
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195643741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Mapping a Sequence Diagram to the Related Code:
Cognitive Levels Expressed by Developers

David A. McMeekin, Brian R. von Konsky, Elizabeth Chang, David J.A. Cooper
Digital Ecosystems and Business Intelligence Institute

Curtin University of Technology

GPO Box U1987

Perth WA 6845, Australia

{D.McMeekin, B.vonKonsky, E.Chang, David.Cooper}@curtin.edu.au

Abstract— This paper reports on a study in which develop-
ers’ cognitive levels were categorised and measured while they
mapped a sequence diagram to the related code based on a
Usage Based Reading scenario. Results indicate that applying
the usage-based reading technique to map a sequence diagram
to the underlying code, facilitates a developer to operate at
the Knowledge and Comprehension levels of Bloom’s cognitive
taxonomy, but does not facilitate sustaining it at the Analysis
level. The results of this study highlight the need for improved
tools and methodologies that aid developers understanding of the
system, particularly for those commencing a new project.

I. INTRODUCTION

Complex software systems have become integral to most

aspects of life in today’s society. Products, services and

infrastructure are designed, produced and delivered through

the use of these software systems [6], [15].

Modifying and maintaining these systems is a complicated,

time consuming process within the software development life-

cycle. To do this successfully, the developer must understand

the system so their changes achieve the given purpose without

breaking the system in an unexpected location.

A software product spends almost 70% of its life span in

the maintenance cycle and between 50% and 90% of this time

is used by developers trying to understand the program [7].

With the shortage of experienced software engineers and

developers along with the increased demand for software

engineers/developers across many disciplines [6], it is im-

portant that new techniques and frameworks are created to

assist developers new to a project, whether they are novice or

experienced developers, to increase their understanding of the

system they are working on in shortened periods.

This paper reports results from a study where developers

performed a Usage-Based Reading (UBR) [28] inspection

mapping a sequence diagram scenario to the related code.

Participants were required to think aloud during the study

[9], in order for the developers’ different cognitive levels to

be categorised and measured using a modified version of the

Context-Aware Analysis Scheme for Bloom’s Taxonomy [14].

This facilitated observation of the differing cognitive levels

expressed by the developers as they performed the task.

This work observed the cognitive levels developers ex-

pressed while performing a task to map functionality described

in a sequence diagram to the underlying code. It was not about

how developers understand, or increase their understanding

of, a system. The study’s aim was to observe if performing

a Usage-Based Reading (UBR) inspection of a sequence

diagram enabled developers to operate at higher cognition

levels as classified using Bloom’s taxonomy.

II. BACKGROUND

A. Software Inspections

Traditionally, software inspections have been used to detect

defects within the product. Empirical research reports inspec-

tions have been very successful with the removal of up to

80% of defects prior to first release [10], [11]. It has also

been reported that there is a correlation between how many

defects an inspector detects and their ability to successfully

add new functionality to that code [23]. Other research has

shown that inspections make code easier to understand and

change [27] and also facilitate developer operation at higher

cognition levels during the inspection [20].

The Usage-Based Reading (UBR) [28] technique is an

inspection technique that evolved from the Statistical Usage

Inspection (SUI) [24]. The SUI technique attempted to certify

a product’s reliability by testing it in accordance with the

expected usage. The UBR technique builds on this technique

in that all defects are not considered equal. Defects that will

have the most destructive impact on the system, from a user’s

perspective, are considered the most important. These are the

defects that need to be detected and fixed as early in the

development life-cycle as possible.

Prior to inspection, use case scenarios are prioritised and

the inspector works through these scenarios, starting with the

scenario that has the highest priority. The inspector systemati-

cally traces the scenario through the artefact under inspection

ensuring that all needed functionality exists and is correct.

In this manner, the prioritisation is designed to catch those

defects that most affect the system’s usability.

B. Program Comprehension

Comprehension is defined as “the capability of under-

standing something” [8] while understanding is defined as

“perceiving the intended meaning of something” [8].

283978-1-4244-3760-3/09/$25.00 c© 2009 IEEE

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 01,2010 at 21:57:26 EST from IEEE Xplore. Restrictions apply.

TABLE I

PROGRAM COMPREHENSION COGNITIVE MODELS.

Model Author Description
Bottom-up Shneiderman [26] “chunks” of code are created and grouped together until the problem has a solution.
Top-down Brooks [4] a global hypothesis describing the whole program is created. Further hypothesis refinement occurs and is

tested until the program, in its entirety, is understood (this methodology is also described by Polya [25] and
Wickelgren [29] described this problem solving methodology)

Systematic Littman et al.[16] a developer systematically reads through the software building their understanding by looking at data and
control flow.

As needed Littman et al.[16] as the name indicates, a developer looks only at issues requiring immediate attention needed for the task at
hand.

Integrated Mayrhauser and Vans [18] here a developer uses both the top-down and bottom up methodologies to best assist them in their
understanding of the software

Program comprehension is an extremely important aspect

in maintaining and evolving software systems. Software engi-

neers need to gain an understanding of code they are unfamil-

iar with [17]. Several cognitive models exist that describe how

developers build their comprehension of a software system’s

operational and functional behaviours. Table I cites and briefly

describes 5 different models.

The cognitive models used to explain developer compre-

hension usually highlight 2 ways in which a developer’s

comprehension is acquired, either the build up of knowledge

through the programmer studying what tasks the program

performs (functional) or how the program performs those

tasks (control flow) [17]. As a software developer embarks

on maintaining and evolving a system, understanding both the

functional and control flow of the system is of the utmost

importance. Without them, the developer may make changes

that appear correct in one location but introduce defects into

the system in a different location.

C. Bloom’s Taxonomy

Blooms taxonomy is a classification taxonomy that iden-

tifies different cognitive levels potentially exhibited during

learning. The taxonomy has been widely embraced and used

within educational disciplines [1], [3]. The six categories, cited

from Bloom [3], are listed and briefly described, with an

example of how each might be expressed in a programmers

context:

• Knowledge: “retrieving relevant knowledge from long-

term memory.” For a programmer, this may be demon-

strated via recollection of a for loop pattern.

• Comprehension: “construct meaning from instructional

messages, including oral, written, and graphic commu-

nication.” In programming, this may be summarising a

code fragment’s task.

• Application: “carry out or use a procedure in the given

situation.” For example, where the developer is making a

change in the code.

• Analysis: “break material into constituent parts.” In pro-

gramming this may be demonstrated by describing how

a field or method operates and its role within the wider

program.

• Evaluation: “make judgements on criteria and stan-

dards”. In this case, the developer may make an assess-

ment of the way a program solves a specific problem.

• Synthesis: “reorganise elements into a new pattern or

structure.” A programmer creating a new method, adding

new functionality would represent synthesis.

Bloom’s taxonomy has been proposed as a way in which

developers’ cognitive levels can be assessed during different

development tasks [5]. Results from different studies have

been reported in [14], [30], [31], [32]. Moreover, a Context-

Aware Schema has been proposed for applying Bloom’s tax-

onomy [14]. In earlier studies, we have applied the schema

and reported on the outcomes [20], [21], [22].

The think aloud data collection method, also known as

Protocol Analysis [9], requires participants to verbalise their

thoughts and actions as they execute a given task. The ver-

balisations are recorded and then used in the data analysis.

Protocol analysis has been widely used within studies exam-

ining participants’ cognitive levels expressed while carrying

out a given task [2], [4], [12], [16], [19].

III. METHODOLOGY

In this study participants were given the task to map a

use case scenario, shown in a sequence diagram, to the

corresponding code. The different cognitive levels developers

expressed while carrying out the task were observed. This

data was then qualitatively examined. The use of a sequence

diagram required participants to map functionality from the

scenario and sequence diagram to the underlying code, hence

employing a top–down comprehension strategy.

The study collected data in two ways:

1) think aloud data was collected from participants, and

2) an online interface was used to complete the scenario

mapping to the underlying code.

The online interface data provided access to the way in

which participants mapped the scenario to the code. From the

interface it was possible to observe the steps taken by the

participants as they executed the task. The think aloud data

provided access to identifying the different cognitive levels,

from Bloom’s taxonomy, participants expressed during the

process.

The software used in this study was a command–line con-

trolled, Java–based audio player. The software contained seven

Java classes consisting of 330 lines of code. A UML sequence

diagram scenario was presented representing what happened

284 2009 7th IEEE International Conference on Industrial Informatics (INDIN 2009)

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 01,2010 at 21:57:26 EST from IEEE Xplore. Restrictions apply.

when a user selected the system’s “next track” option while

playing tracks in a random order.

A total of 10 participants took part in the study. Due to

equipment failure, think aloud data from four participants

was not intelligible and needed to be discarded. From the

remaining six, two had industry experience and the remaining

four were final year undergraduate students enrolled in either

Computer Science or Software Engineering.

Participants had not seen the artefacts prior to commencing

the task. Before starting the study, participants took part in a

training exercise to practice and become familiar with using

the think aloud protocol.

Participants performed an inspection–type task in which

they were required to map the scenario in the sequence

diagram to the underlying code. Participants needed to list

the execution order of the lines of code that were or may have

been executed if the scenario was run. Participants were given

as much time as they needed to complete the study.

In the Context-Aware Schema [14] examples, the Analy-

sis level is identified when a participant discussed code in

relation to an external system. We differ from [14] in our

interpretation of the Analysis level at this point. In our study

when participants’ utterances described code within the system

but in different classes from that which they were currently

examining, these utterances were categorised as Analysis level.

Our reason for this is, this type of identification demonstrated

an understanding of constituent parts and also a detection of

relationship of parts of the system and the way they were

organised [3].

A model solution for mapping the sequence diagram to the

corresponding code was independently created by 2 of the

researchers. Where differences arose between the 2 researchers

solutions, consultations were held until the differences were

settled. Once this solution was created, an external domain

expert was consulted in order to verify the model solution.

Empirical research is subject to 2 types of validity threats,

internal and external. Selection threat was the first internal

threat faced by this study. Selection threat is where participants

are selected in an attempt to produce favourable outcomes for

the research. To counter this threat, an open invitation was

made to graduate and final year undergraduate students. Stu-

dents were selected on a first-come first-served basis, and once

the full number of students was reached, the study was closed.

It is possible that only the ambitious students volunteered to

participate within this study, hence this must be considered

when examining the results. Industry participants were invited

via invitation to the companies which had expressed an interest

in participating in our empirical research.

The second internal validity threat was that of participant

experience. Demographics were recorded from each partici-

pant in an attempt to control this variable.

An external threat to validity within this study was that

of sample size. Results from this study are not intended for

generalisation, but to gain a qualitative understanding of the

cognitive levels expressed by developers while performing the

task at hand.

TABLE II

CORRECTNESS OF PARTICIPANTS SOLUTIONS

Participant % of model
solution
covered

% of mis-
matches

1 42% 74%
2 85% 37%
3 33% 83%
4 63% 25%
5 62% 20%
6 73% 27%

Mean 60% 44%

IV. RESULTS

The think aloud data was collected, transcribed and then

broken into sentences/utterances. A set of 150 utterances were

coded by two independent researchers, using the Context–

Aware Schema. An expert, in applying Bloom’s taxonomy was

also consulted on the Schema’s application to the utterances.

The Cohen’s Kappa statistic was calculated to determine the

agreement level between the two researchers’ categorisations.

The Kappa statistic was 0.63, which is considered a substantial

agreement [13]. The uncoded utterances were then coded by

a single researcher.

Figure 1 displays a break down of participants’ utterances

(p1–p6 and the mean) while carrying out the task. The graph

shows that more than 70% of the participants’ utterances are

in the Knowledge and Comprehension levels. This makes up

a significant portion of the participant’s total time for the

exercise. As no participant expressed an utterance that was

either in the Application nor Synthesis levels during the task,

these levels were omitted from the graph.

Figure 2 displays the different cognitive levels participant

six expressed throughout the course of the exercise. The

vertical axis reflects the different levels of Bloom’s taxonomy.

Participant six’s graph was arbitrarily chosen as an example.

This figure highlights the different cognitive levels the partic-

ipant expressed as they mapped the sequence diagram to the

code. From the graph it is seen that they operated for the vast

majority of the time at the Knowledge and Comprehension

levels and then for small time periods they would move into

the Analysis level.

Looking at Figure 1 and Figure 2 it can be seen that the

participants operated at the Knowledge and Comprehension

levels for the majority of the time. They moved into the

Analysis level at different points along the time line, and on

occasions also operated at the Evaluation level.

No participant operated at the Synthesis level nor the

Application level during the study. In the context of this

study, mapping a sequence diagram scenario to the related

code, it was expected that the participants would not operate

at the Application or Synthesis level because the exercise

did not require them to perform any task that required them

to operate at those levels. The Synthesis level requires the

creation of something new and the Application level requires

the implementation, modification or evolution of some section

2009 7th IEEE International Conference on Industrial Informatics (INDIN 2009) 285

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 01,2010 at 21:57:26 EST from IEEE Xplore. Restrictions apply.

Fig. 1. A break down into Bloom’s cognitive levels of participants’ utterances.

of code. Hence, no participants functioned at those cognitive

levels.

Table II characterises the correctness of the participants’

solutions when compared to the model solution. These results

show a great variety in the participants’ solutions in compari-

son to the model solution, varying from 33%–85%. The table

also shows that participants incorrectly mapped between 20%

and 83% of executing lines of code with the model solution.

In examining the cognitive levels expressed and the results

of mapping the corresponding code from the sequence dia-

gram, simply functioning at the Knowledge and Comprehen-

sion levels did not correspond to correctness of solution. This

may have arisen from the fact that participants were unfamiliar

with the code base and therefore their time and effort was

actually spent on attempting to gather the knowledge and

understanding of the code prior to being able to successfully

map the diagram to the code.

The task to map the sequence diagram to the underlying

code requires the participant to implement a top–down cog-

nitive strategy, mapping functionality to the underlying code.

Table II shows that participants were not very successful in

this task. This type of task strongly reflects what a person

should be doing when functioning at Bloom’s Analysis level.

Figure 1 shows that participants did not function for very long

at the Analysis level and the results show that they were not

successful at completing the task.

V. DISCUSSION

Participants were completely unfamiliar with the system in

question. First and foremost they were becoming associated

with the system. This can be seen in that the vast majority

of utterances were in the Knowledge and Comprehension

cognitive levels. Operating at these levels is equivalent to

making oneself familiar with the system at hand.

As can be seen in Figure 2, (this graph is reflective of

other participants’ graphs), participants did not move from the

lower cognitive levels steadily into the higher levels but in

fact fluctuated between the Knowledge, Comprehension and

Analysis levels.

Speculatively, it might have been beneficial for the task

to have started with a generic familiarisation methodology,

so that participants could build a basic understanding of

the system, before requiring them to perform the sequence

diagram mapping exercise. By separating the tasks, the initial

build up of basic system knowledge and understanding, this

may have facilitated participants to operate at the higher

cognitive levels such as Analysis for longer and more sustained

time periods.

An issue noted in the data analysis was that no participant

successfully identified the correct starting point of the scenario

in comparison to the model solution. This caused problems for

the participants because to identify if a line of code executed

or not one must first have identified all previous lines of

execution. If previous lines were not successfully identified

this posed a challenge for the participant to know if the line

they were currently looking at would be executed or not.

This error may be reflective again of the fact that partici-

pants did not frequently function at Bloom’s Analysis level.

Successfully identifying the scenario’s starting point would

have indicated participants’ operating at that Analysis level.

The data analysis indicates that, on average, only 19% of the

286 2009 7th IEEE International Conference on Industrial Informatics (INDIN 2009)

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 01,2010 at 21:57:26 EST from IEEE Xplore. Restrictions apply.

Fig. 2. A sample of one participant’s utterances.

utterances were in the Analysis level.

Another issue identified within the data analysis was the in-

correct identification of polymorphism. Participants generally

referred to the parent class when examining the code even

though the descendant class was shown on the sequence dia-

gram. Functioning at the Analysis level, breaking the material

into its constituent parts would have meant that the developer

was understanding the class’s wider role within the program.

The data analysis also highlighted participants incorrect

evaluation of conditional statements. This incorrect evaluation

meant that participants went on to examine incorrect code.

Again, functioning at the Analysis level, it would be expected

that participants identified the mismatch between the scenario

and the code they were examining.

VI. CONCLUSION

This paper has shown that applying UBR of sequence

diagrams, while helpful in moving developers through the

Knowledge to the Comprehension cognitive levels, was not

successful in moving developers to function largely at the

Analysis or higher cognitive levels.

The nature of a sequence diagram correlates well with

Bloom’s taxonomy’s Analysis level. The Analysis level also

requires “breaking the material into its constituent parts” and

identifying how objects interact and communicate with other

objects within the system. It is also the mapping of high-level

functionality down to the low-level code. For this reason it

was expected that participants would have functioned at the

Analysis level.

Reflecting on the task given to participants, it may be

that the task given to participants to perform facilitated the

Knowledge and Comprehension levels to have the highest

counts. Requiring participants to map the sequence diagram to

the code, with the understanding that upon completion of that

task they would be required to add new or modify existing

functionality within the system may have facilitated higher

cognitive levels to be expressed. In this manner the purpose

of studying the code would have been to perform a later task

rather than simply mapping the sequence diagram to the code.

Using sequence diagrams to increase developer understand-

ing of the system when they have no prior system knowledge

may not be the most effective way to build their understanding

of the system and code. It may have been that, had developers

had a working knowledge of the system first, performing the

sequence diagram to code mapping with another task, such as

adding or modifying functionality in that area of the system,

would have enable them to operate at the higher cognitive

levels for longer and more sustained time periods of the task.

Increasing developer’s cognitive understanding is essential

to continue to increase the quality and safety of software.

Without this cognitive system understanding, developers will

continue to produce low quality code that may result in

systems that are unsafe for use. Software is ubiquitous and

pervasive in today’s society, the chance that low quality

2009 7th IEEE International Conference on Industrial Informatics (INDIN 2009) 287

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 01,2010 at 21:57:26 EST from IEEE Xplore. Restrictions apply.

software may endanger people’s lives continues to increase.

Therefore, with demand high for software developers in

most areas of business, and the apparent shortage of developers

to take up these positions, it is of the utmost importance

that new methodologies and frameworks be created to aid

developers, either novice or experienced, new to a project, to

better understand the system they are working upon in shorter

time periods.

The conjecture from the results is that when building

tools and/or methodologies for increasing programmer under-

standing, the combination of more than one task is needed

to facilitate a developer’s, whether novice or experienced,

cognitive level moving from the lower to the higher levels.

REFERENCES

[1] L. W. Anderson, D. R. Krathwohl, and B. S. Bloom. A Taxonomy for
Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy
of Educational Objectives. Longman, 2001.

[2] D. Bergantz and J. Hassell. Information relationships in PROLOG
programs: how do programmerscomprehend functionality? Int. J. Man-
Mach. Stud., 35(3):313–328, 1991.

[3] B. S. Bloom, editor. Taxonomy of Educational Objectives Cognitive
Domain. David McKay Company, Inc., 1956.

[4] R. Brooks. Towards a theory of the comprehension of computer
programs. International Jouranl of Man–Machine Studies, 18(6):543–
554, 1983.

[5] J. Buckley and C. Exton. Bloom’s taxonomy: a framework for assessing
programmers’ knowledge of software systems. Program Comprehen-
sion, 2003. 11th IEEE International Workshop on, pages 165–174, 5
2003.

[6] The Challenges of Complex IT Projects. Technical report, 2004.
[7] A. De Lucia, A. R. Fasolino, and M. Munro. Understanding function

behaviors through program slicing. In Proceedings of Fourth Workshop
on Program Comprehension, 1996., pages 9–18, 3 1996.

[8] New Reference. 2008.
[9] K. A. Ericsson and H. A. Simon. Protocol Analysis. The MIT Press,

1993.
[10] M. E. Fagan. Design and code inspections to reduce errors in program

development. IBM Systems Journal, 15(3):182–211, 3 1976.
[11] M. E. Fagan. Advances in Software inspections. IEEE Transactions on

Software Engineering, 12(7):744–751, 7 1986.
[12] C. Fisher. Advancing the study of programming with computer-aided

protocol analysis. pages 198–216, 1987.
[13] D. P. Hartmann. Considerations in the choice of interobserver reliability

estimates. Journal of Applied Behavior Analysis, 10(1):103, 1977.
[14] T. Kelly and J. Buckley. A Context-Aware Analysis Scheme for

Bloom’s Taxonomy. In 14th IEEE International Conference on Program
Comprehension, 2006, ICPC 2006., pages 275–284, 2006.

[15] S. C. Kothari. Scalable Program Comprehension for Analyzing
Complex Defects. In The 16th IEEE International Conference on
Program Comprehension, 2008, ICPC 2008., pages 3–4, 6 2008.

[16] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental models and
software maintenance. Journal of Systems and Software, 7(4):341–355,
12 1987.

[17] A. v. Mayrhauser and A. M. Vans. Comprehension processes during
large scale maintenance. In Proceedings. ICSE-16.16th International
Conference on Software Engineering, 1994., pages 39–48, 1994.

[18] A. v. Mayrhauser and A. M. Vans. Program Comprehension During
Software Maintenance and Evolution. Computer, 28(8):44–55, 1995.

[19] A. v. Mayrhauser and A. M. Vans. Identification of dynamic comprehen-
sion processes during large scale maintenance. Software Engineering,
IEEE Transactions on, 22(6):424–437, 6 1996.

[20] D. A. McMeekin, B. R. Konsky, E. Chang, and D. J. A. Cooper.
Checklist Inspections and Modifications: Applying Bloom’s Taxonomy
to Categorise Developer Comprehension. In The 16th IEEE International
Conference on Program Comprehension, ICPC 2008, pages 222–227,
2008.

[21] D. A. McMeekin, B. v. Konsky, E. Chang, and D. J. A. Cooper.
Measuring Cognition Levels in Collaborative Processes for Software
Engineering Code Inspections. In Innaugural ICST IT Revolutions
Conference, 2008.

[22] D. A. McMeekin, B. von Konsky, E. Chang, and D. J. A. Cooper.
Evaluating Software Inspection Cognition Levels Using Blooms Tax-
onomy. In IEEE 22 nd Conference on Software Engineering Education
and Training, 2009, CSEET ’09., 2 2009.

[23] D. A. McMeekin, B. R. von Konsky, E. Chang, and D. J. A. Cooper.
Checklist Based Reading’s Influence on a Developer’s Understanding.
In Proc. 19th Australian Conference on Software Engineering ASWEC
2008, pages 489–496, 2008.

[24] M. Olofsson and M. Wennberg. New Reference. PhD thesis, Department.
of Communication Systems, Lund Institute of Technology and Ericsson
Telecom AB, 1996.

[25] G. Polya. How to solve it. Doubleday, 1957.
[26] B. Shneiderman. Measuring computer program quality and compre-

hension. International Journal of Man-Machine Studies, 9:465–478, 7
1977.

[27] H. Siy and L. Votta. Does the modern code inspection have value? In
Proceedings IEEE International Conference on Software Maintenance,
2001., pages 281–289, 2001.

[28] T. Thelin, P. Runeson, and C. Wohlin. An experimental comparison
of usage-based and checklist-based reading. IEEE Transactions on
Software Engineering, 29(8):687–704, 8 2003.

[29] W. Wickelgren. How to solve problems. W.H. Freeman, 1974.
[30] S. Xu and V. Rajlich. Cognitive process during program debugging.

In V. Rajlich, editor, Proc. Third IEEE International Conference on
Cognitive Informatics, pages 176–182, 2004.

[31] S. Xu and V. Rajlich. Dialog-based protocol: an empirical research
method for cognitive activities in software engineering. In V. Rajlich,
editor, Proc. International Symposium on Empirical Software Engineer-
ing, pages 10 pp.–, 2005.

[32] S. Xu, V. Rajlich, and A. Marcus. An empirical study of programmer
learning during incremental software development. In V. Rajlich, editor,
Proc. Fourth IEEE Conference on Cognitive Informatics (ICCI 2005),
pages 340–349, 2005.

288 2009 7th IEEE International Conference on Industrial Informatics (INDIN 2009)

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 01,2010 at 21:57:26 EST from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

