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Abstract

The representation theorem is obtained for functionals of non-Markov processes and their

first exit times from bounded domains. These functionals are represented via solutions of back-

ward parabolic Ito equations. As an example of applications, analogs of forward Kolmogorov

equations are derived for conditional probability density functions of Ito processes killed on the

boundary. In addition, a maximum principle and a contraction property are established for

SPDEs in bounded domains.
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1 Introduction

In the present paper, we study representation of integrals of stochastic non-Markov processes and

their first exit times via stochastic partial differential equations. It is a generalization of the

classical Kolmogorov representation for Markov diffusion processes.

Let a region D ⊂ Rn be given, let T > 0 be a terminal time, let Ft be a filtration, and let

yx,s(t) be an Ito process adapted to Ft and such that yx,s(s) = x, x ∈ D, s < T . Further, let τx,s

be the first exit time from D× [0, T ) for the vector (yx,s(t), t), and let Ψ and ξ be some functions.

∗Stochastics, Vol. 83, No. 1, February 2011, 4566. DOI: 10.1080/17442508.2010.510907
†First on-line version: web-published 23 Jun 2006; revised on-line version: web-published 27 July 2010 at

http://lanl.arxiv.org/abs/math/0606601. Received by the journal 20 December 2008; final version received 28 June

2010

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195643706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Our goal is to represent conditional expectations

p̃(x, s, ω)
∆
= E

{
Ψ(yx,s(T ))I{T≤τx,s} | Fs

}
+E

{∫ τx,s

s
ξ(yx,s(t), t, ω) dt | Fs

}
(1.1)

as the solutions of boundary value problems for stochastic partial differential equations. This

representation has many important applications. In particular, the representation via solution of a

SPDE helps to establish some regularity properties for p̃ and τx,s, since there is certain regularity

for the solutions of SPDEs.

For the representation, we will use backward parabolic Ito equations, i.e., the equations with

Cauchy condition at terminal time t = T . These equations are analogs of Kolmogorov backward

equations for non-Markov processes. We will also consider forward parabolic Ito equations, i.e.,

the equations with Cauchy condition at initial time; they can be regarded as analogs of forward

Kolmogorov equations.

Boundary value problems for forward parabolic Ito equations were intensively studied; see, e.g.,

Alós et al (1999), Bally et al (1994), Chojnowska-Michalik and Goldys (1995), Da Prato and Tubaro

(1996), Gyöngy (1998), Kim (2004), Krylov (1999), Maslowski (1995), Pardoux (1993), Rozovskii

(1990), Walsh (1986), Zhou (1992), the author’s papers (1995), (2005), and the bibliography there.

Note that the difference between backward and forward equations is not that important for the

deterministic equations because one can always make a change of time variable and convert a

backward equation to a forward one and opposite. But it cannot be done so easily for stochastic

equations, because the solution needs to be adapted to the driving Brownian motion. Therefore,

backward stochastic partial differential equations with boundary conditions at final time require

special consideration. A possible approach is to consider so-called Ito-Bismut backward equations

when the diffusion term is not given a priori but has to be found. These backward SPDEs were

also widely studied; see, e.g., Pardoux and Peng (1990), Hu and Peng (1991), Dokuchaev (1992),

(2003),(2010), Yong and Zhou (1999), Pardoux and Rascanu (1998), Ma and Yong (1999), Hu et al

(2002), Confortola (2007), and references here. The duality between linear forward and backward

equations was studied by Zhou (1992) for a domain without boundary, and by the author (1992)

for the domains with boundaries. A different type of backward equations was described in Chapter

5 of Rozovskii (1990).

The representation of expectations (1.1) via SPDEs was established before for the following

cases:

• For the classical Markovian setting then yx,s(t) is a diffusion Markov processes;

• For the case of non-Markov yx,s(t) in the entire space, i.e., whenD = Rn, i.e., for the problem

without random first exit times.

2



The known representation theorems for non-Markov processes in D = Rn was never extended

on the case of domains with boundary. Let us explain why it is non-trivial.

The main difficulty in the implementation of this approach to the non-Markov Ito processes and

the related SPDEs is the following. One needs again a priori certain smoothness for the solution

p(·) of a backward SPDE, to apply Ito-Ventsell formula for the process p(yx,s(t, ω), t, ω). However,

the previously known results about regularity of the solution of the backward SPDE for p were

insufficient for the case of domains with boundary. Therefore, the representation result was never

obtained for this case. Correspondingly, it was unknown if the forward parabolic Ito equation for

the conditional density of a non-Markov process in the entire space can be used for the process

killed on the boundary, given additional Dirichlet boundary value condition on this boundary. As

far as we know, the first attempt to solve it was made in the author’s paper (1992) for a very

special case. In the present paper, we have proved this fact together with representation (1.1) for

some p derived from a backward parabolic Ito equation (Theorems 4.1 and Theorem 6.1).

The present paper uses the additional regularity in the form of the so-called second fundamen-

tal inequality (Theorem 3.4): the solution (p, χ) of the backward equation has L2-integrable second

derivatives for p and the first derivatives for χ. This additional regularity of the solutions of the

backward equations appears to be sufficient to obtain the representation theorem. To ensure this

regularity, we required additional Condition 3.5 which is a strengthened version of the standard

coercivity condition (Condition 3.1). We emphasize that, without this new condition, representa-

tion theorem for (1.1) is still not established, and an equation for the probability density function

of the Ito process bein killed on the boundary is still unknown (even if it easy to believe that one

can use the SPDE for the density from the case of entire domain with additional the Dirichlet

condition imposed on the boundary).

As a corollary, we obtained the equation for the conditional probability density function of an

Ito process killed on the boundary of a domain (Theorem 6.1). This is a new result even given

that the corresponding result for entire domain was known for a long time (see, e.g., Theorem

5.3.1 from Rozovskii (1990)). As an additional corollary, we obtained the ”maximum principle”:

the solution of the forward or backward equation in the cylinder D × [0, T ] is nonnegative if the

free terms are nonnegative. Further, we proved that the dynamic of the homogeneous equations

is of the contraction type: E
∫
D |u(x, T, ω)|dx ≤ E

∫
D |u(x, 0, ω)|dx for the solutions of the for-

ward equations, and ess supx,ω |p(x, t, ω)| ≤ ess supx,ω |p(x, T, ω)| for the solutions of the backward

equations. (Theorems 7.1-7.4).

The paper is organized as follows. In Section two we collect notation and definitions. Sections

three contains some facts about the regularity of SPDEs, including the second fundamental in-
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equality for backward equations. In Section four, the main result is presented. The proof of this

result is given in Section five. Sections six and seven contain applications.

2 Definitions

2.1 Spaces and classes of functions.

We a given an open domain D ⊆ Rn such that either D = Rn or D is bounded with C2+α-smooth

boundary ∂D for some α > 0; if n = 1, then the condition of smoothness is not required. Let

T > 0 be given, and let Q
∆
= D × (0, T ).

We are given a standard complete probability space (Ω,F ,P) and a right-continuous filtration

Ft of complete σ-algebras of events, t ≥ 0; we denote by ω the elements of the set Ω = {ω}. We are

also given a N -dimensional process w(t) = (w1(t), ..., wN (t)) with independent components such

that it is a Wiener process with respect to Ft.

We denote by ∥·∥X the norm in a linear normed space X, and (·, ·)X denotes the scalar product

in a Hilbert space X.

We denote Euclidean norm in Rk as | · |, and Ḡ denotes the closure of a region G ⊂ Rk.

We introduce some spaces of real valued functions.

We denote by Wm
q (D) the Sobolev space of functions that belong to Lq(D) together with first

m derivatives, q ≥ 1. In particular,

∥u∥W 1
2 (D)

∆
=

(
∥u∥2L2(D) +

n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥2
L2(D)

)1/2

.

Let H0 ∆
= L2(D), and let H1 ∆

=
0

W 1
2 (D) be the closure in the W 1

2 (D)-norm of the set of all

smooth functions u : D → R such that u|∂D ≡ 0. Let H2 = W 2
2 (D) ∩H1 be the space equipped

with the norm of W 2
2 (D). The spaces Hk and W k

2 (D) are called Sobolev spaces; they are Hilbert

spaces, and Hk is a closed subspace of W k
2 (D), k = 0, 1, 2.

Let H−1 be the dual space to H1, with the norm ∥ · ∥H−1 such that if u ∈ H0 then ∥u∥H−k is

the supremum of (u, v)H0 over all v ∈ H0 such that ∥v∥H1 ≤ 1. H−k is a Hilbert space.

We denote by ℓk and ℓ̄k the Borel measure and the Lebesgue measure in Rk respectively, and

we denote by Bk the σ-algebra of Borel sets in Rk. We denote by B̄k the completion of Bk with

respect to the measure ℓk, or the σ-algebra of Lebesgue sets in Rk.

We denote by P̄ the completion (with respect to the measure ℓ̄1×P) of the σ-algebra of subsets

of [0, T ]× Ω, generated by functions that are progressively measurable with respect to Ft.
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Let Qs
∆
= D × [s, T ]. For k = −1, 0, 1, 2, we introduce spaces

Xk(s, T )
∆
= L2([s, T ]× Ω, P̄, ℓ̄1 ×P;Hk), Zk

t
∆
= L2(Ω,Ft,P;Hk), Ck(s, T )

∆
= C([s, T ];Zk

T ).

The spaces Xk and Zk
t are Hilbert spaces.

Further, we introduce spaces

Y k(s, T )
∆
= Xk(s, T )∩ Ck−1(s, T ), k ≥ 0,

with the norm ∥u∥Y k(s,T )
∆
= ∥u∥Xk(s,T ) + ∥u∥Ck−1(s,T ).

For brevity, we will use the notations Xk ∆
= Xk(0, T ), Ck ∆

= Ck(0, T ), and Y k ∆
= Y k(0, T ).

In addition, we will be using spaces

Zk
c

∆
= L2(Ω,FT ,P;Ck(D)), X k

c = L2([0, T ]× Ω, P̄, ℓ̄1 ×P; Ck(D̄)), k ≥ 0,

Wk
p

∆
= L∞([0, T ]× Ω,P, ℓ̄1 ×P; W k

p (D)), k = 0, 1, . . . , 1 ≤ p ≤ +∞.

The same notations will be used for the spaces of vector and matrix functions, meaning that all

components belong to the corresponding spaces. In particular, ∥ · ∥Wk
p
means the sum of all this

norms for all components.

We will write (u, v)H0 for u ∈ H−1 and v ∈ H1, meaning the obvious extension of the bilinear

form from u ∈ H0 and v ∈ H1. Similarly, we will write (ξ, η)X0 for ξ ∈ X−1 and η ∈ X1.

Proposition 2.1 Let ξ ∈ X0, let a sequence {ξk}+∞
k=1 ⊂ L∞([0, T ]×Ω, ℓ1 ×P; C(D̄)) be such that

all ξk(·, t, ω) are progressively measurable with respect to Ft, and let ∥ξ− ξk∥X0 → 0. Let t ∈ [0, T ]

and j ∈ {1, . . . , N} be given. Then the sequence of integrals
∫ t
0 ξk(x, s, ω) dwj(s) converges in Z0

t

as k → ∞, and its limit depends on ξ, but does not depend on {ξk}.

Proof follows from completeness of X0 and from the equality

E

∫ t

0
∥ξk(·, s, ω)− ξm(·, s, ω)∥2H0 ds =

∫
D
dxE

(∫ t

0
(ξk(x, s, ω)− ξm(x, s, ω)) dwj(s)

)2

.

Definition 2.1 For ξ ∈ X0, t ∈ [0, T ], and j ∈ {1, . . . , N}, we define
∫ t
0 ξ(x, s, ω) dwj(s) as the

limit in Z0
t as k → ∞ of a sequence

∫ t
0 ξk(x, s, ω) dwj(s), where the sequence {ξk} is such as in

Proposition 2.1.

Sometimes we will omit ω.

3 Forward and backward SPDEs

In this section, we collect some known fact for SPDEs.
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3.1 Forward SPDEs

Let s ∈ [0, T ), φ ∈ X−1, hi ∈ X0, and Φ ∈ Z0
s . Consider the boundary value problem

dtu = (Au+ φ) dt+
∑N

i=1[Biu+ hi]dwi(t), t ≥ s,

u|t=s = Φ, u(x, t, ω)|x∈∂D = 0.
(3.1)

Here u = u(x, t, ω), (x, t) ∈ Q, ω ∈ Ω, and

Av ∆
=

n∑
i,j=1

bij(x, t, ω)
∂2v

∂xi∂xj
(x) +

n∑
i=1

fi(x, t, ω)
∂v

∂xi
(x) + λ(x, t, ω)v(x), (3.2)

where bij , fi, xi are the components of b,f , and x. Further,

Biv
∆
=
dv

dx
(x)βi(x, t, ω) + β̄i(x, t, ω) v(x), i = 1, . . . , N. (3.3)

We assume that the functions b(x, t, ω) : Rn× [0, T ]×Ω → Rn×n, βj(x, t, ω) : R
n× [0, T ]×Ω →

Rn, β̄i(x, t, ω) : R
n×[0, T ]×Ω → R, f(x, t, ω) : Rn×[0, T ]×Ω → Rn, λ(x, t, ω) : Rn×[0, T ]×Ω →

R and φ(x, t, ω) : Rn × [0, T ]× Ω → R are progressively measurable for any x ∈ Rn with respect

to Ft.

To proceed further, we assume that Conditions 3.1-3.3 remain in force throughout this paper.

Condition 3.1 The matrix b = b⊤ is symmetric, bounded, and progressively measurable with

respect to Ft for all x, and there exists a constant δ > 0 such that

y⊤b(x, t, ω) y − 1

2

N∑
i=1

|y⊤βi(x, t, ω)|2 ≥ δ|y|2 ∀ y ∈ Rn, (x, t) ∈ D × [0, T ], ω ∈ Ω. (3.4)

Inequality (3.4) is called sometimes a coercivity condition; it means that equation (3.1) is

superparabolic, in terminology of Rozovskii (1990).

Condition 3.2 The functions b(x, t, ω) : Rn × R × Ω → Rn×n, f(x, t, ω) : Rn × R × Ω → Rn,

λ(x, t, ω) : Rn ×R× Ω → R, are bounded and differentiable in x, and

ess sup
(x,t,ω)∈Q

[∣∣∣ ∂b
∂x

(x, t, ω)
∣∣∣+ ∣∣∣∂f

∂x
(x, t, ω)

∣∣∣+ ∣∣∣∂λ
∂x

(x, t, ω)
∣∣∣]< +∞.

Condition 3.3 The functions βi(x, t, ω) and β̄i(x, t, ω) are bounded and differentiable in x, and

ess supx,t,ω |∂βi

∂x (x, t, ω)| < +∞, ess supx,t,ω |∂β̄i

∂x (x, t, ω)| < +∞, i = 1, . . . , N .

We introduce the set of parameters

P1
∆
=

(
n, D, T, δ, ess supx,t,ω

[
|b(x, t, ω)|+ |f(x, t, ω)|+

∣∣∣ ∂b∂x(x, t, ω)∣∣∣+ ∣∣∣∂f∂x (x, t, ω)∣∣∣],
ess supx,t,ω,i

[
|βi(x, t, ω)|+ |β̄i(x, t, ω)|+

∣∣∣∂βi

∂x (x, t, ω)
∣∣∣+ ∣∣∣∂β̄i

∂x (x, t, ω)
∣∣∣]).
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The definition of solution

Definition 3.1 Let hi ∈ X0 and φ ∈ X−1. We say that equations (3.1) are satisfied for u ∈ Y 1 if

u(·, t, ω)− u(·, r, ω)

=

∫ t

r
(Au(·, s, ω) + φ(·, s, ω)) ds+

N∑
i=1

∫ t

r
[Biu(·, s, ω) + hi(·, s, ω)] dwi(s) (3.5)

for all r, t such that 0 ≤ r < t ≤ T , and this equality is satisfied as an equality in Z−1
T .

Note that the condition on ∂D is satisfied in the following sense: u(·, t, ω) ∈ H1 for a.e. t, ω.

Further, the value of u(·, t, ω) is continuous in t in Z0
T and uniquely defined in Z0

T given t, by

the definitions of the space Y 1. The stochastic integrals with dwi in (3.5) are defined as elements

of Z0
T . For an arbitrary process u ∈ Y 1, the integral with ds is defined as an element of Z−1

T .

However, u ∈ Y 1 presented in Definition 3.1 is such that this integral is equal to an element of Z0
T

in the sense of equality in Z−1
T .

Existence and regularity for forward SPDEs

Typically, existence and uniqueness results at different spaces for linear PDEs are based on so-

called prior estimates, when a norm of the solution is estimated via a norm of the free term. For

the second order equations, there are two important estimates based on L2-norm:

so-called ”the first energy inequality” or ”the first fundamental inequality”, and ”the second en-

ergy inequality”, or ”the second fundamental inequality” (Ladyzhenskaya (1985)). For instance,

consider a boundary value problem for the heat equation

u′t = u′′xx + φ, φ = f ′x + g,

u|t=0 = 0, u|∂D = 0, (x, t) ∈ Q = D × [0, T ], D ⊂ R.

Then the first fundamental inequality is the estimate

∥u∥2L2(Q) + ∥u′x∥2L2(Q) ≤ const (∥f∥2L2(Q) + ∥g∥2L2(Q)).

Respectively, the second fundamental inequality is the estimate

∥u′t∥2L2(Q) + ∥u∥2L2(Q) + ∥u′x∥2L2(Q) + ∥u′′xx∥2L2(Q) ≤ const ∥φ∥2L2(Q).

The second fundamental inequality leads to existence theorem in the class of functions u such

that u′′xx ∈ L2(Q). The first fundamental inequality allows more general free terms but leads to

existence theorem in the class of functions u with generalized derivatives u′′xx ∈ H−1 only.

An analog of the first and the second fundamental inequality for the forward SPDEs is given

by the following two theorems.
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Theorem 3.1 [Rozovskii (1990), Ch. 3.4.1] Assume that Conditions 3.1, 3.2, and 3.3, are satis-

fied. Let φ ∈ X−1(s, T ), hi ∈ X0(s, T ), and Φ ∈ Z0
s . Then problem (3.1) has an unique solution

u in the class Y 1(s, T ) and the following analog of the first fundamental inequality is satisfied:

∥u∥Y 1(s,T ) ≤ c

(
∥φ∥X−1(s,T ) + ∥Φ∥Z0

s
+

N∑
i=1

∥hi∥X0(s,T )

)
, (3.6)

where c = c(P1) is a constant that depends on P1 only.

Theorem 3.2 [Dokuchaev (2005)] Assume that Conditions 3.1, 3.2, and 3.3, are satisfied. In

addition, assume that βi(x, t, ω) = 0 for x ∈ ∂D, i = 1, ..., N .

Let φ ∈ X0, hi ∈ X1, and Φ ∈ Z1
0 . Then problem (3.1) has an unique solution u ∈ Y 2 and the

following analog of the second fundamental inequality is satisfied:

∥u∥Y 2 ≤ c

(
∥φ∥X0 + ∥Φ∥Z1

0
+

N∑
i=1

∥hi∥X1

)
, (3.7)

where c = c(P1) is a constant that depends on P1 only.

Introduce operators L(s, T ) : X−1(s, T ) → Y 1(s, T ), Mi(s, T ) : X0(s, T ) → Y 1(s, T ), and

L(s, T ) : Z0
s → Y 1(s, T ), such that

u = L(s, T )φ+ L(s, T )Φ +
N∑
i=1

Mi(s, T )hi,

where u is the solution in Y 1(s, T ) of problem (3.1). These operators are linear and continuous; it

follows immediately from Theorem 3.1. We will denote by L, Mi, and L, the operators L(0, T ),

Mi(0, T ), and L(0, T ), correspondingly.

3.2 Backward SPDEs

Introduce the operators being formally adjoint to the operators A and Bi:

A∗v =

n∑
i,j=1

∂2

∂xi∂xj

(
bij(x, t, ω) v(x)

)
−

n∑
i=1

∂

∂xi
(fi(x, t, ω) v(x)) + λ(x, u, t, ω) v(x),

B∗
i v = −

n∑
i=1

∂

∂xi
(βi(x, t, ω) v(x)) + β̄i(x, t, ω) v(x).

Consider the boundary value problem in Q

dtp+
(
A∗p+

N∑
i=1

B∗
i χi + ξ

)
dt =

N∑
i=1

χi dwi(t),

p|t=T = Ψ, p(x, t, ω) |x∈∂D = 0. (3.8)
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The definition of solution

Definition 3.2 We say that equation (3.8) is satisfied for p ∈ Y 1, ξ ∈ X−1, Ψ ∈ Z0
T , χi ∈ X0 if

p(·, t) = Ψ +

∫ T

t

(
A∗p(·, s) +

N∑
i=1

B∗
i χi(·, s) + ξ(·, s)

)
ds−

N∑
i=1

∫ T

t
χi(·, s) dwi(s) (3.9)

for any t ∈ [0, T ]. The equality here is assumed to be an equality in the space Z−1
T .

Existence and regularity for backward SPDEs

For t ∈ [0, T ], define operators δt : C([0, T ];Z
k
T ) → Zk

t such that δtu = u(·, t).

The following theorem gives an analog of the first fundamental inequality for backward SPDEs.

In addition, this theorem establishes duality between forward and backward equations.

Theorem 3.3 [Dokuchaev (1992,2010)] For any ξ ∈ X−1 and Ψ ∈ Z0
T , there exists a pair (p, χ),

such that p ∈ Y 1, χ = (χ1, . . . , χN ), χi ∈ X0 and (3.8) is satisfied. This pair is uniquely defined,

and the following analog of the first fundamental inequality is satisfied:

∥p∥Y 1 +
N∑
i=1

∥χi∥X0 ≤ c(∥ξ∥X−1 + ∥Ψ∥Z0
T
), (3.10)

where c = c(P1) > 0 is a constant that depends on P1 only. Furthermore, the following duality

holds between problems (3.8) and (3.1):

p = L∗ξ + (δTL)
∗Ψ, χi = M∗

i ξ + (δTMi)
∗Ψ, p(·, 0) = L∗ξ + (δTL)∗Ψ,

where L∗ : X−1 → X1, M∗
i : X0 → X0, (δTL)

∗ : Z0
0 → X1, (δTMi)

∗ : Z0
0 → X0, and (δTL)∗ :

Z0
T → Z0

0 , are the operators that are adjoint to the operators L : X−1 → X1, Mi : X
0 → X1,

δTMi : X
−1 → Z0

T , δTMi : X
0 → Z0

T , and δTL : Z0
0 → Z0

T , respectively.

We will need an analog of the second fundamental inequality as well.

Starting from now, we assume that the following addition conditions are satisfied.

Condition 3.4 There exist functions f̂(x, t, ω) : Rn×R+×Ω → Rn, λ̂(x, t, ω) : Rn×R+×Ω → R,

and β̂i(x, t, ω) : R
n ×R+ × Ω → R, such that

ess sup
x,t,ω

(
|f̂(x, t, ω)|+ |λ̂(x, t, ω)|+ |β̂i(x, t, ω)|

)
< +∞,

and

A∗p =

n∑
i,j=1

bij(x, t, ω)
∂2p

∂xi∂xj
(x) +

n∑
i=1

f̂i(x, t, ω)
∂p

∂xi
(x)− λ̂(x, t, ω) p(x),

B∗
i p =

dp

dx
(x)βi(x, t, ω) + β̂i(x, t, ω) p(x).
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Clearly, this condition is satisfied if the function b(x, t, ω) : Rn ×R×Ω → Rn×n is twice differen-

tiable in x, and

ess sup
ω

sup
(x,t)∈Q

∣∣∣ ∂2b

∂xk∂xm
(x, t, ω)

∣∣∣ < +∞.

For an integer M > 0, let Θb(M) denotes the class of all matrix functions b such that all

conditions imposed in Section 3.1 are satisfied, and there exists a set {Ti}Mi=0 such that 0 = T0 <

T1 < · · · < TM = T and that the function b(x, t, ω) = b(x, ω) does not depend on t for t ∈ [Ti, Ti+1).

(it follows from the assumptions that b(x, t, ·) is FTi-measurable for all x ∈ D, t ∈ [Ti, Ti+1)).

Let Θb
∆
= ∪M>0Θb(M).

Let Θ̄b denotes the class of function b from such that all conditions imposed in Section 3.1 are

satisfied, and there exists and a sequence {b(i)}+∞
i=1 ⊂ Θb such that ∥b− b(i)∥W1

∞
→ 0 as i → +∞.

(Remind that the assumptions on b are such that b ∈ W1
∞).

Condition 3.5 The matrix b belongs to Θ̄b, and there exists a constant δ1 > 0 such that

N∑
i=1

y⊤i b(x, t, ω) yi −
1

2

(
N∑
i=1

y⊤i βi(x, t, ω)

)2

≥ δ1

N∑
i=1

|yi|2

∀ {yi}Ni=1 ⊂ Rn, (x, t) ∈ D × [0, T ], ω ∈ Ω. (3.11)

Remark 3.1 If Condition 3.5 holds, then Condition 3.1 holds. If n = 1 and Condition 3.1 holds,

then the estimate in Condition 3.5 also holds. If n > 1, then it can happen that Condition 3.1

holds, but the estimate in Condition 3.5 does not hold. For instance, assume that n = 2, N = 2,

β1 ≡ (1, 0)⊤, β2 = (0, 1)⊤, b ≡ 1
2(β1β

⊤
1 + β2β

⊤
2 ) + 0.01I2 = 0.51I2, where I2 is the unit matrix in

R2×2. Obviously, Condition 3.1 holds and b ∈ Θ̄b,. On the other hand, Condition 3.5 does not

hold for this b; to see this, it suffices to take y1 = β1 and y2 = β2.

Remark 3.2 Condition 3.5 is satisfied for matrices b ∈ Θ̄b if either n = 1 or there exists N0 ∈

{1, ..., N} such that βi ≡ 0 for i > N0, and there exists a constant δ2 > 0 such that

y⊤b(x, t, ω) y − N0

2
|y⊤βi(x, t, ω)|2 ≥ δ2|y|2 ∀ y ∈ Rn, (x, t) ∈ D × [0, T ], ω ∈ Ω, i = 1, ..., N0.

(3.12)

In particular, it is satisfied if Condition 3.1 holds and N0 = 1.

To proceed further, we assume that Conditions 3.4- 3.5 remain in force starting from here and up

to the end of this paper, as well as the previously formulated conditions.

Let P ∆
= (P1, δ1).

We will be using the following analog of the second fundamental inequality for backward SPDEs.
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Theorem 3.4 [Dokuchaev (2006)] For any ξ ∈ X0 and Ψ ∈ Z1
T , there exists a pair (p, χ), such

that p ∈ Y 2, χ = (χ1, . . . , χN ), χi ∈ X1 and (3.8) is satisfied. This pair is uniquely defined, and

p = L∗ξ + (δTL)
∗Ψ, χi = M∗

i ξ + (δTMi)
∗Ψ.

The operators L∗ : X0 → Y 2, (δTL)
∗ : Z1

T → Y 2, and M∗
i : X0 → X1, (δTMi)

∗ : Z1
T → X1, are

continuous. More precisely, the following analog of the second fundamental inequality holds:

∥p∥Y 2 +

N∑
i=1

∥χi∥X1 ≤ c(∥ξ∥X0 + ∥Ψ∥Z1
T
), (3.13)

where c > 0 is a constant that depends only on P.

Semi-group property for backward equations

It is known that the dynamic of forward parabolic Ito equation has semi-group property (or

causality property): if u = Lφ+ L0Φ, where φ ∈ X−1, Φ ∈ Z0
0 , then

u|t∈[θ,s] = (Lφ+ L0Φ)|t∈[θ,s] = L(θ, s)φ+ Lθ(θ, s)u(·, θ). (3.14)

We will need a similar property for the backward equations.

Theorem 3.5 (Semi-group property for backward equations) [Dokuchaev (2010)]. Let 0 ≤ θ <

s < T , and let p = L∗ξ, χi = Miξ where ξ ∈ X−1 and Ψ ∈ Z0
T . Then

p|t∈[θ,s] = L(θ, s)∗ξ|t∈[θ,s] + (δsL(θ, s))
∗p(·, s), (3.15)

p(·, θ) = (δsLθ(θ, s))
∗p(·, s) + Lθ(θ, s)

∗ξ, (3.16)

χi|t∈[θ,s] = Mi(θ, s)
∗ξ|t∈[θ,s] + (δsMi(θ, s))

∗p(·, s), k = 1, ..., N. (3.17)

Some additional regularity

Theorem 3.4 requires that Ψ ∈ Z1
2 . We will need a modification of this theorem that allows Ψ ∈ Z0

2 .

Theorem 3.6 Let the assumptions of Theorem 3.4 be satisfied. Let ξ ∈ X0 and Ψ ∈ Z0
T . Let

p = L∗ξ + (δTL)
∗Ψ, χi = M∗

i ξ + (δTMi)
∗Ψ.

Let ε ∈ (0, T ) be given. Then

∥p∥Y 2(0,T−ε) +

N∑
i=1

∥χi∥X1(0,T−ε) ≤
c√
ε
(∥ξ∥X0 + ∥Ψ∥Z0

T
), (3.18)

where c = c(P) > 0 is a constant that depends only on and P.
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Proof. By Theorem 3.3 and Theorem 3.5, it follows that

∥p∥Y 2(0,T−ε) +
N∑
i=1

∥χi∥X1(0,T−ε) ≤ c1(∥ξ∥X0(0,T−ε) + ∥p(·, T − ε)∥Z1
T
), (3.19)

where c1 = c1(P) > 0 is a constant that depends only on P. (Note that the same constant c can

be used for all ε, since Theorem 3.6 holds for T replaced by T −ε with any ε ∈ [0, T )). In addition,

it follows from Theorem 3.4 that

inf
s∈[T−ε,T ]

∥p(·, s)∥2Z1
T
≤ 1

ε

∫ T

T−ε
∥p(·, t)∥2Z1

T
dt ≤ c2

ε
(∥ξ∥2X0 + ∥Ψ∥2Z0

T
),

where c2 = c2(P) > 0 is a constant that depends only on P. This completes the proof. �

4 The main result: the representation theorem

Let functions β̃i : Q× Ω → Rn, i = 1, . . . ,M , be such that

2b(x, t, ω) =
N∑
i=1

βi(x, t, ω)βi(x, t, ω)
⊤ +

M∑
j=1

β̃j(x, t, ω) β̃j(x, t, ω)
⊤,

and β̃i has the similar properties as βi. (Note that, by Condition 3.1, 2b >
∑N

i=1 βiβ
⊤
i ).

Let w̃(t) = (w̃1(t), . . . , w̃M (t)) be a new Wiener process independent on w(t).

Let (x, s) ∈ D̄ ∈ [0, T ] be given. Consider the following Ito equation

dy(t) = f̃(y(t), t) dt+

N∑
i=1

βi(y(t), t) dwi(t) +

M∑
j=1

β̃j(y(t), t) dw̃j(t),

y(s) = x, (4.1)

where f̃
∆
= f̂ −

∑N
i=1 β̂iβi.

Let y(t) = yx,s(t) be the solution of (4.1).

Set τx,s
∆
= min {t ≤ T : yx,s(t) /∈ D}. For t ≥ s, set

γx,s(t)
∆
= exp

[
−
∫ t

s
λ̂(yx,s(t), t) dt+

N∑
i=1

∫ t

s
β̂i(y

x,s(s), s) dwi(s)−
N∑
i=1

1

2

∫ t

s
β̂i(y

x,s(s), s)2 ds

]
.

Theorem 4.1 Let b ∈ X 3
c , f̂ ∈ X 2

c , λ̂ ∈ X 1
c , βi ∈ X 3

c and β̂i ∈ X 2
c . Let (p, χ1, ..., χN ) be the

solution of (3.8), where functions ξ : Q×Ω → R and Ψ : D×Ω are such that ξ is (Bn+1⊗F ,B1)-

measurable, Ψ is (Bn ⊗F ,B1)-measurable, ξ ∈ X0 and Ψ ∈ Z0
T . Then for any s ∈ [0, T ),

p(x, s, ω) = E
{
γx,s(T )Ψ(yx,s(T ))I{T≥τx,s} | Fs

}
+E

{∫ τx,s

s
γx,s(t) ξ(yx,s(t), t, ω) dt | Fs

}
(4.2)

for a.e. x, ω.

Remind that the solution (p, χ1, ..., χN ) of (3.8) can be represented as

p = L∗ξ + (δTL)
∗Ψ, χi = M∗

i ξ + (δTMi)
∗Ψ, i = 1, ..., N. (4.3)
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5 Proof of Theorem 4.1

Let us proof first the following lemma.

Lemma 5.1 Theorem 4.1 holds even without Condition 3.1 for the case when ξ ∈ X 0
c , Ψ ∈ Z0

c∩Z1
0 ,

p ∈ X 2
c , p(·, T ) ∈ Z0

c , χi ∈ X 1
c , where (p, χ1, ...., χN ) is the solution of (4.8).

Proof of Lemma 5.1. Let (x, s) be given, and let y(t) = yx,s(t) and γ(t) = γx,s(t). We have

that

dtp = J (p) dt+

N∑
i=1

χi dwi(t),

where

J (p)
∆
= −A∗p−

N∑
i=1

B∗
i χi − ξ.

Let ψ(t)
∆
= p(y(t, ω), t, ω).

By the Ito-Ventssel formula (see, e.g., Rozovskii (1990), Chapter 1 ),

dψ(t) = h(y(t), t)dt+

N∑
i=1

χi(y(t), t) dwi(t) +

N∑
i=1

(
∂p

∂x
βi

)
(y(t), t) dwi(t)

+
M∑
i=1

(
∂p

∂x
β̃i

)
(y(t), t) dw̃i(t),

where

h = h(y(t), t) = J (p) +A∗p+ λ̂p− ∂p

∂x

N∑
i=1

β̂iβi +
N∑
i=1

∂χi

∂x
βi.

By (3.11), it can be rewritten as

h = −ξ + λ̂p− ∂p

∂x

N∑
i=1

β̂iβi −
N∑
i=1

β̂iχi.

Let ψ̂(t)
∆
= ψ(t) γ(t), t ≥ s. We have that

dγ(t) = γ(t)
(
−λ̂dt+

N∑
i=1

β̂i(t) dwi(t)
)
.

Using Ito formula, we derive that

dψ̂(t) = −γ(t) ξ(y(t), t, ω) +
N∑
i=1

µi(t) dwi(t) +

M∑
i=1

µ̃i(t) dw̃i(t),
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where µi(·) and µ̃i(·) are some L2–integrable processes such that µi(t) and µ̃i(t) are independent

from wj(r)− wj(t) and w̃k(r)− w̃k(t) for all r > t, j, k. It follows that

E
{
γ(T )Ψ(y(T ))I{T≤τx,s} | Fs

}
− p(x, s, ω) = E

{
(p(y(τx,s), τx,s, ω)− p(x, s, ω)) | Fs

}
= −E

{∫ τx,s

s
γ(t) ξ(y(t), t, ω) dt | Fs

}
.

Then (4.2) follows. This completes the proof of Lemma 5.1. �

Let us continue the proof of Theorem 4.1, and let us assume first that the functions ξ and

Ψ are bounded. In addition, we assume for the case when D = Rn that there exists a bounded

domain D̂ ⊂ Rn such that ξ(x, t, ω) = 0 and Ψ(x, ω) = 0 for all x /∈ D̂ for all t, ω.

For functions h ∈ X0, we introduce some transforms hm, m = 1, 2, ...

(a) Let D ̸= Rn. In this case, we introduce an orthonormal basis {vk}∞k=1 in L2(D) consisting

of the eigenfunctions for the eigenvalue problem

∆v − v = −λv, v|∂D = 0. (5.1)

Here ∆ is the Laplacian. It is known that v ∈ C2(D̄) ∩ H2 (see, e.g., Theorem III.3.2

from Ladyzhenskaya and Ural’tseva (1968)). For a function h ∈ X0, we denote by hm the

function hm ∈ X0 such that hm(·, t, ω) is the projection of h(·, t, ω) on the subspace of L2(D)

generated as the span of the functions {vk}mk=1.

(b) LetD = Rn. In this case, for a function h ∈ X0, we denote by hm the function (h)m(y, t, ω)
∆
=∫

Rn h(x, t, ω)J
(m)(y−x)dx that is the corresponding Sobolev transform. Here J(x) : Rn → R

is the Sobolev kernel: J(x) = 0 if |x| ≥ 1, and J(x) = exp{−|x|/(1 − |x|)} if |x| < 1, and

J (m)(x) = κnm
nJ(mx), where κn > 0 is such that

∫
Rn J

(m)(x)dx = 1.

The transform hm has the following properties:

hm ∈ X 2
c ∀h ∈ X,

(hm, g)X0 = (h, gm)X0 , ∀h, g ∈ X0,

∥hm∥X1 ≤ c∥h∥X1 ∀h ∈ X1, (5.2)

for a constant c > 0 that does not depend on h. The first two properties are obvious. For the case

when D = Rn, the last property follows from the known properties of the Sobolev transform. It

suffices to prove the last property for the case when D ̸= Rn. Let D ̸= Rn. For any V ∈ H0,

we have that V =
∑∞

k=1 ckvk, where ck = (V, vk)H0 , meaning the convergence of the series in H0.
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Hence

∥Vm∥2H1 = (Vm, Vm −∆Vm)H0 =
( m∑
k=1

ckvk,
m∑
k=1

ckvk −∆
m∑
k=1

ckvk

)
H0

=
( m∑
k=1

ckvk,

m∑
k=1

ckvk +

m∑
k=1

λkckvk

)
H0

=

m∑
k=1

|ck|2(1 + λk) ≤ ∥V ∥2H1 .

Here λk are the eigenvalues of problem (5.1) that correspond to the eigenfunctions vk. It follows

that (5.2) holds for D ̸= Rn. Therefore, (5.2) holds.

Let (p, χ1, ..., χN ) ∈ Y 1× (X0)N be such that p = L∗ξ+(δTLi)
∗Ψ and χi = M∗

i ξ+(δTMi)
∗Ψ.

By Theorem 3.6, it follows that

(p, χ1, ..., χN )|t∈[0,T−ε) ∈ Y 2(0, T − ε)× (X1(T − ε))N ∀ε > 0. (5.3)

In particular, it follows that ∂kp
∂x2

k
(·, t)t∈[0,T−ε), k = 0, 1, 2, and ∂χi

∂xi t∈[0,T−ε)
belong to X0(0, T − ε).

We have that

dtpm + [(A∗p)m + ξm +

N∑
i=1

(B∗
i χi)m]dt =

N∑
i=1

χimdwi(t),

pm(x, T, ω) = Ψm(x, ω), pm|x∈D = 0.

It can be rewritten as

dtpm + [A∗pm + ξ̂(m) +

N∑
i=1

B∗
i χim]dt =

N∑
i=1

χimdwi(t),

pm(x, T, ω) = Ψm(x, ω), pm|x∈∂D = 0.

Here

ξ̂(m) ∆
= ξm + η(m), η(m) ∆

= (A∗p)m −A∗pm +

N∑
i=1

(B∗
i χi)m −

N∑
i=1

B∗
i χim.

Let us show that

Ψm → Ψ in Z0
T as m→ +∞. (5.4)

Clearly, Ψm(·, ω) → Ψ(·, ω) in L2(D) a.s. In addition, we have that ∥Ψm(·, ω)∥L2(D) ≤

∥Ψ(·, ω)∥L2(D). Hence ∥Ψm(, ω) − Ψ(·, ω)∥L2(D) ≤ 2∥Ψ(, ω)∥L2(D). By the Lebesgue’s Dominated

Convergence Theorem, it follows that (5.4) holds. Similarly, we obtain that

ξm → ξ in X0 as m→ +∞. (5.5)

Again, we have ξm(·, t, ω) → ξ(·, t, ω) in L2(D) for a.e. (t, ω). In addition, we have that

∥ξm(·, t, ω)∥L2(D) ≤ ∥ξ(·, t, ω)∥L2(D) and ∥ξm(, t, ω) − ξ(·, t, ω)∥L2(D) ≤ 2∥ξ(, t, ω)∥L2(D). By the

Lebesgue’s Dominated Convergence Theorem again, it follows that (5.5) holds.

15



Let us show that

ξ̂(m) ∆
= ξm + η(m) → ξ weakly in X−1 as m→ +∞. (5.6)

By (5.5), it suffices to show that

η(m) → 0 weakly in X−1 as m→ 0. (5.7)

First, let us show that there exists a constant c > 0 such that

∥η(m)∥X−1 ≤ c ∀m > 0. (5.8)

By Theorem 3.3, it follows that ∥p∥X1 ≤ const . Hence ∥pm∥X1 ≤ const . Hence

∥A∗pm∥X−1 ≤ const . (5.9)

Further, let B(X) denote the unit ball in a linear normed space X, i.e., B(X)
∆
= {x ∈ X :

∥x∥X ≤ 1}. We have that

∥(A∗p)m∥X−1 = sup
y∈B(X1)

(y, (A∗p)m)X0 = sup
y∈B(X1)

(ym,A∗p)X0 ≤ sup
y∈B(X1)

∥Aym∥X−1∥p∥X1

≤ c1 sup
y∈B(X1)

∥ym∥X1∥p∥X1 ≤ c2 sup
y∈B(X1)

∥y∥X1∥p∥X1 ≤ c3. (5.10)

Here ck, k = 1, 2, 3, are some constants that are independent from m.

Similarly, we have that, by Theorem 3.3, ∥χi∥X0 ≤ const . Hence ∥χim∥X0 ≤ const . Hence

∥B∗
i χim∥X−1 ≤ const . (5.11)

Further, we have that

∥(B∗
i χi)m∥X−1 = sup

y∈B(X1)

(y, (B∗
i χi)m)X0 = sup

y∈B(X1)

(ym, B
∗
i χi)X0 ≤ sup

y∈B(X1)

∥Biym∥X0∥χi∥X0

≤ c1 sup
y∈B(X1)

∥ym∥X1∥χi∥X0 ≤ c2 sup
y∈B(X1)

∥y∥X1∥χi∥X0 ≤ c3. (5.12)

Here ck, k = 1, 2, 3, are some constant that are independent from m. Combining (5.9)-(5.12), we

obtain (5.8).

Let q = q(x, t, ω) denote any one of the functions p, χi, ∂p/∂xk, ∂
2p/∂xk∂xm, ∂χi/∂xk,

k,m = 1, ..., n, i = 1, ..., N , t < T . Let α denote the coefficient such that αq is presented in the

expressions A∗p or B∗
i χi.

For θ ∈ [0, T ), let X1(θ)
∆
= {h ∈ X1 : h(·, t) ≡ 0, t ∈ [θ, T ]}.

Let θ ∈ [0, T ] and let h ∈ X1(θ). It can be shown similarly to (5.5) that

αhm − (αh)m → 0 in X0 as m→ +∞.
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It follows that

((αq)m − αqm, h)X0 = ((αq)m − αqm, h)X0(0,θ) = (q, αhm − (αh)m)X0(0,θ) → 0 as m→ ∞.

We have that η(m) is a sum of different terms expressed as (αq)m − αqm. Hence

(η(m), h)X0(0,θ) = (η(m), h)X0 → 0 as m→ +∞ ∀h ∈ X1(θ).

Clearly, the set ∪θ∈[0,T )X
1(θ) is dense in X1. By (5.8), it follows that (5.7) holds. This completes

the proof of (5.6).

Let s ∈ [0, T ) be given.

By (5.5), (5.6), and Theorem 3.3, it follows that

p̃m(·, s) → p(·, s) weakly in Z0
T as m→ 0. (5.13)

By Mazur’s Theorem (Theorem 5.1.2 from Yosida (1995)), there exists a sequence of integer num-

bers k = ki → +∞ such that there exist sets of real numbers {amk}km=1 ⊂ [0, 1] such that∑k
m=1 amk = 1 and that

ξ̃(k)
∆
=

k∑
m=1

amkξ̂
(m) → ξ in X−1 as k = ki → +∞,

Ψ̃(k) ∆
=

k∑
m=1

amkΨm → Ψ in Z0
T as k = ki → +∞,

p̃(k)(·, s) ∆
=

k∑
m=1

amkpm(·, s) → p(·, s) in Z0
T as k = ki → +∞. (5.14)

Here p̃(k)
∆
=
∑k

m=1 amkpm.

By Lemma 5.1, it follows that, for all s and for a.e. x, ω,

pm(x, s, ω) = E
{
γx,s(T )Ψm(yx,s(T ))I{T≥τx,s} | Fs

}
+E

{∫ τx,s

s
γx,s(t) ξ̂(m)(yx,s(t), t, ω) dt

∣∣∣Fs

}
,

and

p̃(k)(x, s, ω) = E
{
γx,s(T )Ψ(k)(yx,s(T ))I{T≥τx,s} | Fs

}
+E

{∫ τx,s

s
γx,s(t) ξ̃(k)(yx,s(t), t, ω) dt

∣∣∣Fs

}
,

By the assumptions about the boundedness and the type of measurability of the functions ξ : Q×

Ω → R and Ψ : D×Ω → R, it follows that γx,s(T )Ψ(y(T ))I{T≤τx,s} and
∫ τx,s

s γx,s(t) ξ(y(t), t, ω) dt

are bounded random variables. Let

p̃(x, s, ω)
∆
= E

{
γx,s(T )Ψ(yx,s(T ))I{T≥τx,s} | Fs

}
+E

{∫ τx,s

s
γx,s(t) ξ(yx,s(t), t, ω) dt

∣∣∣Fs

}
. (5.15)
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Clearly, p̃(·, s) ∈ Z0
T .

Let us show that, for a given s,

p̃(k)(·, s) → p̃(·, s) weakly in Z0
T as m→ ∞. (5.16)

By (5.14), property (5.16) implies that p = p̂. Therefore, if we prove (5.16) then Theorem 4.1 will

be proved for the case when the functions Ψ and ξ are bounded and finitely (in x) supported.

Let us prove (5.16).

Without a loss of generality, we assume that Ψ(x, ω) = 0, Ψm(x, ω) = 0, ξ(x, t, ω) = 0,

ξ̂(m)(x, t, ω) = 0 for all x /∈ D̄. It follows that Ψ(k)(x, ω) = 0 and ξ̃(k)(x, t, ω) = 0 for all x /∈ D̄.

Let ρ ∈ Z0
s . We have that

|(p̃(k)(·, s)− p̃(·, s), ρ)Z0
T
| ≤ E

∫
D
ρ(x)E

{
γx,s(T )|Ψ(k)(yx,s(T ))−Ψ(yx,s(T ))|I{T≥τx,s} | Fs

}
dx

+E

∫
D
ρ(x)E

{∫ τx,s

s
γx,s(t) |ξ̃(k)(yx,s(t), t, ω)− ξ(yx,s(t), t, ω)| dt

∣∣∣Fs

}
dx

≤ E

∫
D
ρ(x)E

{
γx,s(T )|Ψ(k)(yx,s(T ))−Ψ(yx,s(T ))| | Fs

}
dx

+E

∫
D
ρ(x)E

{∫ T

s
γ(t) |ξ̃(k)(yx,s(t), t, ω)− ξ(yx,s(t), t, ω)| dt

∣∣∣Fs

}
dx.

Let ρ ∈ Z0
s be such that

ρ ≥ 0,

∫
D
ρ(x, ω)dx = 1, ρ(x, ω) = 0 (5.17)

for all ω. Let a ∈ L2(Ω,F ,P;Rn) be such that a ∈ D a.s., a has the conditional given Fs

probability density function ρ on D, and a is independent from (w(t) − w(t1), ŵ(t) − w(t1)) for

all t > t1 > s. Let y(t) be the solution of Ito equation (4.1) with initial condition y(s) = a, i.e.,

y(t) = ya,s(t). In addition, let γ(t) = γa,s(t). Then

|(p̃(k)(·, s)− p̃(·, s), ρ)Z0
T
| ≤ Eγ(T )|Ψ(k)(y(T ))−Ψ(y(T ))|

+ E

∫ T

s
γ(t) |ξ̃(k)(y(t), t, ω)− ξ(y(t), t, ω)| dt.

Let Z̄0
s = Z0

s be the space defined similarly to Z0
s but with D replaced by Rn. Let u

∆
= L̄(s, T )ρ,

where the operator L̄(s, T ) is defined similarly to L(s, T ) but such that D is replaced by Rn. If

D = Rn, then Z̄0
s = Z0

s and L̄(s, T ) = L(s, T ). The conditions of Theorem 5.3.1 from Rozovskii

(1990) are satisfied. By this theorem, it follows that∫
Rn

u(x, t, ω)ϕ(x, ω)dx = E
{
γ(t)ϕ(y(t), ω) | Ft

}
a.s.

18



for all t ∈ [s, T ] for any bounded function ϕ ∈ Z̄0
t . In fact, the cited theorem from Rozovskii

(1990) states it for non-random ϕ, but clearly it is also correct for the case of ϕ ∈ Z̄0
t since ϕ is

non-random conditionally given Ft. (We can use also Theorem 2.2 from Dokuchaev (1995)). It

follows that

|(p̃(k)(·, s)− p̃(·, s), ρ)Z0
T
|

≤ E

∫
Rn

u(x, T, ω)|Ψ(k)(x, ω)−Ψ(x, ω)|dx+E

∫ T

s
dt

∫
Rn

u(x, t, ω)|ξ̃(k)(x, t, ω)− ξ(x, t, ω)| dx

≤ ∥u∥Y 1(s,T )

(
∥Ψ(k) −Ψ∥Z0

T
+ ∥ξ̃(k) − ξ∥X−1

)
.

By (5.5), it follows that (5.16) holds for all ρ ∈ Z0
s such that (5.17) holds. It follows that (5.16)

holds for any ρ ∈ Z0
s , since it can be presented as ρ = c−ρ+ − c+ρ−, where ρ± are elements of Z0

s

such that (5.17) holds for a.e. ω, and c± ∈ R are some constants.

This completes the proof of Theorem 4.1 for the case when ξ and Ψ are bounded (and finitely

supported in x if D = Rn).

For case of ξ and Ψ of the general type, it suffices to prove theorem only when ξ ≥ 0 and

Ψ ≥ 0. The proof for ξ and Ψ with variable signs follows immediately, if we use the linearity of

(4.3) and (4.2) with respect to (ξ,Ψ) and observe that ξ = (ξ)+ − (−ξ)+ and Ψ = (Ψ)+ − (−Ψ)+,

where (x)+
∆
= max(0, x).

Let us consider ξ and Ψ such that ξ ≥ 0 and Ψ ≥ 0. For M > 0, set

ξM (x, t, ω)
∆
= max(ξ(x, t, ω),M)I{|x|≤M}, ΨM (x, ω)

∆
= max(Ψ(x, ω),M)I{|x|≤M}.

Let pM
∆
= L∗ξM + (δTL)

∗ΨM . We have proved that

pM (x, s, ω) = E
{
γx,s(T )ΨM (yx,s(T ))I{T≥τx,s} | Fs

}
+E

{∫ τx,s

s
γx,s(t) ξM (yx,s(t), t, ω) dt | Fs

}
for a.e. x, ω.

By the Lebesgue’s Dominated Convergence Theorem, it follows that

∥ξM − ξ∥X0 + ∥ΨM −Ψ∥Z0
T
→ 0 as m→ +∞.

By Theorem 3.3, it follows that ∥pM − p∥Y 1 → 0. On the other hand, ξM (x, t, ω) → ξ(x, t, ω)

and ΨM (x, ω) → Ψ(x, ω) from below for all x, t, ω (and these sequence are non-decreasing in m).

Hence pM converges to the right hand part of (4.2). This completes the proof of Theorem 4.1. �

Remark 5.1 We used Theorem 3.4 to obtain (5.3) via Theorem 3.4
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6 Applications: probability density for the process killed on the

boundary

Let s ∈ [0, T ). Let ρ ∈ Z0
s be such that ρ ≥ 0 and

∫
D ρ(x, ω)dx = 1 for all ω. Let a ∈

L2(Ω,F ,P;Rn) be a vector such that a ∈ D and it has the conditional (relative to Fs) probability

density function ρ. We assume also that a is independent from (w(t)−w(t1), ŵ(t)− ŵ(t1)) for all

t > t1 > s.

Let u = L(s, T )ρ, i.e., u = u(x, t, ω) is the solution of the problem

dtu = Au dt+
∑N

i=1Biu dwi(t), t ≥ s,

u|t=s = ρ, u(x, t, ω)|x∈∂D = 0.
(6.1)

We assume below that the assumptions of Theorem 4.1 for (b, f̂ , λ̂, βi, β̂i) are satisfied.

Theorem 6.1 Let s ∈ [0, T ). Let y(t) = ya,s(t) be the solution of Ito equation (4.1) with the

initial condition y(s) = a. Then∫
D
u(x, T, ω)Ψ(x, ω)dx = E

{
γa,s(T )Ψ(ya,s(T ))I{T≤τa,s} | FT

}
a.s. (6.2)

for all bounded functions Ψ ∈ Z0
T .

Note that if D = Rn then this theorem repeats Theorem 5.3.1 from Rozovskii (1990). However,

this result is new for the case when D ̸= Rn.

Corollary 6.1 If β̂i ≡ 0 for all i then (6.2) means that u(x, T, ω) is the conditional (relative to

FT ) probability density function of the process y(T ) = ya,s(T ) if this process is killed at ∂D and if

it is killed inside D with the rate of killing λ̂.

Proof of Theorem 6.1. It suffices to consider s = 0 only. Let Ψ ∈ Z0
T and Ψ̂(x, ω) = η(ω)Ψ̂(x, ω),

where η ∈ L∞(Ω,FT ,P). Let p
∆
= (δTL)

∗Ψ̂. By Theorem 3.3, it follows that

(u(·, T ), Ψ̂)Z0
T
= (δTLρ, Ψ̂)Z0

T
= (ρ, (δTL)∗Ψ̂)Z0

T
= (ρ, p(·, 0))Z0

T
.

By Theorem 4.1,

(ρ, p(·, 0))Z0
T
= E

∫
D
ρ(x)γx,0(T )Ψ̂(yx,0(T )I{T≥τx,0}dx = Eηγa,0(T )Ψ(ya,0(T )I{T≥τa,0}

= EηE{γa,0(T )Ψ(ya,0(T )I{T≥τa,0}|FT }.

Then

Eη

∫
D
u(x, T, ω)Ψ(x, ω)dx = EηE{γa,0(T )Ψ(ya,0(T )I{T≥τa,0}|Ft}.

Remind that η ∈ L∞(Ω,FT ,P) is arbitrary. Then the proof follows. �
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7 Applications: maximum principle and contraction property

Remind that the assumptions of Theorem 4.1 for (b, f̂ , λ̂, βi, β̂i) are satisfied.

Theorem 7.1 (Maximum principle) Let ξ ∈ X0 and Ψ ∈ Z0
T be such that ξ(x, t, ω) ≥ 0 and

Ψ(x, ω) ≥ 0 for a.e. x, t, ω. Then the solution p of (3.8) is such that p(x, t, ω) ≥ 0 for all t for a.e.

t, ω.

Proof. Assume that ξ(x, t, ω) ≥ 0 and Ψ(x, ω) ≥ 0 for all x, t, ω and that these functions have

the same measurability as described in Theorem 4.1. In this case, the proof follows immediately

from Theorem 4.1. Further, let ξ(x, t, ω) ≥ 0 and Ψ(x, ω) ≥ 0 for a.e. x, t, ω. Replace these

function by some equivalent non-negative functions ξ′ and Ψ′. Since p = L∗ξ+(δTL)
∗Ψ, it follows

that p = L∗ξ′ + (δTL)
∗Ψ′ as an element of Y 2. By Theorem 4.1 again, p is nonnegative up to

equivalency. Then the proof follows. �

Theorem 7.2 (Maximum principle) Let φ ∈ X0 and Φ ∈ Z0
0 be given such that φ(x, t, ω) ≥ 0 and

Φ(x, ω) ≥ 0 for a.e. x, t, ω. Then the solution u of problem (3.1) is such that u(x, t, ω) ≥ 0 for all

t for a.e. x, ω.

Proof. It suffices to consider t = T only. Let Ψ ∈ Z0
T be an arbitrary function such that Ψ ≥ 0

a.e. We have

(u(·, T ),Ψ)Z0
T
= (δTLφ+ δTLΦ,Ψ)Z0

T
= (φ, p)Z0

T
+ (Φ, p(·, 0))Z0

T
,

where p
∆
= (δTL)

∗Ψ. Then p(x, s, t) ≥ 0 for all s for a.e. x, ω, and (u(·, T ),Ψ)Z0
T
≥ 0. Then the

proof follows. �

Theorem 7.3 (Contraction property) Under the assumptions of Theorem 4.1, let λ̂(x, t, ω) ≥ 0

and β̂i ≡ 0 for all i. Then

ess sup
x,ω

|p(x, t, ω) ≤ ess sup
x,ω

|Ψ(x, ω)|+ (T − t) ess sup
x,t,ω

|ξ(x, t, ω)| ∀t ∈ [0, T ].

Proof. Note that there are bounded functions ξ′ and Ψ′ that are equivalent to ξ and Ψ and

such that

ess sup
x,ω

|Ψ(x, ω)|+ (T − t) ess sup
x,t,ω

|ξ(x, t, ω)| = sup
x,ω

|Ψ′(x, ω)|+ (T − t) sup
x,t,ω

|ξ′(x, t, ω)|.

Since p = L∗ξ + (δTL)
∗Ψ, it follows that p = L∗ξ′ + (δTL)

∗Ψ′ as an element of Y 2. It follows

immediately from Theorem 4.1 that

ess sup
x,ω

|p(x, t, ω) ≤ sup
x,ω

|Ψ′(x, ω)|+ (T − t) sup
x,t,ω

|ξ′(x, t, ω)| ∀t ∈ [0, T ].

Then the proof follows. �
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Theorem 7.4 (Contraction property) Let λ̂(x, t, ω) ≥ 0 and β̂i ≡ 0 for all i, and let φ ∈ X0 and

Φ ∈ Z0
0 be given. Then the following holds for the solution u of problem (3.1):

(a) If φ ≡ 0, then

E

∫
D
|u(x, T, ω)|dx ≤ E

∫
D
|Φ(x, ω)|dx.

(b) If Φ = 0, then

E

∫
D
|u(x, T, ω)|dx ≤ 1

T
E

∫
Q
|φ(x, t, ω)|dxdt.

Proof. Let Ψ ∈ Z0
T be an arbitrary function. By Theorem 3.3, it follows that

(u(·, T ),Ψ)Z0
T
= (δTLφ+ δTLΦ,Ψ)Z0

T
= (φ, p)Z0

T
+ (Φ, p(·, 0))Z0

T
,

where p
∆
= (δTL)

∗Ψ. Then the proof follows from Theorem 7.3. �

Conclusions

We obtained the representation theorem for non-Markov Ito processes in bounded domains when

the first exit times are involved. This result is not particularly surprising; the similar result

without first exit times for the processes in the entire space was obtained long time ago. However,

the setting with first exit times required to overcome one crucial obstacle: insufficiency of the

known regularity for backward SPDEs in domains with boundaries. Consequently, there is a little

known about first exit times of non-Markov processes. The representation theorem opens some

further opportunities for studying first exit times for non-Markov processes. It is unclear yet if it

is possible to relax the strengthened coercivity required by Condition 3.5. Probably, is some cases,

this condition may be lifted via the estimates from Dokuchaev (2008). To cover more general

models, we suggest to include the case of infinite number of driving Wiener processes and more

general boundary conditions. We leave it for future research.
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