,t

t

subject to ∥G(Ĥrd +∆rd)FrHsr − I∥2F
+ σ2

nr
∥G(Ĥrd +∆rd)Fr∥2F ≤ t

∀∆rd : ∥∆rd∥F ≤ ϵrd

tr(Fr(HsrH
H
sr + σ2

nr
I)FHr ) ≤ Pr. (7)

As can be observed, the problem (7) is still difficult to solve
due to two facts: 1) the robust constraint in (7) contains in fact
an infinite number of constraints; 2) the variables are complex
matrices. To overcome these difficulties, in the following
we show that the optimal precoder Fr admits a favorable
channel-diagonalizing structure under some mild conditions,
which paves the path to simplifying the intractable complex-
matrix problem (7). Before stating our result, we would like
to introduce some notations that will be used later.

Denote the singular value decompositions (SVDs) of ma-
trices Hsr and Ĥrd with Hsr = UhsrΣhsrV

H
hsr

and
Ĥrd = Uĥrd

Σĥrd
VH
ĥrd

, respectively. Let Λhsr ∈ RNs×Ns

and Λĥrd
∈ RNs×Ns be diagonal matrices whose diagonals are

the largest Ns singular values of Hsr and Ĥrd, respectively,
i.e. γsr,1 ≥ · · · ≥ γsr,Ns

and γrd,1 ≥ · · · ≥ γrd,Ns
.

Denote the SVDs of Fr and G with Fr = UfrΣfrV
H
fr

and
G = UgΣgV

H
g , respectively, where the matrices Σfr and Σg

can be written as

Σfr =

[
Λfr 0
0 0

]
and Σg = [Λg 0] (8)

with Λfr = diag{[fr,1, · · · , fr,Ns
]T } and Λg =

diag{[g1, · · · , gNs ]
T } being real diagonal matrices.1 The

following theorem reveals the optimal structure of Fr.
Theorem 1: Let G be fixed with Ug = Vhsr

and Vg =
Uĥrd

. Then, Ufr = Vĥrd
and Vfr = Uhsr are optimal for

the subproblem (7).
Proof: See Appendix I.

Now we have obtained the structure of optimal Fr to the
subproblem (7) for fixed G. In the next, we also consider the
subproblem optimizing the equalizer G with Fr fixed, which

1Without loss of generality, we assume Nr ≥ Ns, Nd ≥ Ns, rank(Fr) ≤
Ns and rank(G) ≤ Ns in our paper.
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is given by

minimize
G,t

t+ σ2
nd
∥G∥2F

subject to ∥G(Ĥrd +∆rd)FrHsr − I∥2F
+ σ2

nr
∥G(Ĥrd +∆rd)Fr∥2F ≤ t

∀∆rd : ∥∆rd∥F ≤ ϵrd. (9)

Interestingly, the similar channel-diagonalizing structure also
holds for the optimal equalizer G, as stated in the following
theorem.

Theorem 2: Let Fr be fixed with Ufr = Vĥrd
and Vfr =

Uhsr . Then, Ug = Vhsr and Vg = Uĥrd
are optimal for the

subproblem (9).
Proof: The above theorem can be proved using the

similar reasoning as Theorem 1. Please refer to Appendix II
for the detailed proof.

Remark 1: Theorem 1 implies that the optimal relay pre-
coder Fr diagonalizes both source-relay and relay-destination
channels if G is fixed with a specified structure. On the
other hand, Theorem 2 shows that the optimal destination
equalizer G also diagonalizes the relay-destination channel
when Fr satisfies certain requirements. Note that both results
in Theorems 1 and 2 are non-trivial generalizations of the
conclusions for point-to-point MIMO systems in [24], as our
work considers both the relay-destination and source-relay
channels, which leads to a much more complicated objective
function and power constraint, compared with the one-hop
channel model in [24]. With the structural knowledge of
Fr and G, we can convert the subproblems (7) and (9) to
equivalent power allocation problems, as will be evidenced
in the next section. Moreover, we stress that the conditions
in the two theorems are complementary in the sense that the
conclusion in Theorem 1 is exactly the condition in Theorem 2
and vice versa. As will be shown later, this property is
quite desirable to devise an alternating algorithm via scalar
computation only, thus simplifying the original problem (6) to
a great extent.

IV. ROBUST TRANSCEIVER DESIGN EXPLOITING SCALAR
OPTIMIZATION

The channel-diagonalizing structure of Fr and G, revealed
by Theorems 1 and 2, provides an important insight into the ro-
bust transceiver design. With this conclusion, the subproblems
(7) and (9) can be simplified to power allocation problems that
are much easier to solve.2 We denote the ith diagonal of Λg ,
Λfr , Λĥsr

and Λĥrd
with gi, fr,i, γsr,i and γrd,i, respectively.

The following theorem provides the equivalent scalar forms of
the problems (7) and (9), respectively.

Theorem 3: Given that G is fixed with Ug = Vhsr and
Vg = Uĥrd

, the problem (7) is equivalent to the following

2Recall that in the proof of Theorems 1 and 2, the subproblems (7) and
(9) can be both transformed into SDP. However, the computational load of
solving SDP is very high since it involves complex-matrix operations.

convex form:

minimize
µ≥0

fr,i,1≤i≤Ns

Ns∑
i=1

µ((g
′

iγrd,ifr,i − 1)2 + σ2
rg

2
i γ

2
rd,if

2
r,i)− σ2

rg
2
i f

2
r,i

µ− (g
′
i)

2f2r,i − σ2
rg

2
i f

2
r,i

+ µϵ2rd

subject to f2r,i ≤ µ/g̃2m,i, 1 ≤ i ≤ Ns
Ns∑
i=1

f2r,i(σ
2
r + γ2sr,i) ≤ Pr (10)

where g
′

i = giγsr,i and g̃2m,i = (σ2
r + γ2sr,i)maxj{g2j }, j =

1, · · · , Ns.
Given that Fr is fixed with Ufr = Vĥrd

and Vfr = Uhsr ,
the problem (9) is equivalent to the following convex problem:

minimize
µ≥0

gi,1≤i≤Ns

Ns∑
i=1

µ((giγrd,if
′

r,i − 1)2 + σ2
rg

2
i γ

2
rd,if

2
r,i)− σ2

rg
2
i f

2
r,i

µ− g2i (f
′
r,i)

2 − σ2
rg

2
i f

2
r,i

+ µϵ2rd + σ2
d

Ns∑
i=1

g2i

subject to g2i ≤ µ/f̃2m, 1 ≤ i ≤ Ns (11)

where f
′

r,i = fr,iγsr,i and f̃2m = maxi{f̃2i } = maxi{(f
′

r,i)
2 +

σ2
rf

2
r,i}, i = 1, · · · , Ns.
Proof: See Appendix III.

As a consequence of Theorem 3, the complex-matrix sub-
problems (7) and (9) now can be simplified into the scalar
problems (10) and (11), respectively, with G or Fr being
fixed with a certain structure. Moreover, both (10) and (11)
are proved to be convex problems, meaning that they can
be efficiently solved via a plenty of useful tools in convex
optimization. With a closer look at these two problems, we
find that they both have a specific structure that can be
utilized to devise efficient numerical algorithms based on,
e.g., decomposition methods [34]. Such a method has the
properties of easy implementation and parallel computation
and thus will be our main focus in the following. Notice that
the problem (11) is simpler than (10) due to the lack of sum
power constraint, so we are going to solve (11) first and later
come to (10).

A. Scalar Based Algorithm for Robust Equalizer Optimization

By using the primal decomposition method [34], we de-
compose the problem (11) into Ns convex subproblems given
by

minimize
g2i≤µ/f̃2

m

ψi(gi)

,
µ((giγrd,if

′

r,i − 1)2 + σ2
rg

2
i γ

2
rd,if

2
r,i)− σ2

rg
2
i f

2
r,i

µ− g2i (f
′
r,i)

2 − σ2
rg

2
i f

2
r,i

+ σ2
dg

2
i (12)

for i = 1, · · · , Ns and one master problem expressed by

minimize
µ≥0

ϕ(µ) ,
Ns∑
l=1

ψ∗
i (µ) + ϵ2rdµ (13)

where ψ∗
i (µ) is the optimal value of (12).
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sψ∗
i
(µ) =

−((g∗i γrd,if
′

r,i − 1)2 + σ2
r(g

∗
i )

2γ2rd,if
2
r,i)((f

′

r,i)
2(g∗i )

2 + σ2
rf

2
r,i(g

∗
i )

2) + σ2
rf

2
r,i(g

∗
i )

2

(µ− (f
′
r,i)

2(g∗i )
2 − σ2

rf
2
r,i(g

∗
i )

2)2
(16)

sψ∗
i
(µ) =

−((g∗i γrd,if
′

r,i − 1)2 + σ2
r(g

∗
i )

2γ2rd,if
2
r,i)((f

′

r,i)
2(g∗i )

2 + σ2
rf

2
r,i(g

∗
i )

2) + σ2
rf

2
r,i(g

∗
i )

2

(µ− (f
′
r,i)

2(g∗i )
2 − σ2

rf
2
r,i(g

∗
i )

2)2

−
µ[g∗i ((f

′

r,i)
2 + σ2

rf
2
r,i)γrd,i − f

′

r,i](f
′

r,ig
∗
i − µγrd,i)

f̃2mg
∗
i (µ− (f

′
r,i)

2(g∗i )
2 − σ2

rf
2
r,i(g

∗
i )

2)2
+
σ2
d

f̃2m
(18)

Then, our proposed numerical algorithm for solving the
problem (11) consists of the following two steps:

1) Solving the Ns subproblems in (12). Due to the convexity
of the subproblems in (12), the optimal g∗i can be achieved by
performing bi-section search within the interval [0,

√
µ/f̃m].

The gradient of ψi(gi), which is required by the bi-section
method, can be obtained as

ψ
′

i(gi) =− 2
µ(gi((f

′

r,i)
2 + σ2

rf
2
r,i)γrd,i − f

′

r,i)(f
′

r,igi − µγrd,i)

(µ− (f
′
r,i)

2g2i − σ2
rf

2
r,ig

2
i )

2

+ 2σ2
dgi. (14)

2) Solving the master problem (13). The master problem
(13) can also be solved by the bi-section method via exploiting
its convexity. It is easy to find that the optimal value of (11)
is upper bounded by Ns, thus the initial search interval for µ
is [0, Ns/ϵ

2
rd]. Moreover, the subsequent proposition gives a

subgradient of ϕ(µ).
Proposition 1: A subgradient of ϕ(µ) is

sϕ(µ) =

Ns∑
i=1

sψ∗
i
(µ) + ϵ2rd (15)

where sψ∗
i
(µ) is a subgradient of ψ∗

i (µ) and it follows
1) If g∗i ̸=

√
µ

f̃m
and g∗i ̸=

√
µ

f̃i
, then sψ∗

i
(µ) is calculated by

(16).
2) If g∗i ̸=

√
µ

f̃m
and g∗i =

√
µ

f̃i
, then

sψ∗
i
(µ) = 0. (17)

3) If g∗i =
√
µ

f̃m
and g∗i ̸=

√
µ

f̃i
, then sψ∗

i
(µ) is given by (18).

4) If g∗i =
√
µ

f̃m
=

√
µ

f̃i
, then

sψ∗
i
(µ) = −

γ2rd,i
4

+
σ2
d

f̃2m
. (19)

Proof: See Appendix IV.
Now we summarize the detailed algorithm solving the

scalar problem (11) in Algorithm 1. Note that the global
optimality of this algorithm is guaranteed due to the fact
that the problem (11) is convex [34]. One advantage of the
proposed algorithm is its intrinsic parallel mechanism. For
example, in the third step, the root of ψ

′

i(gi) = 0 for each
i can be searched independently, which can be efficiently
implemented in practice.

Algorithm 1 for solving the problem (11)
1: Initialize the iteration number n = 0; set the maximum

number of iterations Nmax and the precision ε; µa =
0, µb = Ns/ϵ

2
rd, µ = (µa + µb)/2.

2: Repeat
3: n = n+1; find the root of ψ

′

i(gi) = 0 for i = 1, · · · , Ns,
using bi-section method;

4: Calculate sϕ(µ) with (15);
5: If sϕ(µ) < 0, then µa = µ, else µb = µ;
6: Until n ≥ Nmax or µb − µa < ε.

B. Scalar Based Algorithm for Robust Precoder Optimization

We now consider the scalar optimization of Fr in (10).
Compared to the problem (11), the major difficulty lies in the
coupling constraint

∑Ns

i=1 f
2
r,i(σ

2
r+γ

2
sr,i) ≤ Pr. To handle this,

we adopt the primal-primal decomposition [34], and decom-
pose the problem (10) into Ns subproblems, one secondary
master problem, and one master problem. Specifically, we first
introduce auxiliary variables pi, i = 1, · · · , Ns, to simplify
the problem (10) as

minimize
µ≥0,fr,i,pi

1≤i≤Ns

Ns∑
i=1

µ((g
′

iγrd,ifr,i − 1)2 + σ2
rg

2
i γ

2
rd,if

2
r,i)− σ2

rg
2
i f

2
r,i

µ− (g
′
i)

2f2r,i − σ2
rg

2
i f

2
r,i

+ µϵ2rd

subject to f2r,i ≤ µ/g̃2m,i, f
2
r,i(σ

2
r + γ2sr,i) ≤ pi, i = 1, · · · , Ns

Ns∑
i=1

pi ≤ Pr. (20)

Then, the subproblem, each for i = 1, · · · , Ns, is given by

minimize
fr,i

ci(fr,i)

,
µ((g

′

iγrd,ifr,i − 1)2 + σ2
rg

2
i γ

2
rd,if

2
r,i)− σ2

rg
2
i f

2
r,i

µ− (g
′
i)

2f2r,i − σ2
rg

2
i f

2
r,i

subject to f2r,i ≤ µ/g̃2m,i, f
2
r,i(σ

2
r + γ2sr,i) ≤ pi (21)

which is obtained by fixing pi, 1 ≤ i ≤ Ns and µ. Then, the
secondary master problem is

minimize
µ≥0

d(p, µ) ,
Ns∑
i=1

c∗i (p, µ) + µϵ2rd (22)
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where c∗i (p, µ) denotes the optimal value of (21) under a given
p = [p1, · · · , pNs ]

T . Finally, the master problem is given by

minimize
p

d∗(p)

subject to
Ns∑
i=1

pi ≤ Pr (23)

where d∗(p) is the optimal value of (22). Based on the above
procedure, we now show the three steps of our proposed
algorithm for solving the problem (10) as follows: 1) Solving
the Ns subproblems (21). Fortunately, we find each of these
subproblems admits a closed-form solution, as shown in
Proposition 2.

2) Solving the secondary master problem (22). This problem
can be solved using the bi-section method. The initial interval
is µ ∈ [0, Ns/ϵ

2
rd] and a subgradient of d(p, µ) with respect

to µ is provided in Proposition 2.
3) Solving the master problem (23). The subgradient pro-

jection method is ready for solving this problem. To be more
specific, the solution is searched with the following expression:

p[n+ 1] = (p[n]− α[n]sd∗(p[n]))Q (24)

where n is the iteration index, α[n] is the search stepsize,
sd∗(p[n]) is a subgradient of d∗(p) at p[n] and [·]Q stands
for the projection onto the set Q = {p : 1Tp ≤ Pr}. It
was pointed out in [35] that p = [γ]Q can be expressed as
the water-filling form pi = max{γi − ξ, 0},∀i, where ξ ≥ 0
represents the water level satisfying 1Tp ≤ Pr.

Proposition 2: The optimal solution to the problem (21) is

f∗r,i =min
{√

pi/(σ2
r + γ2sr,i),

√
µ/g̃m,i, µγrd,i/g

′

i,

g
′

i/(((g
′

i)
2 + σ2

rg
2
i )γrd,i)

}
(25)

and a subgradient of d(p, µ) with respect to µ is

sd(µ) =

Ns∑
i=1

sc∗i (µ) + ϵ2rd (26)

where sc∗i (µ) has the following form
1) If f∗r,i ̸=

√
µ

g̃m,i
and f∗r,i ̸=

√
µ

(g
′
i)

2+σ2
rg

2
i

, then sc∗i (µ) is

given by (27).
2) If f∗r,i ̸=

√
µ

g̃m,i
and f∗r,i =

√
µ

(g
′
i)

2+σ2
rg

2
i

, then

sc∗i (µ) = 0. (28)

3) If f∗r,i =
√
µ

g̃m,i
and f∗r,i ̸=

√
µ

(g
′
i)

2+σ2
rg

2
i

, then sc∗i (µ) is

given by (29).
4) If f∗r,i =

√
µ

g̃m,i
and f∗r,i =

√
µ

(g
′
i)

2+σ2
rg

2
i

, then

sc∗i (µ) = −
γ2rd,i
4

. (30)

The ith element of a subgradient of d∗(p) is given as
follows

1) If f∗r,i ̸=
√

pi
σ2
r+γ

2
sr,i

, then

(sd∗(p))i = 0 (31)

2) If f∗r,i =
√

pi
σ2
r+γ

2
sr,i

and f∗r,i ̸=
√

µ∗

(g
′
i)

2+σ2
rg

2
i

, then

(sd∗(p))i

= −
µ∗[f∗r,i((g

′

i)
2 + σ2

rg
2
i )γrd,i − g

′

i](g
′

if
∗
r,i − µ∗γrd,i)

(σ2
r + γ2sr,i)f

∗
r,i(µ

∗ − (g
′
i)

2(f∗r,i)
2 − σ2

rg
2
i (f

∗
r,i)

2)2

(32)

3) If f∗r,i =
√

pi
σ2
r+γ

2
sr,i

=
√

µ∗

(g
′
i)

2+σ2
rg

2
i

, then

(sd∗(p))i = −
γ2rd,ig

2
i

4
(33)

where µ∗ is the solution to the problem (22).
Proof: See Appendix V.

Based on the decomposition method we proposed above
and Proposition 2, we make a summary on the algorithm for
solving the problem (10) in Algorithm 2.

Algorithm 2 for solving the problem (10)
1: Initialize the outer iteration number nout = 0 and inner

iteration number nin = 0; set the maximum number of
outer iterations Nmax,out, inner iterations Nmax,in and the
precision ε; set the initial p[0].

2: Repeat
3: µa = 0, µb = Ns/ϵ

2
rd, µ = (µa + µb)/2, nin = 0;

4: While µb − µa > ε or nin < Nmax,in
5: nin = nin + 1; calculate f∗r,i for i = 1, · · · , Ns from

(25);
6: Calculate sd(µ) with (26);
7: If sd(µ) < 0, then µa = µ, else µb = µ;
8: End while
9: Calculate sd∗(p[nout]) according to (31)-(33);

10: Update p using p[nout + 1] = (p[nout] −
α[nout]sd∗(p[nout]))Q; nout = nout + 1;

11: Until nout ≥ Nmax,out or |d∗(p[nout+1])−d∗(p[nout])| < ε.

C. Iterative Algorithm for Joint Robust Transceiver Optimiza-
tion

Up till now, we have addressed the matrix-valued subprob-
lems (7) and (9) using simple scalar based algorithms. There-
fore, the remaining work is to apply the alternating algorithm
to deal with the original non-convex minimax problem (6),
i.e, optimizing one of Fr and G with the other fixed at one
time. To be more specific, we can set the initial point Fr with
Vĥrd

ΣfrU
H
hsr

, then according to Theorem 3, the optimization
of G is equivalent to the scalar problem (11), which has
been solved by Algorithm 1. As the resulting G must satisfy
Ug = Vhsr and Vg = Uĥrd

, it follows from Theorem 3
that the problem of optimizing Fr can be transformed into
the power allocation problem (10) that can be solved with
Algorithm 2. As a summary, the details of the proposed
alternating algorithm are given in Algorithm 3.

Now we would like to prove that the above alternating
algorithm always converges. For the i-th iteration (i ≥ 1) of
Algorithm 3, let us denote the optimized relay precoder and
destination equalizer with F

(i)
r and G(i), which are obtained
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sc∗i (µ) =
−[(f∗r,iγrd,ig

′

i − 1)2 + σ2
r(f

∗
r,i)

2γ2rd,ig
2
i ]((g

′

i)
2(f∗r,i)

2 + σ2
rg

2
i (f

∗
r,i)

2) + σ2
rg

2
i (f

∗
r,i)

2

(µ− (g
′
i)

2(f∗r,i)
2 − σ2

rg
2
i (f

∗
r,i)

2)2
(27)

sc∗i (µ) =
−((f∗r,iγrd,ig

′

i − 1)2 + σ2
rg

2
i γ

2
rd,i(f

∗
r,i)

2)((f∗r,i)
2(g

′

i)
2 + σ2

r(f
∗
r,i)

2g2i ) + σ2
r(f

∗
r,i)

2g2i

(µ− (g
′
i)

2(f∗r,i)
2 − σ2

rg
2
i (f

∗
r,i)

2)2

−
µ[f∗r,i((g

′

i)
2 + σ2

rg
2
i )γrd,i − g

′

i](f
∗
r,ig

′

i − µγrd,i)

g̃2m,if
∗
r,i(µ− (g

′
i)

2(f∗r,i)
2 − σ2

rg
2
i (f

∗
r,i)

2)2
(29)

Algorithm 3 for solving the problem (6) based on scalar
optimization

1: Initialize the iteration number n = 0; set the maxi-
mum number of iterations Nmax and the precision ε;
select MSEnew ≫ 0; choose an Nr × Nr matrix Fr =
UfrΣfrV

H
fr

such that Ufr = Vĥrd
, Vfr = Uhsr and∑Ns

i=1 f
2
r,i(σ

2
r + γ2sr,i) = Pr.

2: Repeat
3: n = n+1; fix {fr,i} and update {gi} with Algorithm 1;
4: Fix {gi} and update {fr,i} with Algorithm 2;
5: MSEold = MSEnew; update MSEnew with new {fr,i} and

{gi};
6: Until n ≥ Nmax or MSEold − MSEnew < ε.
7: Fr = Vĥrd

ΣfrU
H
hsr

and G = VhsrΣgU
H
ĥrd

.

based on the optimized power allocation and the optimal
channel-diagonalizing structure shown in Theorems 1 and 2.
The MSE objective value corresponding to (F

(i)
r ,G(i)) is

denoted by MSE(i). Then, in the first step of the (i + 1)-th
iteration, we fix Fr = F

(i)
r and minimize the MSE objective,

which results in an optimal solution of G = G(i+1). Denoting
the MSE value corresponding to (F

(i)
r ,G(i+1)) with MSE

′

(i),
we must have MSE

′

(i) ≤ MSE(i) since G(i+1) minimizes
the MSE objective function when Fr = F

(i)
r . In the second

step of the (i + 1)-th iteration, we fix G = G(i+1) and
minimize the MSE objective to obtain an optimal solution
of Fr = F

(i+1)
r . Letting MSE(i+1) be the MSE value cor-

responding to (F
(i+1)
r ,G(i+1)), similarly, it is easy to verify

that MSE(i+1) ≤ MSE
′

(i) and hence MSE(i+1) ≤ MSE(i).
Therefore, by applying Algorithm 3, the MSE value is mono-
tonically decreasing with each iteration. Since the MSE value
is lower bounded by zero, it follows that Algorithm 3 does
converge.

Remark 2: By fixing the structure of the initial relay pre-
coder, we can alternatively update the destination equalizer
and relay precoder by solving scalar-valued power allocation
problems according to Theorem 3. In addition, the constraint
on Σfr is used to guarantee the feasibility of the initial
Fr. Although there are many possible choices for initializing
power allocation matrix Σfr , we find via simulations that
the converging value of Algorithm 3 is insensitive to initial
values of Σfr while the algorithm convergence speed depends

on the specific initialization for Σfr . We will show detailed
simulation results on the convergence issue in Section V.
We also would like to note that the convergence condition
n ≥ Nmax could be redundant when Nmax is set to a sufficiently
large value. Nevertheless, this condition can be useful when
the system designer would like to terminate the algorithm
with a fixed and small number of iterations which will be
convenient for practical implementation.

Remark 3: The alternating algorithm we used in this paper
is a popular and efficient method to deal with difficult non-
convex optimization problems with coupled variables. By al-
ternatingly solving tractable convex subproblems, it is possible
to obtain a high-quality solution to the original complicated
non-convex problem. Although the solution achieved by this
algorithm is generally locally optimal, it can still provide a
significant gain over the non-robust scheme in the presence
of norm-bounded CSI uncertainties, as verified by simulation
results in Section V.

V. SIMULATION RESULTS

In this section, we investigate the performance of the
proposed robust transceiver design under a three-node MIMO
relay system. We adopt independent and identically distributed
(i.i.d.) Rayleigh fading as the channel model for both hops.
The transmit power at both source and relay nodes is set to
1, i.e., Ps = Pr = 1. The non-robust scheme in [7] is used as
a benchmark for comparison. We concern about the average
worst-case MSE and BER performance, which is interpreted
as the MSE/BER for a given transceiver in the worst-case
channel averaged over different channel realizations, i.e., Hsr

and Ĥrd. The worst-case channel is found by solving the
following problem:

maxmize
∥∆rd∥F≤ϵrd

∥∥∥G(Ĥrd +∆rd)FrHsr − I
∥∥∥2
F

+ σ2
nr

∥∥∥G(Ĥrd +∆rd)Fr

∥∥∥2
F
+ σ2

nd
∥G∥2F .

(34)

This problem is in general non-convex, but we are still able
to achieve its optimal solution, which is given in Appendix
VI. We define ϵ2rd = ρ∥Ĥrd∥2F , where ρ ∈ [0, 1) is a
metric for evaluating the size of CSI uncertainties. Fig. 2
shows the worst-case MSE performance of the robust and
non-robust transceiver designs versus different SNRs at the
destination (defined by SNRd = Pr/σ

2
d). The number of
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Fig. 3. Worst-case MSE versus different ρ (Ns = Nr = Nd = 2, SNRd =
SNRr = 15 dB).

antennas of all three nodes is 2. The SNR at the relay node
(defined by SNRr = Ps/σ

2
r ) is set to 15 dB. It can be

seen that when the size of CSI uncertainties ρ is fixed, the
performance advantage of the robust scheme over the non-
robust one increases gradually. On the other hand, if we fix
SNRd, the gap between these two schemes grows as ρ becomes
larger. We can observe this phenomenon more clearly in Fig.
3, where SNRd and SNRr are set with 15 dB. From these two
figures, we find that the performance gain of robust transceiver
design is evident with the existence of CSI errors.

In Fig. 4, we compare the worst-case BER of robust
and non-robust designs. We adopt binary phase shift keying
(BPSK) modulation and fix the SNR at the relay with 15
dB. The number of antennas at the source and destination
is 2 and the relay has 3 antennas. It can be found that when
the size of CSI uncertainties ρ is relatively small, the robust
scheme outperforms the non-robust one in both medium and
high SNR regions. And the gain becomes obvious in the whole
SNR region when ρ is larger. In Fig. 5, we set SNRd with 15
dB. The worst-case BER of the robust design performs better
than the non-robust one with different ρ, and its superiority
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Fig. 4. Worst-case BER versus SNRd with different ρ (Ns = Nd =
2, Nr = 3, SNRr = 15 dB).
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Fig. 5. Worst-case BER versus different ρ (Ns = Nd = 2, Nr = 3, SNRr

= SNRd = 15 dB).

becomes more evident as ρ increases.
In Figs. 6 and 7, we investigate the performance of the

proposed robust design under different antenna configurations.
It can be observed that the advantage of robust design over
the conventional non-robust one becomes more evident when
the number of antennas increases.

Finally, we investigate the convergence behavior of our
proposed iterative algorithm (Algorithm 3) in Figs. 8 and 9,
where the notation “random” denotes that the diagonals of
the initial Σfr are randomly generated and notation “equal”
means that the initial Σfr has the same diagonals, i.e.,
fr,i =

√
Pr∑Ns

i=1(σ
2
r+γ

2
sr,i)

, i = 1, · · · , Ns. From these results,
we observe the following phenomena: 1) The MSE value
gradually decreases with each iteration; 2) The two different
initialization schemes converge to the same value; 3) The
proposed alternating algorithm has a fast convergence speed,
especially when we let Σfr have equal diagonals.

VI. CONCLUSIONS

In this paper, we studied a worst-case MMSE transceiver
design for nonregenerative MIMO relay systems. After de-
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coupling the original non-convex optimization problem into
two subproblems, we proved that the optimal solution to each
subproblem has an interesting channel-diagonalizing structure
under some mild conditions, which is the first main result
of our work. In light of this conclusion, we proposed an
efficient alternating algorithm to address the worst-case robust
transceiver design. The proposed robust algorithm involves
simple scalar operations and has guaranteed convergence.
Simulation results show that the algorithm outperforms the
non-robust counterpart by a significant gain and also converges
with a fast speed.

APPENDIX I
PROOF OF THEOREM 1

As mentioned before, the main intricacy of the problem (7)
lies in the constraint with respect to the channel uncertainty
∆rd. Thus, we need to transform the problem (7) into an
equivalent form which is irrelevant to ∆rd first. Concerning
the left-hand side (LHS) of the first constraint, which can be
expressed by∥∥∥G(Ĥrd +∆rd)FrHsr − I

∥∥∥2
F
+ σ2

nr

∥∥∥G(Ĥrd +∆rd)Fr

∥∥∥2
F

=
∥∥∥UgΣgV

H
g (Uĥrd

Σĥrd
VH
ĥrd

+∆rd)FrUhsr
Σhsr

VH
hsr

− I
∥∥∥2
F

+ σ2
nr

∥∥∥UgΣgV
H
g (Uĥrd

Σĥrd
VH
ĥrd

+∆rd)Fr

∥∥∥2
F

(a)
=
∥∥∥ΣgΣĥrd

VH
ĥrd

FrUhsrΣhsr − I+ΣgU
H
ĥrd

∆rdVĥrd
VH
ĥrd

× FrUhsrΣhsr

∥∥∥2
F
+ σ2

nr

∥∥∥ΣgΣĥrd
VH
ĥrd

FrUhsr +ΣgU
H
ĥrd

×∆rdVĥrd
VH
ĥrd

FrUhsr

∥∥∥2
F

(b)
=

∥∥∥∥∥
[

vec(ΣgΣĥrd
F̂rΣhsr − I)

σnrvec(ΣgΣĥrd
F̂r)

]
+

[
ΣT
hsr

F̂Tr ⊗Σg

σnr
F̂Tr ⊗Σg

]
vec(∆̂rd)

∥∥∥∥∥
2

(c)
=∥η + Γδ̂rd∥2. (35)

Note that we have used the condition Ug = Vhsr and Vg =
Uĥrd

in (a), while in (b), we have introduced two new matrices
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F̂r = VH
ĥrd

FrUhsr and ∆̂rd = UH
ĥrd

∆rdVĥrd
. The variables

η, Γ and δ̂rd in (c) are defined by

η =

[
vec(ΣgΣĥrd

F̂rΣhsr − I)

σnrvec(ΣgΣĥrd
F̂r)

]
, Γ =

[
ΣT
hsr

F̂Tr ⊗Σg

σnr F̂
T
r ⊗Σg

]
,

δ̂rd = vec(∆̂rd). (36)

Therefore, the first constraint of (7) now becomes ∥η +
Γδ̂rd∥2 ≤ t, which, by using Schur’s Complement [36],
amounts to[

t (η + Γδ̂rd)
H

η + Γδ̂rd I

]
≽ 0, ∀δ̂rd : ∥δ̂rd∥ ≤ ϵrd.

(37)

Then, by applying S-lemma [37], (37) is equivalent to the
following linear matrix inequality (LMI):t− µϵ2rd ηH 0

η I Γ
0 ΓH µI

 ≽ 0. (38)

Based on the above LMI and some matrix manipulations, we
can convert the problem (7) to

minimize
F̂′

r,t,µ
t

subject to

t− µϵ2rd (η′)H 0
η′ I Γ′

0 (Γ′)H µI

 ≽ 0

[
Pr vecH(F̂

′

rΛp)

vec(F̂
′

rΛp) I

]
≽ 0 (39)

where F̂
′

r is the upper left Ns ×Ns submatrix of F̂r, η′, Γ′

and Λp are given by

η′ =

[
vec(ΛgΛĥrd

F̂
′

rΛhsr − I)

σnrvec(ΛgΛĥrd
F̂

′

r)

]
, Γ′ =

[
Λhsr (F̂

′

r)
T ⊗Λg

σnr (F̂
′

r)
T ⊗Λg

]
,

Λp = (Λ2
hsr

+ σ2
nr
I)

1
2 . (40)

Therefore, we have equivalently transformed the original in-
tractable problem to a semi-definite programming (SDP).

In the sequel, we will show that there exists a diagonal
F̂

′

r among the solution set of the problem (39). Let Ξ k
Ns

∈
RNs×Ns , k = 1, · · · , 2Ns be a diagonal matrix whose diag-
onals are either 1 or -1. By replacing F̂

′

r in y′ and Z′ with
Ξ k
Ns

F̂
′

rΞ
k
Ns

, we have

η′
Ξ =

[
vec(ΛgΛĥrd

Ξ k
Ns

F̂
′

rΞ
k
Ns

Λhsr − I)

σnrvec(ΛgΛĥrd
Ξ k
Ns

F̂
′

rΞ
k
Ns

)

]

=

[
vec(Ξ k

Ns
(ΛgΛĥrd

F̂
′

rΛhsr − I)Ξ k
Ns

)

σnr
vec(Ξ k

Ns
ΛgΛĥrd

F̂
′

rΞ
k
Ns

)

]
= Tη′

Γ′
Ξ =

[
ΛhsrΞ

k
Ns

(F̂
′

r)
TΞ k

Ns
⊗Λg

σnrΞ
k
Ns

(F̂
′

r)
TΞ k

Ns
⊗Λg

]
=

[
Ξ k
Ns

Λhsr (F̂
′

r)
TΞ k

Ns
⊗Ξ k

Ns
ΛgΞ

k
Ns

σnr
Ξ k
Ns

(F̂
′

r)
TΞ k

Ns
⊗Ξ k

Ns
ΛgΞ

k
Ns

]
= TΓ′T

vec(Ξ k
Ns

F̂
′

rΞ
k
Ns

Λp) = (Ξ k
Ns

⊗Ξ k
Ns

)vec(F̂
′

rΛp) (41)

where T = blkdiag{Ξ k
Ns

⊗ Ξ k
Ns
,Ξ k

Ns
⊗ Ξ k

Ns
} and we use

(Ξ k
Ns

)2 = I and Ξ k
Ns

Λ = ΛΞ k
Ns

with Λ being diagonal.
Thus, the two constraints in (39) are equivalent to1 0 0

0 T 0
0 0 T

t− µϵ2rd (η′)H 0
η′ I Γ′

0 (Γ′)H µI

1 0 0
0 T 0
0 0 T


=

t− µϵ2rd (η′
Ξ)
H 0

η′
Ξ I Γ′

Ξ

0 (Γ′
Ξ)
H µI

 ≽ 0

[
1 0
0 Ξ k

Ns
⊗Ξ k

Ns

] [
Pr vecH(F̂′

rΛp)

vec(F̂′
rΛp) I

]
×
[
1 0
0 Ξ k

Ns
⊗Ξ k

Ns

]
=

[
Pr vecH(Ξ k

Ns
F̂′
rΞ

k
Ns

Λp)

vec(Ξ k
Ns

F̂′
rΞ

k
Ns

Λp) I

]
≽ 0 (42)

indicating that Ξ k
Ns

F̂′
rΞ

k
Ns

also belongs to the solution set.
Since the set defined by the LMI is convex, the matrix
DF̂′

r
= (1/2Ns)

∑2Ns

k=1 Ξ
k
Ns

F̂′
rΞ

k
Ns

, as a convex combination
of Ξ k

Ns
F̂′
rΞ

k
Ns

, should also be a feasible solution. Moreover,
it has been proved in [37] that the matrix DF̂′

r
is diagonal and

satisfies (DF̂′
r
)i,i = (F̂′

r)i,i, i = 1, · · · , Ns. Hence, we arrive
at the conclusion that there must exist a diagonal solution to (7)
which is achieved by setting Ufr = Vĥrd

and Vfr = Uhsr .

APPENDIX II
PROOF OF THEOREM 2

The LHS of the first constraint in the problem (9) can be
expressed as∥∥∥G(Ĥrd +∆rd)FrHsr − I

∥∥∥2
F
+ σ2

nr

∥∥∥G(Ĥrd +∆rd)

× Fr

∥∥∥2
F

(a)
=
∥∥∥G(Uĥrd

Σĥrd
VH
ĥrd

+∆rd)UfrΣfrΣhsrV
H
hsr

− I
∥∥∥2
F

+ σ2
nr

∥∥∥G(Uĥrd
Σĥrd

VH
ĥrd

+∆rd)UfrΣfrV
H
fr

∥∥∥2
F

(b)
=
∥∥∥VH

hsr
G(Uĥrd

Σĥrd
VH
ĥrd

+∆rd)UfrΣfrΣhsr − I
∥∥∥2
F

+ σ2
nr

∥∥∥VH
hsr

G(Uĥrd
Σĥrd

VH
ĥrd

+∆rd)UfrΣfr

∥∥∥2
F

(43)

where (a) follows the condition Vfr = Uhsr and (b) holds
since the Frobenius norm is unitary invariable. From the
condition Ufr = Vĥrd

, we can transform (43) into∥∥∥ĜΣĥrd
Σf ′

r
− I+ Ĝ∆̂rdΣf ′

r

∥∥∥2
F
+ σ2

nr

∥∥∥ĜΣĥrd
Σfr

+Ĝ∆̂rdΣfr

∥∥∥2
F

=

∥∥∥∥∥
[

vec(ĜΣĥrd
Σf ′

r
− I)

σnrvec(ĜΣĥrd
Σfr )

]
+

[
ΣT
f ′
r
⊗ Ĝ

σnrΣ
T
fr

⊗ Ĝ

]
δ̂rd

∥∥∥∥∥
2

=
∥∥∥x+Yδ̂rd

∥∥∥2 (44)
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where Σf ′
r

= ΣfrΣhsr = [Λf ′
r

0Ns×(Nr−Ns)]
T , Ĝ =

VH
hsr

GUĥrd
, ∆̂rd = UH

ĥrd
∆rdVĥrd

, δ̂rd = vec(∆̂rd), and
we define variables x and Y by

x =

[
vec(ĜΣĥrd

Σf ′
r
− I)

σnrvec(ĜΣĥrd
Σfr )

]
, Y =

[
ΣT
f ′
r
⊗ Ĝ

σnrΣ
T
fr

⊗ Ĝ

]
. (45)

Therefore, the problem (9) is equivalent to

minimize
Ĝ,δ̂rd,t

t+ σ2
nd
∥Ĝ∥2F

subject to ∥x+Yδ̂rd∥2 ≤ t, ∥δ̂rd∥ ≤ ϵrd. (46)

With similar techniques used in the proof of Theorem 1, it is
not difficult to convert (46) to

minimize
Ĝ′,t,t′,µ

t+ σ2
nd
t′

subject to

t− µϵ2rd (x′)H 0
x′ I Y′

0 (Y′)H µI

 ≽ 0

[
t′ vecH(Ĝ′)

vec(Ĝ′) I

]
≽ 0 (47)

where Ĝ′ is the left Ns×Ns sub-matrix of Ĝ, x′ and Y′ are
given by

x′ =

[
vec(Ĝ′Λĥrd

Λf ′
r
− I)

σnrvec(Ĝ′Λĥrd
Λfr )

]
and Y′ =

[
Λf ′

r
⊗ Ĝ′

σnrΛfr ⊗ Ĝ′

]
.

(48)

Subsequently, we prove that there must exist a diagonal Ĝ′

among the optimal solution set. By replacing Ĝ′ in x′, Y′

and vec(Ĝ′) with Ξ k
Ns

Ĝ′Ξ k
Ns

, we have

x′
Ξ =

[
vec(Ξ k

Ns
Ĝ′Ξ k

Ns
Λĥrd

Λf ′
r
− I)

σnrvec(Ξ k
Ns

Ĝ′Ξ k
Ns

Λĥrd
Λfr )

]

=

[
vec(Ξ k

Ns
(Ĝ′Λĥrd

Λf ′
r
− I)Ξ k

Ns
)

σnrvec(Ξ k
Ns

Ĝ′Λĥrd
ΛfrΞ

k
Ns

)

]
= Tx′

Y′
Ξ =

[
Λf ′

r
⊗ (Ξ k

Ns
Ĝ

′
Ξ k
Ns

)

σnrΛfr ⊗ (Ξ k
Ns

Ĝ
′
Ξ k
Ns

)

]

=

[
(Ξ k

Ns
Λf ′

r
Ξ k
Ns

)⊗ (Ξ k
Ns

Ĝ
′
Ξ k
Ns

)

σnr (Ξ
k
Ns

ΛfrΞ
k
Ns

)⊗ (Ξ k
Ns

Ĝ
′
Ξ k
Ns

)

]
= TY′T

vec(Ξ k
Ns

Ĝ′Ξ k
Ns

) = (Ξ k
Ns

⊗Ξ k
Ns

)vec(Ĝ′) (49)

where T = blkdiag{Ξ k
Ns

⊗ Ξ k
Ns
,Ξ k

Ns
⊗ Ξ k

Ns
}. Therefore,

according to the LMI in (47), it immediately follows that1 0 0
0 T 0
0 0 T

t− µϵ2rd (x′)H 0
x′ I Y′

0 (Y′)H µI

1 0 0
0 T 0
0 0 T


=

t− µϵ2rd (x′
Ξ)
H 0

x′
Ξ I Y′

Ξ

0 (Y′
Ξ)
H µI

 ≽ 0

[
1 0
0 Ξ k

Ns
⊗Ξ k

Ns

] [
t′ vecH(Ĝ′)

vec(Ĝ′) I

]
×
[
1 0
0 Ξ k

Ns
⊗Ξ k

Ns

]
=

[
t′ vecH(Ξ k

Ns
Ĝ′Ξ k

Ns
)

vec(Ξ k
Ns

Ĝ′Ξ k
Ns

) I

]
≽ 0 (50)

implying that Ξ k
Ns

Ĝ′Ξ k
Ns

lies in the solution set. As the LMI
defined in (47) is a convex set, the linear combination DĜ′ =

(1/2Ns)
∑2Ns

k=1 Ξ
k
Ns

Ĝ′Ξ k
Ns

should also belong to this set. As
DĜ′ is diagonal matrix satisfying (DĜ′)i,i = (Ĝ′)i,i [37],
the optimal Ĝ′ can be diagonal which is achieved by setting
Ug = Vhsr and Vg = Uĥrd

.

APPENDIX III
PROOF OF THEOREM 3

With Theorem 1, we obtain an equivalent form for the
first constraint of the problem (39) as (51). After performing
some row and column permutations, the above LMI can be
transformed into blkdiag{Υ,Θ} ≽ 0, where Υ and Θ are
given by

Υ =

t− µϵ2rd 0 ζT

0 µI Φ
ζ ΦT I

 ,Θ = blkdiag

{[
I θij
θTij µ

]
i̸=j

}
(52)

where we let

ζ =
[
g

′

1γrd,1fr,1 − 1, · · · , g
′

Ns
γrd,Nsfr,Ns − 1,

σrg1γrd,1fr,1, · · · , σrgNsγrd,Nsfr,Ns

]T
and

Φ =
[
diag{[fr,1g

′

1, · · · , fr,Nsg
′

Ns
]T },

diag{[σrfr,1g1, · · · , σrfr,NsgNs ]
T }

]
with g

′

i = giγsr,i and θij = [fr,iγsr,igj , σrfr,igj ]
T , 1 ≤ i ≤

Ns, j ̸= i. It can be readily found that Θ ≽ 0 leads to
µ ≥ (fr,iγsr,igj)

2 + σ2
r(fr,igj)

2, i ̸= j. By using Schur’s
Complement [36], we find Υ ≽ 0 is equivalent to[

t− µϵ2rd − ζT ζ −ζTΦT

Φζ µI−ΦΦT

]
≽ 0. (53)


t− µϵ2rd vecT (ΛgΛĥrd

ΛfrΛhsr − I) σnrvecT (ΛgΛĥrd
Λfr ) 0

vec(ΛgΛĥrd
ΛfrΛhsr − I) I 0 ΛfrΛhsr ⊗Λg

σnrvec(ΛgΛĥrd
Λfr ) 0 I σnrΛfr ⊗Λg

0 ΛfrΛhsr ⊗Λg σnrΛfr ⊗Λg µI

 ≽ 0 (51)
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Then, by applying generalized Schur’s Complement [38] on
(53), we obtain

t− µϵ2rd − ζT ζ − ζTΦT (µI−ΦΦT )†Φζ ≥ 0,

[I− (µI−ΦΦT )(µI−ΦΦT )†]Φζ = 0,

µI−ΦΦT ≽ 0. (54)

In fact, µI − ΦΦT ≽ 0 amounts to µ ≥ (fr,ig
′

i)
2 +

σ2
r(fr,igi)

2, ∀i. If the equality does not hold for any i, then
we can convert the problem (39) to

minimize
µ,fr,i,1≤i≤Ns

Ns∑
i=1

φi(fr,i, µ) + µϵ2rd

subject to µ > (fr,ig
′

i)
2 + σ2

r(fr,igi)
2, 1 ≤ i ≤ Ns

µ ≥ (fr,iγsr,igj)
2 + σ2

r(fr,igj)
2, i ̸= j

Ns∑
i=1

f2r,i(σ
2
r + γ2sr,i) ≤ Pr (55)

where φi(fr,i, µ) =
µ((g

′
iγrd,ifr,i−1)2+σ2

rg
2
i γ

2
rd,if

2
r,i)−σ

2
rg

2
i f

2
r,i

µ−(g
′
i)

2f2
r,i−σ2

rg
2
i f

2
r,i

.

Without loss of generality, we assume that µ = (fr,kg
′

k)
2 +

σ2
r(fr,kgk)

2 for a certain k. Then, based on (54), we have
(g

′

kγrd,kfr,k − 1)g
′

kfr,k + σ2
rg

2
kγrd,kf

2
r,k = 0 and t − µϵ2rd −∑Ns

i̸=k φi(fr,i, µ)−
σ2
r

σ2
r+γ

2
sr,k

≥ 0. Now (39) becomes

minimize
µ,fr,i,1≤i≤Ns

Ns∑
i=1,i ̸=k

φi(fr,i, µ) +
σ2
r

σ2
r + γ2sr,k

+ µϵ2rd

subject to µ ≥ (fr,iγsr,igj)
2 + σ2

r(fr,igj)
2, ∀i, j

Ns∑
i=1

f2r,i(σ
2
r + γ2sr,i) ≤ Pr. (56)

Meanwhile, as µ → (fr,kg
′

k)
2 + σ2

r(fr,kgk)
2, it follows from

the second equation of (54) that fr,k → γsr,k
gkγrd,k(γ2

sr,k+σ
2
r)

.
Therefore, the nominator and denominator of φk(fr,k, µ)

tend to σ2
r

σ2
r+γ

2
sr,k

(
µ− γ2

sr,k

γ2
rd,k(γ

2
sr,k+σ

2
r)

)
and µ− γ2

sr,k

γ2
rd,k(γ

2
sr,k+σ

2
r)

,
respectively, and the limit of φk(fr,k, µ) on the boundary of
µ = (fr,kg

′

k)
2 + σ2

r(fr,kgk)
2 is σ2

r

σ2
r+γ

2
sr,k

. Thus, by using the

limit on the boundary, we can extend (56) to

minimize
µ,fr,i,1≤i≤Ns

Ns∑
i=1

φi(fr,i, µ) + µϵ2rd

subject to µ ≥ (fr,iγsr,igj)
2 + σ2

r(fr,igj)
2, ∀i, j

Ns∑
i=1

f2r,i(σ
2
r + γ2sr,i) ≤ Pr (57)

without losing any optimality.
The convexity of the objective function can be proved by

constructing the following function:

ϕ(δi, fr,i, µ) =[(γrd,i + δi)g
′

ifr,i − 1]2 + σ2
r(γrd,i + δi)

2g2i f
2
r,i

− µδ2i . (58)

It can be readily shown that ϕ(δi, fr,i, µ) is convex with fixed
δi. As ∂2ϕ(δi, fr,i, µ)/∂δ2i = 2((fr,ig

′

i)
2 + σ2

r(fr,igi)
2 − µ),

ϕ(δi, fr,i, µ) is concave in δi with fixed (fr,i, µ) when µ ≥
(fr,ig

′

i)
2 + σ2

r(fr,igi)
2. With some involved calculations, we

find that the maximum value of ϕ(δi, fr,i, µ) with respect to
δi for fixed (fr,i, µ) equals to φi(fr,i, µ). As the convexity is
preserved under the maximization operation [38], we conclude
that φi(fr,i, µ) is convex. Thereby, the scalar problem (11) is
convex. The second part of Theorem 3, involving the scalar
optimization of G, can be proved by using similar approaches.
Due to the limited space, we omit the proof here.

APPENDIX IV
PROOF OF PROPOSITION 1

A subgradient of ψ∗
i (µ) with respect µ is given by [34]

sψ∗
i
(µ) =

∂ψi(g
∗
i , µ)

∂µ
+ α∗

i

∂((g∗i )
2 − µ/f̃2m)

∂µ

=
∂ψi(g

∗
i , µ)

∂µ
− α∗

i

f̃2m
(59)

where α∗
i is the optimal dual variable associated with the

constraint (g∗i )
2 ≤ µ/f̃2m and satisfies the Karush–Kuhn–

Tucker (KKT) conditions:

α∗
i ≥ 0, α∗

i ((g
∗
i )

2 − µ/f̃2m) = 0 (60)
∂ψi(gi, µ)/∂gi|gi=g∗i + 2α∗

i g
∗
i = 0. (61)

∂ψi(gi, µ)

∂gi
=


2µ[gi((f

′
r,i)

2+σ2
rf

2
r,i)γrd,i−f

′
r,i](µγrd,i−f

′
r,igi)

(µ−(f
′
r,i)

2g2i−σ2
rf

2
r,ig

2
i )

2
+ 2σ2

dgi, g∗i ̸=
√

µ

(f
′
r,i)

2+σ2
rf

2
r,i

−2
γrd,iγ

3
sr,ifr,i

(γsr,i(1+giγrd,if
′
r,i)+σ

2
rgiγrd,ifr,i)

2
+ 2σ2

dgi, g∗i =
√

µ

(f
′
r,i)

2+σ2
rf

2
r,i

(62)

α∗
i =


0, g∗i ̸=

√
µ

f̃m

−µ[g∗i ((f
′
r,i)

2+σ2
rf

2
r,i)γrd,i−f

′
r,i](µγrd,i−f

′
r,ig

∗
i )

g∗i (µ−(f
′
r,i)

2(g∗i )
2−σ2

rf
2
r,i(g

∗
i )

2)2
− σ2

d, g∗i =
√
µ

f̃m
̸=

√
µ

(f
′
r,i)

2+σ2
rf

2
r,i

γ2
rd,i(σ

2
rf

2
r,i+(f

′
r,i)

2)

4 − σ2
d, g∗i =

√
µ

f̃m
=

√
µ

(f
′
r,i)

2+σ2
rf

2
r,i

(63)
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∂ψi(g
∗
i , µ)

∂µ
=


−[(g∗i γrd,if

′
r,i−1)2+σ2

r(g
∗
i )

2γ2
rd,if

2
r,i]((f

′
r,i)

2(g∗i )
2+σ2

rf
2
r,i(g

∗
i )

2)+σ2
rf

2
r,i(g

∗
i )

2

(µ−(f
′
r,i)

2(g∗i )
2−σ2

rf
2
r,i(g

∗
i )

2)2
, g∗i ̸=

√
µ

(f
′
r,i)

2+σ2
rf

2
r,i

0, g∗i =
√

µ

(f
′
r,i)

2+σ2
rf

2
r,i

(64)

∂ci(fr,i, µ)

∂fr,i
=


−2

µ[fr,i((g
′
i)

2+σ2
rg

2
i )γrd,i−g

′
i ](g

′
ifr,i−µγrd,i)

(µ−(g
′
i)

2f2
r,i−σ2

rf
2
r,ig

2
i )

2
, f∗r,i ̸=

√
µ

(g
′
i)

2+σ2
rg

2
i

−2
γrd,iγ

3
sr,igi

(γsr,i(1+g
′
iγrd,ifr,i)+σ

2
rgiγrd,ifr,i)

2
, f∗r,i =

√
µ

(g
′
i)

2+σ2
rg

2
i

(69)

λ∗ =


0, f∗r,i ̸=

√
µ

g̃m,i

µ[f∗
r,i((g

′
i)

2+σ2
rg

2
i )γrd,i−g

′
i ](g

′
if

∗
r,i−µγrd,i)

f∗
r,i(µ−(g

′
i)

2(f∗
r,i)

2−σ2
r(f

∗
r,i)

2g2i )
2

, f∗r,i =
√
µ

g̃m,i
and f∗r,i ̸=

√
µ

(g
′
i)

2+σ2
rg

2
i

γ2
rd,i(σ

2
rg

2
i+(g

′
i)

2)

4 , f∗r,i =
√
µ

g̃m,i
=

√
µ

(g
′
i)

2+σ2
rg

2
i

(70)

Note that when the optimal g∗i =
√

µ

(f
′
r,i)

2+σ2
rf

2
r,i

, we have

g∗i =
√

µ

(f
′
r,i)

2+σ2
rf

2
r,i

=
γsr,i

fr,iγrd,i(γ2
sr,i+σ

2
r)

and ψi(gi, µ)

equals
γsr,i(1−giγrd,if

′
r,i)+σ

2
rgiγrd,ifr,i

γsr,i(1+giγrd,if
′
r,i)+σ

2
rgiγrd,ifr,i

. Hence, ∂ψi(gi, µ)/∂gi
is given by (62). Then, by using (60)–(62), we obtain α∗

i

as (63). Since ∂ψi(g
∗
i ,µ)

∂µ can be calculated by (64), sψ∗
i
(µ)

is obtained immediately by substituting (63) and (64) into
(59), which is readily shown to be the same as (16)-(19) in
Proposition 1.

APPENDIX V
PROOF OF PROPOSITION 2

It is easy to find that ci(fr,i) have two stationary points:
fr,i = g

′

i/(((g
′

i)
2 + σ2

rg
2
i )γrd,i) and fr,i = µγrd,i/g

′

i. Recall
that a feasible fr,i should satisfy the constraints fr,i ≤
√
µ/g̃m,i and fr,i ≤

√
pi/(σ2

r + γ2sr,i), or equivalently,

fr,i ≤ min{√µ/g̃m,i,
√
pi/(σ2

r + γ2sr,i)} , τ . Thus, the
optimal solution to the problem (21) must belong to the set
{g′

i/(((g
′

i)
2+σ2

rg
2
i )γrd,i), µγrd,i/g

′

i, τ}. Denote the minimum
stationary point with f

(1)
r,i and the maximum one with f

(2)
r,i ,

then from (69), we have c
′

i(fr,i) > 0 when f (1)r,i < fr,i < f
(2)
r,i ,

and c
′

i(fr,i) < 0 if fr,i < f
(1)
r,i or fr,i > f

(2)
r,i . Hence, if

τ < f
(1)
r,i , the optimal solution to the problem (21) should be

τ . Otherwise, the optimal solution is f (1)r,i . This is exactly the
same as (25) in Proposition 2.

A subgradient of c∗i (µ) with respect to µ can be computed
by

sc∗i (µ) =
∂ci(f

∗
r,i, µ)

∂µ
+ λ∗

∂((f∗r,i)
2 − µ/g̃2m,i)

∂µ
(65)

where λ∗ is the optimal Lagrange multiplier associated with
the constraint (f∗r,i)

2 ≤ µ/g̃2m,i and can be obtained by the

KKT conditions as follows:

λ∗ ≥ 0, λ∗((f∗r,i)
2 − µ/g̃2m,i) = 0 (66)

ν∗ ≥ 0, ν∗((f∗r,i)
2 − pi/(σ

2
r + γ2sr,i)) = 0 (67)

∂ci(fr,i, µ)/∂fr,i|fr,i=f∗
r,i

+ 2(λ∗ + ν∗)f∗r,i = 0 (68)

where ν∗ is the optimal Lagrange multiplier associated with
the constraint (f∗r,i)

2 ≤ pi/(σ
2
r + γ2sr,i). With similar tech-

niques used in (62), we obtain (69). Then, using (66)-(69),
we can calculate λ∗ as (70). In addition,

∂ci(f
∗
r,i,µ)

∂µ can be
obtained by (71). By substituting (70) and (71) into (65), we
obtain (27)-(30).

To find a subgradient of d∗(p), one requires the optimal
ν∗, which can be computed by (72). Then, (sd∗(p))i =
−ν∗/(σ2

r + γ2sr,i) which is identical to (31)-(33).

APPENDIX VI
COMPUTING WORST-CASE CHANNELS FOR A GIVEN

TRANSCEIVER

By utilizing some matrix manipulations and noticing that
optimal ∆rd is achieved on the boundary, the problem (34) is
converted to the following trust region subproblem [39]:

minimize
∥δrd∥=ϵrd

δHrd(−RT ⊗ S)δrd − 2ℜ{dHδrd} (73)

where δrd = vec(∆rd), R = FrHsrH
H
srF

H
r + σ2

nr
FrF

H
r ,

S = GHG and d = vec(GH(GHrdFrHsr − I)HH
srF

H
r +

σ2
nr
GHGHrdFrF

H
r ). It was proved in [39] that δrd is a

global optimal solution of the problem (34) if and only if
the following conditions are satisfied:

(−RT ⊗ S+ ω∗I)δrd = d,−RT ⊗ S+ ω∗I ≽ 0, ∥δrd∥ = ϵrd
(74)

where ω∗ is the optimal Lagrange multiplier associated with
the constraint ∥δrd∥ = ϵrd. Note that the dual problem of (34)
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∂ci(f
∗
r,i, µ)

∂µ
=


−[(f∗

r,iγrd,ig
′
i−1)2+σ2

r(f
∗
r,i)

2γ2
rd,ig

2
i ]((g

′
i)

2(f∗
r,i)

2+σ2
rg

2
i (f

∗
r,i)

2)+σ2
rg

2
i (f

∗
r,i)

2

(µ−(g
′
i)

2(f∗
r,i)

2−σ2
rg

2
i (f

∗
r,i)

2)2
, f∗r,i ̸=

√
µ

(g
′
i)

2+σ2
rg

2
i

0, f∗r,i =
√

µ

(g
′
i)

2+σ2
rg

2
i

(71)

ν∗ =


0, f∗r,i ̸=

√
pi

σ2
r+γ

2
sr,i

µ∗[f∗
r,i((g

′
i)

2+σ2
rg

2
i )γrd,i−g

′
i ](g

′
if

∗
r,i−µ

∗γrd,i)

f∗
r,i(µ

∗−(g
′
i)

2(f∗
r,i)

2−σ2
r(f

∗
r,i)

2g2i )
2

, f∗r,i =
√

pi
σ2
r+γ

2
sr,i

and f∗r,i ̸=
√

µ∗

(g
′
i)

2+σ2
rg

2
i

γ2
rd,i(σ

2
rg

2
i+(g

′
i)

2)

4 , f∗r,i =
√

pi
σ2
r+γ

2
sr,i

=
√

µ∗

(g
′
i)

2+σ2
rg

2
i

(72)

can be formulated as the following SDP form:

maxmize
ω,t

t

subject to
[
−RT ⊗ S+ ωI d

dH −ωϵ2rd − t

]
≽ 0. (75)

Hence, we can obtain the optimal ω∗ with numerical tools such
as SeDuMi. After obtaining ω∗, all we need to do is to solve
(74) to achieve δrd. It is evident that if −RT ⊗S+ω∗I ≻ 0,
δrd has a unique solution (−RT ⊗S+ω∗I)−1d. On the other
hand, when −RT⊗S+ω∗I ≽ 0, the optimal δrd is not unique,
and it can be expressed by δrd = (−RT ⊗ S+ ω∗I)†d+ βf ,
where f is an arbitrary vector chosen from the right null space
of −RT ⊗ S + ω∗I, and β ∈ R is selected such that the
constraint ∥δrd∥ = ϵrd is met.

ACKNOWLEDGEMENT

The authors would like to thank Prof. Zhi Ding and Prof.
Bernard C. Levy for helpful discussions. The authors also
thank the editor and anonymous reviewers for their valuable
comments and suggestions, which have greatly improved the
quality of this paper.

REFERENCES

[1] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity
in wireless networks: Efficient protocols and outage behavior,” IEEE
Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.

[2] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and
capacity theorems for relay networks,” IEEE Trans. Inf. Theory, vol.
51, no. 9, pp. 3037–3063, Sep. 2005.

[3] B. Wang, J. Zhang, and A. Host-Madsen, “On the capacity of MIMO
relay channels,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 29–43, Jan.
2005.

[4] S. Jin, M. R. McKay, C. Zhong, and K.-K. Wong, “Ergodic capacity
analysis of amplify-and-forward MIMO dual-hop systems,” IEEE Trans.
Inf. Theory, vol. 56, no. 5, pp. 2204–2224, May 2010.

[5] X. Tang and Y. Hua, “Optimal design of non-regenerative MIMO
wireless relays,” IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 1398–
1407, Apr. 2007.
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