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A reduction technique for
Generalised Riccati Difference Equations
arising in linear-quadratic optimal control

Augusto Ferrante and Lorenzo Ntogramatzidis

Abstract— In this paper we develop a reduction technique for this equation that allows to compute its solution by
for the generalised Riccati difference equation arising inop-  solving a smaller equation with the same recursive strectur
timal control and optimal filtering. This technique relies on with obvious computational advantages. In order to carry

a decomposition method for the generalised Riccati diffenece t this task | other i tant sid it th
equation that isolates its nilpotent part, which becomes austant ou IS task, several othér important siae resufts on the

in a number of iteration steps equal to the nilpotency index & corresponding generalised Riccati equation are estahlish
the closed-loop, from another part that can be computed by which constitute an extension of those valid for standard

iterating a reduced-order Riccati difference equation. discrete algebraic Riccati equations presented in [7] &hd [
|. INTRODUCTION In particular, these r.es_ult_s show that the ninotept part of
. . _ the closed-loop matrix is independent of the solution of the
In this paper we are concerned W'_th the_solu_tm_a,st € generalised algebraic Riccati equation. Moreover, weigev
{0..... ’_T —1} of thel so-called Generalised Riccati leferencea necessary and sufficient condition expressed in sole terms
Equation GRDEY) of the problem data for the existence of this nilpotent pért o
X = ATX,1A— (ATX,1B+S)(R+B X1 B)T the closed-loop matrix. This condition, which appears to be
T T straightforward for the standard algebraic Riccati equmti
(B %1A+S)+Q @) becomes more involved — and interesting — for the case of
iterated backwards from=T — 1 tot = 0 using the terminal the generalised Riccati equation.
condition The GRDEE) with the terminal condition (2) will be
Xr =P @) referred to as th_e Generalised Ric.cati_Difference Prqblem
’ GRDPE, P). An important observation is that all matrices
whereT > 0, AcR™", BeR™™, with m< n; the matrices of the sequencéX }i—o,. 1 are positive semidefinite, as one
Qe R™N Sc R™M and Rc R™M are such that the so- can easily show inductively from the fact that

called Popov matrix L Q+A™X 1A S+ATX.1B

na [ Q 5} th = [ S"+B™%1A R+B"X%.1B
“| ST R AT

. LS R | n+| g [xala 820

is symmetric and positive semidefinite. Finally, the terahin

conditionPcR"™" is assumed to be symmetric and positivdn fact, X; is the generalised Schur complement of the block

semidefinite. Despite the fact that it has been known fasubmatrix in the top left oLy, 1, and is therefore positive

several decades that the generalised discrete Riccair-diffsemidefinite. Another consequence is the fact that the fol-

ence equation provides the solution of the classic finitdowing subspace inclusion holds for everg {0,..., T —1}:

horizon _LQ problem under .the Weakest system-theoretic ker(R+B"%.1B) C kef(A"%.1B+9S). 3)

assumptions on the Popov triple [10], this equation has not ) _ )

been studied with the same attention and thoroughness thaf\S forementioned, the solution of GRIP () provides

has undergone the study of the standard discrete RiccHif optimal feedback matrix of the clgssm finite-horizon LQ

difference equation (in which the Moore-Penrose pseud®roblem under the weakest assumptions on the Popov triple

inverse is replaced by the standard matrix inverse). The= (A;B,M). More precisely, consider the discrete linear
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For any timet, the setZ; of all optimal inputs can be written
as% = {—Kix +Giw }, where

Ki = (R+B"%41B)"(ST+B"%11A), (6)
Gt = Im— (R+B"%1B) (R+B"%1B),  (7)
in which X; is the solution of GRDRY, P). The termG; v
in the set?; of all optimal controls int € {0,..., T — 1}
does not influence the cost, which means that R™ is

completely arbitrary. The equation characterising theofet
optimal state trajectories is

X+1=(A—BKi)x —BG v,

where as aforementionegd € R™ is arbitrary. The optimal
cost isJ* = X XoXo.

II. THE GENERALISED DISCRETEALGEBRAIC RICCATI
EQUATION

We begin this section by recalling a standard linear algebra
result that is used in the derivations throughout the paper.

P11 P12

Lemma 2.1: ConsiderP = [sz Py

(i) kerPyo D kerPyoy;
(i) Pi2Pl,Pp = Piz;
(iii) Pra(l — PJyPo2) = O;
(iv) Pi1— P12P22Pf2 > 0.

} —PT>0. Then,

and the associated closed-loop matix = A— BKy.

Notice that all symmetric positive semidefinite solutions
of GDARE(R) satisfy (8), and are therefore solutions of
CGDARE(E). In fact, if X is positive semidefinite, we find

AT™XA+Q A™XB+S | [ AT

B'™XA+S" R+B'XB } B [ BT

Therefore, applyindi) of Lemma 2.1 we find (8).

XA B|+MM>0.
[x(a e]

For the sake of simplicity, from now on, given a symmetric
matrix X = X7, we define
Rx £ R+B"™XB
S = ATXB+S
so that (8) can be written as K&¢ C kerSx. We also define

Gx £ Im— R;Rx. Hence, if (8) holds, we havBx Gx = 0.
Notice also that

L
L

kerRx = imGy. (20)

In fact, it is trivial to see that kdRx 2 im Gy, sinceRx (Im—
R;Rx) = Rx — Rx RI(RX =0. It is also easy to see that
the opgosite inclusion holds. Indeed, §f € kerRx, then
(Im—RxRx)& =&, so thaté € imGx. The termR;Rx is
the orthogonal projector that projects ontoREp: imRx so
thatGx is the orthogonal projector that projects onto Rer

We now introduce the so-called Generalised Discrete Alge1|| GDARE AND THE EXTENDED SYMPLECTIC PENCIL

braic Riccati Equation GDAREY), defined as
X =ATXA— (ATXB+S)(R+B"XB)"(BTXA+S") +Q.

The algebraic equation GDARE) subject to the con-
straint

ker(R+B"XB) C kerfATXB+Y9) (8)

In this section we adapt the analysis carried out in [7]
for standard discrete algebraic Riccati equations to tise ca
of CGDARE(). Consider the so-called extended symplectic
pencilN — zM, where

hn O O A O B
M2| 0O -ATO|, N2|Q -I, S
O -B" O ST 0 R

is usually referred to as Constrained Generalised Dis-

crete Algebraic Riccati Equation CGDAREB)( Observe that

Here we do not assume that the matrix perdil- zM

CGDARE() constitutes a generalisation of the classic DislS regular. We begin by giving a necessary and sufficient

crete Riccati Algebraic Equation DAREY
X =ATXA— (ATXB+S)(R+B"XB) }(B"XA+S") +Q,

in the sense that any solution of DARE(is also a
solution of CGDAREE) but the vice-versa is not true in
general. Importantly, however, the inertia B+ BTXB is

independent of the particular solution of the CGDARJE(
[11, Theorem 2.4]. This implies that a given CGDARIE(
cannot have one solutioX = XT such thatR+ B™XB

is non-singular and another solutiovi = YT for which

R+ BTYB is singular. As suchj) if X is a solution of
DARE(Y), then all solutions of CGDARB{) will also

satisfy DAREE) and,ii) if X is a solution of CGDAREY)

such thatR+ BT XB is singular, then DAREY) does not
admit solutions.

To any solutionX = X7 € R™" of GDARE(EZ) we can
associate the corresponding gain matx defined as

Kx 2 (R+B"XB)" (BTXA+S") 9)

condition for N to be singular. We will also show that,
unlike the case in which the pendi —zM is regular, this
is not equivalent to the fact thdd — zM has a generalised
eigenvalue at zero.

A B} is

Lemma 3.1: Matrix N is singular if and only if[sT R

singular.

Proof: First, we can see that is singular if and only if

AB] . . . ,
o1 R} is singular, sincel vi™ w7 vz [N =0 if and

QE}:O. n

only if vo=0and|[ vi7 V3" | [
Lemma 3.2: Matrix N is singular if and only if at least
one of the two matriceR andA— BR'ST is singular.
Proof: (If). When R is singular, a non-zero vectors
exists suchva"R = 0. Since keR C kerS, then we have
also [ 0 v3" | {SAT FBJ = 0. If R is invertible but A —
BR'S" = A—BR 1S is singular, there exists a non-zero
vector v such thatv’(A—BR1S™) = 0. This means that

[Vl —VvIBR ] {SAT 2} = 0. In both cases, by Lemma



3.1, N is singular. the eigenvalue at the origin of the closed-loop matkix
(Only if). When bothR and A—BR1ST are non-singular, Since the generalised eigenvalues\bf- zM do not depend

a direct check shows that on the particular solutioiX = XT of CGDAREE), the same
A B A_BR!ST B I 0 holds for the generalised eigenvalues and the Kronecker
[ ST R ] = [ o R } [ RIS I, ] structure olUx (N —zM)Vx for any non-singulatx andVx.

Therefore, the nilpotent structure of the closed-loop ixatr

Since both matrices in the right-hand side are non-singulgg, _ \hich is the Jordan eigenstructure of the generalised
the matrix in the left-hand side is invertible, and suchlidl eigenvalue at the origin ox — if any, is independent of the

particular solutionX = XT of CGDARE(). Moreover, since

In the following theorem we present a useful Ax O B
decomposition of the extended symplectic pencil that UxNV=| O I, O |, (13)
parallels the classic one — see e.g. [7] — which is valid in O O Ry

the case in which the pendil —zM is regular. we see that wheRy is invertible N is singular if and only
Theorem3.1: Let X be a symmetric solution of if A is singular. Therefore, from the observations in the

CGDARE(). Let alsoKx be the associated gain afgt be  beginning of this section, we also have the following result

the associated closed-loop matrix. Two invertible masiice |Lemma 3.3: (see e.g. [2])Let Rx be invertible. ThenAx

Ux andVx exist such that is singular if and only if at least one of the two matridRs
Ax — 2zl 0 B andA-BR'S' is singular. N
Ux (N —zM)Vx = 0 lh—zA, O |. (1) However, when the matriRx is singular, it is no longer
0 —7zBT Ry true thatAy is singular if and only ifR or A—-BR'ST is

Proof: The statement follows by considering the invertipleSingular. Indeed, (13) shows that the algebraic multilici
of the eigenvalue at the origin & is equal to the sum of

matrices
the algebraic multiplicities of the eigenvalue at the arigf
N IT” O OT N In 0 O Ax andRx. Therefore, the fact thall is singular does not
Ux = | AxX In =Ky and Vx=| X -~ O necessarily imply thafy is singular.
B™X O In —Kx O Im

Proposition 3.1: The closed-loop matriy is singular if
B and only if rankk < rankRy or A—BR' ST is singular.
From Theorem 3.1 we find that K is a solution of Proof: Given a square matriX, let us denote byi(Z) the
CGDARE(), in view of the triangular structure obtainedalgebraic multiplicity of its eigenvalue at the origin. Theve
above we have know from (13) thatu(N) = {S/} Ejg = U(Ax) + H(Rx).
_ T Consider a basis in the input space that isolates the iblerti
detN —2zM) = det(Ax —zln) - delln — 2Ax) - detRx. (12) part of R. In other words, in this basiR is written asR=
When Ry is non-singular, the dynamics represented by O \whereR; is invertible, while B = [B1 B ] and
this mat_rix per_1ci| are decomposed into a part governed by t :O[ s O ] are partitioned accordingly. It follows that
generalised eigenstructure&f — zl,,, a part governed by the A B A B,
finite generalised eigenstructurelgf- zAy, and a part which [ ([ST RD =u(R)+u ([Sf R D As such,
corresponds to the dynamics of the eigenvalues at infinity. '
Then, in particular wheRy is non-singular the singular part UAY) = <[ A B D —u(RQ
of Ax does not depend on the solution of CGDARE(When ST R
X is a solution of DAREE), the generalised eigenvaldesf A B
N—zM are given by the eigenvalues 8k, the reciprocal =H <[ ST R D +H(R) —H(Rx).  (14)
of the non-zero eigenvalues 8§, and a generalised eigen-
values at infinity whose algebraic multiplicity is equalrto
plus the algebraic multiplicity of the eigenvalue &f at
the origin. The matrix pencil, — zAy has no generalised
eigenvalues ar= 0. This means that= 0 is a generalised _ A B,
eigenvalue of the matrix pencily (N —zM)Vyx if and From (14)we find thati(Ax) = u ST Ry ) HoweverA—
only if it is a generalisgd eigenvalue of the matrix penCibRTST:A—Bl RIlslT- If A—BR' ST is singular, there exists
Ax — zl,,, because certainlg = 0 cannot cause the rank of A B
In— A to be smaller than its normal rank and becausd non-zero vectdk such that k™ —k"ByR;* | [Sf RJ =
the normal rank oN —zM is 2n+ m. This means that the B,

l) > 0, and therefore alsp(Ax) > 0.

First, we show that if ranR < rankRy, then Ay is singular.
Since raniR < rankRx, then obviouslyu(R) > u(Rx), so
that (14) givesu(Ax) > 0.

Let now A—BR'ST be singular, and let rafk= rankRx.

A
Kronecker eigenstructure of the eigenvalue at the origin ¢ Hence,u TR
Ux (N —zM)Vx coincides with the Jordan eigenstructure ofrhe converse can bée proved with a similar argument, using

) . . . Lo again (14). |
Recall that a generalised eigenvalue of a matrix pexeilzM is a value R K31 W Il th h lgebrai ltiolici f
of ze C for which the rank of the matrix penchl —zM is lower than its emar - e recall that the algebraic multiplicity o

normal rank. the eigenvalue at the origin & is invariant for any solution



X of CGDARE(), [11]. Hence, as a direct consequence of Lemma 4.2; Let X = XT ¢ R™" andY =YT € R™" be
(14), we have that the algebraic multiplicity of the eigdnea such that (17-18) hold. Then,
at the origin of Ax is the same for any solutioiX of
CGDARE). This means, in particular, that the closed-loop P(X) = 2(Y) = D= A DA (20)
matrix corresponding to a given a solution of CGDARJis
singular if and only if the closed-loop matrix corresporglin ~ The following result is an extension of Proposition 2.1 in
to any other solution of CGDARE] is singular. In the next [7] to solutions of CGDAREY).
section we show that a stronger result holds: when present,Theorem 4.1: All solutions of CGDAREE) are coincident
the zero eigenvalue has the same Jordan structure for any glpng%, i.e., given two solutionX andY of CGDAREE),
Ax andAy of closed-loop matrices corresponding to any pair (X —Y)% = {0};
X,Y of solutions of CGDAREX). Moreover, the generalised '
eigenspaces corresponding to the zero eigenvaldg aind Moreover, 7 does not depend on the solutiod of
Ay coincide. The restriction oAx andAy to this generalised CGDARE(E), i.e., given two solutionsX and Y of
eigenspace also coincide. Finallg, andY coincide along CGDAREE), there holds
this generalised eigenspace.
kerAy = kerAj.
IV. THE SUBSPACEZ

Given a solutiorX = XT of CGDARE(E), we denote by%
the generalised eigenspace corresponding to the eigenv.
at the origin ofAx, [7]. In formulae, % = kerAy. In this
section we want to prove that all solutions of CGDARE( V. THE GENERALISED RICCATI DIFFERENCEEQUATION
are coincident alongz . In other words, given two solutions  consider the GRDEY) along with the terminal condition
X =XT andY =Y" of GDARE(), we show thatZ C x. _p—_PpT>0. Let us define
kern(X —Y). Stated differently, given a basis mafid of the
subspaceZ, the change of coordinate matrik=[U Ug] Z(X) £ ATXA—(ATXB+S)(R+B'XB)"(BTXA+S")+Q.

yields With this definition, GRDEX) can be written asX =
Z(%+1)- Moreover, GDAREE) can be written as

P(X) =X — B(X) = 0.

The proof is omitted for the sake of brevity. The proof of
this result follows the same lines of that of [7, Proposition
.1], and uses the generalised result given in Lemma 4.2.

X1 X2 —1 [Xll Xlz}
and T " YT= . (15
X1T2 XZZ} X1T2 Y22 (19)

We first present two results that will be useful to prove )
this point. LetX = XT € R™". Similarly to [7], we define ~ With a slight abuse of nomenclature, we use the term

T1XT_[

the function nilpotency index of a matrixM to refer to the smallest integer

v for which kemvV = kerMV*1, which is defined also when

Z(X) £ X—ATXA+ (A™XB+S)(R+B™XB)" M is not nilpotent. We have the following important result.
(B™XA+S") —-Q. (16) Theorem 5.1: Let Xg = Xj be a solution of CGDAREY).

If in particular X = X" is a solution of GDAREY), then Lesfo‘;utt)izr:h; I?fg;;;;';%%fgfﬁ;«Xf'xtﬂo;iz\frf’olre?i t‘)/e
9(X) = 0. For the sake of conciseness, we recall that B ' ’ -

i i _XT nxn T nxn  Wwe haveAt_; % = {0}.
(g;:‘veGnDtAWROE(Szo)lug\(/)e;1 S%(a;exdeﬁnlsd? angi ETI( Be g Proof: SinceXo =X is a solution of CGDAREY), we have
1 X = , f—

2(Xp) = 0. This is equivalent to saying that = Z(Xo).
ATXB+SandRy =R+BTYB, S, 2ATYB+S __— ; g

Lemr—;a a1 E:zt X ij c Rniﬁ andY 7—;T c R™M pe From the definition’; £ X — Xy we get in particulat\t =
such that (.8). holds i_e o X1 — Xo. With these definitions in mind, we find

kerRx C kerSy (17) O = R (K1) — Z(Xo) = %11 — Z(Ket1) — %o
kerRy C kerSy. (18) = Biv1 = Z(%er1) = Beir = Z(%er1) + Z2(X%0)

= Diy1— [Z(K+1) — Z(X0)). 21
Let Ax = A— BKx with Kx = R}, S} andAy = A— BKy with 1= [2041) = 206)] 1)
Ky = R} S]. Moreover, let us define the differenaet X —Y.  However, we know from (19) that

Then, D(%es1) = (%) = D1 — Al [Bsa

D(X) = D(Y) = B— A DAY + AVABRIBTAAy.  (19) A 1B(R+B%,1B) BT A 1]Ax, (22)
The proof can be found in [1, p.382]. ) _ )

The following lemma is a generalisation of Lemma 2.2 ifvhich, once plugged into (21), gives
[7] to the case of a closed-loop matrix in which the term A = Doy —Doq + A A
(R+BTXB) appears with the pseudo-inverse instead of the ' e1 = Bt A Bt
. T tRT

_ AT _ T tRT

3Given a subspace”, a basis matrix of# is a matrix S such that o AXO [In Bria B(R+B XIJrlB) B ]AHlAXO

imS=.7 and keiS= {0}. = Ry1Di1Ax, (23)



where By partitioning Xy asXg = [:}i XX.;:j we get
R12 AY, — Ax Atr1B(R+B™%,1B)'BT. [o o] _[o o ] {o o) ]
OW| ~ |0Z™W1Z| |0Z™W
It follows that we can write [ * O O
" |* B2(Ro+BI W, 1By)T Bﬂ [o Lumz}
Ar_1 = Fr AT A, [0 o ]
Atz = Froabr 1Ax, =FroaFraT Ay, - [0ZTWnz)
. @] (0]
) (24) - [o ZTW,1B2(Ro+BJ Wi 1Bo)'B] LPtHZ] ’
At ¢ = < 1ﬂ H) At Ay, (25) whereRy £ R+ B;XO’ZZBZ. T_he_refore,LPt satisf_ies the re-
I=T-T+1 duced homogeneous Riccati difference equation

This shows that for > v we have ket ; DkerA} . B ¥ =Z"W1Z—Z"Wi11By(Ro+B3 Wi 1B2) B WiaZ. (27)
The associated generalised discrete Riccati algebraia-equ

Now we show that the result given in Theorem 5.1 cafion 's
be used to obtain a reduction for the generalised discrete-y _ 77 L|.JZ_|_ZTL|.JBZ(RO_|_BZTL|JBZ)T BJWZ=0. (28)
time Riccati difference equation. Consider the same basis . ) )
induced by the change of coordinates used in Theorem 43€ing homogeneous, this equation admits the soluten0.
so that the firsv components of this basis span the subspacEis fact has two important consequences:
% = kerA. The closed-loop matrix in this basis can be « The closed-loop matrix associated with this solution is

written as clearly Z, which is non-singular. On the other hand, we
know that the nilpotent part of the closed-loop matrix is
A — [ Ng = ] independent of the particular solution of CGDARIE(
=1 o z | considered. This means that all solutions of (28) have a

closed-loop matrix that is non-singular;

whereNy is nilpotent andZ is non-singular. HenceAY = « Given a solutionW of (28), the null-space oR, +

BJ WB, coincides with the null-space d%, since the

null-space ofRy+ BJ WB, does not depend on the

particular solution of (28) and we know that the zero

matrix is a solution of (28).

Ar_¢= [ o } [ 8 Z*" } = [ 8 * ] = [ 8 o }, As a result of this discussion, it turns out that given

* * a reference solutionXy of CGDAREE), the solution of

GDREE) with terminal conditionXr = P can be computed

backward as follows:

1) For the firstv steps, i.e., from=T tot=T —v, X is
computed by iterating the GDREY starting from the
terminal conditionXt = P;

Dy = A% D 1A — AY M1 B(R+B™11B) BT A 1A%, (26)  2) In the basis that isolates the nilpotent partAgf, we

have

Lg z*v , where we recall that is the nilpotency index of
x. By writing (25) in this basis, for > v we find

where the last equality follows from the fact that ¢ is
symmetric.

Now, let us rewrite the Riccati difference equation (23) as

[O}Ne)

Fort <T—v, we getA = [o W,

(@] (@] ]
becomes

}, and the previous equation Aty = [ o Wi,

Fromt=T —v—1tot =0, the solution of GDRE)

00 NJ O][0 O T[Ng * can be found iterating the reduced order GDRE in (27)
[O Lpt:| = [ % ZT} 0 thH] {O Z] starting from the terminal conditioWy_,.

Ny 0][0 O ] : +or[0O O 1[No * Remark 5.1: The advantage of using the reduced-order
- { N ZT:||:O Wiiq B(R+B'%+1B)'B {O thHHO Z} generalised difference Riccati algebraic equation (27)-co

0 0 - sists in the fact that the closed-loop matrix of any solutién
= { T ] the associated generalised discrete Riccati algebraatiequ
0Z™W,1Z ) o " i
) ; is non-singular. Hence, when the reduced-order system is
o O B1 B1 left invertible, the solution of the reduced-order geniseal
- R+ [B{ BJ|(Awr1+Xo [ ] € , g
{O Z thHHBZ_( [ to }( o ) B> ) difference Riccati algebraic equation (27) can also be com-
BT BI O O puted in closed-form, using the results in [6] or [4], which
[ 1 2] OW 1Z|° are adaptation to the discrete case of the techniques first




presented in [3], [9], [5]. Indeed, consider a solutiénof
(28) with its non-singular closed-loop matrby and letY

be the corresponding solution of the closed-loop Hermitian
Stein equation

ApYA] —Y +B(Ro+BJ WBy) 'B] =0. (29)

The set of solutions of the extended symplectic difference
equation for the reduced system is parameterised in terms of
Ki,Ko € R™M as

X In—v YA
Al=1] W | AYKL+ [ (WY —1h0)AL | (AD)T Ky,
Q —Ky K,

for 0<t <T. The values of the parameter matridésand

Ky can be computed so that the terminal condition satisfies
Xt = lp and At = Wr_,. Such values exist becauga is
non-singular, and are given by

Ki = Ay  (In—Y (W—Wr_y))
Ko = W—Wr_,.

Then, the solution of (27) is given by, = A X L.
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