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Abstract— In this paper we develop a reduction technique
for the generalised Riccati difference equation arising inop-
timal control and optimal filtering. This technique relies on
a decomposition method for the generalised Riccati difference
equation that isolates its nilpotent part, which becomes constant
in a number of iteration steps equal to the nilpotency index of
the closed-loop, from another part that can be computed by
iterating a reduced-order Riccati difference equation.

I. INTRODUCTION

In this paper we are concerned with the solutionsXt , t ∈
{0, . . . ,T −1} of the so-called Generalised Riccati Difference
Equation GRDE(Σ)1

Xt = A T Xt+1 A− (AT Xt+1 B+ S)(R+BT Xt+1 B)†

·(BT Xt+1 A+ ST)+Q (1)

iterated backwards fromt = T −1 to t = 0 using the terminal
condition

XT = P, (2)

whereT > 0, A∈Rn×n, B∈Rn×m, with m ≤ n; the matrices
Q ∈ Rn×n, S ∈ Rn×m and R ∈ Rm×m are such that the so-
calledPopov matrix

Π ,

[

Q S
S⊤ R

]

is symmetric and positive semidefinite. Finally, the terminal
conditionP∈Rn×n is assumed to be symmetric and positive
semidefinite. Despite the fact that it has been known for
several decades that the generalised discrete Riccati differ-
ence equation provides the solution of the classic finite-
horizon LQ problem under the weakest system-theoretic
assumptions on the Popov triple [10], this equation has not
been studied with the same attention and thoroughness that
has undergone the study of the standard discrete Riccati
difference equation (in which the Moore-Penrose pseudo-
inverse is replaced by the standard matrix inverse). The
purpose of this paper is to present a reduction technique
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1The symbolM† denotes the Moore-Penrose pseudo-inverse of matrixM.

for this equation that allows to compute its solution by
solving a smaller equation with the same recursive structure,
with obvious computational advantages. In order to carry
out this task, several other important side results on the
corresponding generalised Riccati equation are established,
which constitute an extension of those valid for standard
discrete algebraic Riccati equations presented in [7] and [2].
In particular, these results show that the nilpotent part of
the closed-loop matrix is independent of the solution of the
generalised algebraic Riccati equation. Moreover, we provide
a necessary and sufficient condition expressed in sole terms
of the problem data for the existence of this nilpotent part of
the closed-loop matrix. This condition, which appears to be
straightforward for the standard algebraic Riccati equation,
becomes more involved – and interesting – for the case of
the generalised Riccati equation.

The GRDE(Σ) with the terminal condition (2) will be
referred to as the Generalised Riccati Difference Problem
GRDP(Σ, P). An important observation is that all matrices
of the sequence{Xt}t=0,...,T are positive semidefinite, as one
can easily show inductively from the fact that

Lt+1 =

[

Q+AT Xt+1 A S+AT Xt+1 B
S T +BTXt+1 A R+BT Xt+1 B

]

= Π+

[

AT

BT

]

Xt+1
[

A B
]

≥ 0.

In fact, Xt is the generalised Schur complement of the block
submatrix in the top left ofLt+1, and is therefore positive
semidefinite. Another consequence is the fact that the fol-
lowing subspace inclusion holds for everyt ∈ {0, . . . ,T −1}:

ker(R+BT Xt+1 B)⊆ ker(AT Xt+1 B+ S). (3)

As aforementioned, the solution of GRDP(Σ, P) provides
the optimal feedback matrix of the classic finite-horizon LQ
problem under the weakest assumptions on the Popov triple
Σ = (A,B,Π). More precisely, consider the discrete linear
time-invariant system governed by the difference equation

xt+1 = Axt +But , (4)

where A ∈ Rn×n and B ∈ Rn×m, and where, for allt ≥ 0,
xt ∈Rn represents the state andut ∈Rm represents the control
input. Let the initial statex0 ∈ Rn be given. The problem
is to find a sequence of inputsut , with t = 0,1, . . . ,T − 1,
minimising the cost function

J(x0,u),
T−1

∑
t=0

[

xT
t u T

t

]

[

Q S
S T R

][

xt

ut

]

+ xT
T PxT . (5)
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For any timet, the setUt of all optimal inputs can be written
asUt = {−Kt xt +Gt vt}, where

Kt = (R+BT Xt+1 B)†(S T +BT Xt+1 A), (6)

Gt = Im − (R+BT Xt+1 B)†(R+BT Xt+1 B), (7)

in which Xt is the solution of GRDP(Σ, P). The termGt vt

in the setUt of all optimal controls int ∈ {0, . . . ,T − 1}
does not influence the cost, which means thatvt ∈ R

m is
completely arbitrary. The equation characterising the setof
optimal state trajectories is

xt+1 = (A−BKt)xt −BGt vt ,

where as aforementionedvt ∈ Rm is arbitrary. The optimal
cost isJ∗ = xT

0 X0 x0.

II. T HE GENERALISED DISCRETEALGEBRAIC RICCATI

EQUATION

We begin this section by recalling a standard linear algebra
result that is used in the derivations throughout the paper.

Lemma 2.1: ConsiderP =
[P11 P12

P T
12 P22

]

= P T ≥ 0. Then,

(i) kerP12⊇ kerP22;
(ii) P12P†

22P22= P12;
(iii) P12(I −P†

22P22) = 0;
(iv) P11−P12P

†
22PT

12≥ 0.

We now introduce the so-called Generalised Discrete Alge-
braic Riccati Equation GDARE(Σ), defined as

X = A T X A− (AT X B+ S)(R+BT X B)†(B T X A+ ST)+Q.

The algebraic equation GDARE(Σ) subject to the con-
straint

ker(R+BT X B)⊆ ker(A T X B+ S) (8)

is usually referred to as Constrained Generalised Dis-
crete Algebraic Riccati Equation CGDARE(Σ). Observe that
CGDARE(Σ) constitutes a generalisation of the classic Dis-
crete Riccati Algebraic Equation DARE(Σ)

X = A T X A− (AT X B+ S)(R+BT X B)−1(B T X A+ ST)+Q,

in the sense that any solution of DARE(Σ) is also a
solution of CGDARE(Σ) but the vice-versa is not true in
general. Importantly, however, the inertia ofR+B T X B is
independent of the particular solution of the CGDARE(Σ),
[11, Theorem 2.4]. This implies that a given CGDARE(Σ)
cannot have one solutionX = X T such that R + BTX B
is non-singular and another solutionY = Y T for which
R + BTY B is singular. As such,i) if X is a solution of
DARE(Σ), then all solutions of CGDARE(Σ) will also
satisfy DARE(Σ) and, ii) if X is a solution of CGDARE(Σ)
such thatR + B T X B is singular, then DARE(Σ) does not
admit solutions.

To any solutionX = X T ∈ Rn×n of GDARE(Σ) we can
associate the corresponding gain matrixKX defined as

KX , (R+BT X B)† (B T X A+ ST) (9)

and the associated closed-loop matrixAX , A−BKX .
Notice that all symmetric positive semidefinite solutions

of GDARE(Σ) satisfy (8), and are therefore solutions of
CGDARE(Σ). In fact, if X is positive semidefinite, we find
[

A TXA+Q A TX B+ S
B TX A+ ST R+BTX B

]

=

[

A T

B T

]

X
[

A B
]

+Π ≥ 0.

Therefore, applying(i) of Lemma 2.1 we find (8).

For the sake of simplicity, from now on, given a symmetric
matrix X = X T, we define

RX , R+BT X B

SX , A T X B+ S

so that (8) can be written as kerRX ⊆ kerSX . We also define
GX , Im −R†

X RX . Hence, if (8) holds, we haveSX GX = 0.
Notice also that

kerRX = imGX . (10)

In fact, it is trivial to see that kerRX ⊇ imGX , sinceRX (Im−
R†

X RX) = RX − RX R†
X RX = 0. It is also easy to see that

the opposite inclusion holds. Indeed, ifξ ∈ kerRX , then
(Im −R†

X RX)ξ = ξ , so thatξ ∈ imGX . The termR†
X RX is

the orthogonal projector that projects onto imR†
X = imRX so

thatGX is the orthogonal projector that projects onto kerRX .

III. GDARE AND THE EXTENDED SYMPLECTIC PENCIL

In this section we adapt the analysis carried out in [7]
for standard discrete algebraic Riccati equations to the case
of CGDARE(Σ). Consider the so-called extended symplectic
pencil N − zM, where

M ,





In O O
O −AT O
O −BT O



 , N ,





A O B
Q −In S
S T O R



 .

Here we do not assume that the matrix pencilN − zM
is regular. We begin by giving a necessary and sufficient
condition for N to be singular. We will also show that,
unlike the case in which the pencilN − zM is regular, this
is not equivalent to the fact thatN − zM has a generalised
eigenvalue at zero.

Lemma 3.1: Matrix N is singular if and only if
[

A B

S T R

]

is
singular.
Proof: First, we can see thatN is singular if and only if
[

A B

S T R

]

is singular, since
[

v1
T v2

T v3
T
]

N = 0 if and

only if v2 = 0 and
[

v1
T v3

T
]

[

A B

S T R

]

= 0.

Lemma 3.2: Matrix N is singular if and only if at least
one of the two matricesR andA−BR†S T is singular.
Proof: (If). When R is singular, a non-zero vectorv3

exists suchv3
T R = 0. Since kerR ⊆ kerS, then we have

also
[

0 v3
T
]

[

A B

S T R

]

= 0. If R is invertible but A −

BR† S T = A− BR−1S T is singular, there exists a non-zero
vector v such thatvT(A − BR−1 S T) = 0. This means that
[

vT −vT BR−1
]

[

A B

S T R

]

= 0. In both cases, by Lemma



3.1, N is singular.
(Only if). When bothR and A−BR−1S T are non-singular,
a direct check shows that
[

A B
S T R

]

=

[

A−BR−1S T B
O R

][

In O
R−1S T Im

]

.

Since both matrices in the right-hand side are non-singular,
the matrix in the left-hand side is invertible, and such isN.

In the following theorem we present a useful
decomposition of the extended symplectic pencil that
parallels the classic one – see e.g. [7] – which is valid in
the case in which the pencilN − zM is regular.

Theorem 3.1: Let X be a symmetric solution of
CGDARE(Σ). Let alsoKX be the associated gain andAX be
the associated closed-loop matrix. Two invertible matrices
UX andVX exist such that

UX (N − zM)VX =





AX − zIn O B
O In − zAT

X O
O −zB T RX



 . (11)

Proof: The statement follows by considering the invertible
matrices

UX ,





In O O
A T

X X In −K T
X

B TX O Im



 and VX ,





In O O
X −In O

−KX O Im



 .

From Theorem 3.1 we find that ifX is a solution of
CGDARE(Σ), in view of the triangular structure obtained
above we have

det(N − zM) = det(AX − zIn) ·det(In − zAT
X) ·detRX . (12)

When RX is non-singular, the dynamics represented by
this matrix pencil are decomposed into a part governed by the
generalised eigenstructure ofAX −zIn, a part governed by the
finite generalised eigenstructure ofIn−zA T

X , and a part which
corresponds to the dynamics of the eigenvalues at infinity.
Then, in particular whenRX is non-singular the singular part
of AX does not depend on the solution of CGDARE(Σ). When
X is a solution of DARE(Σ), the generalised eigenvalues2 of
N − zM are given by the eigenvalues ofAX , the reciprocal
of the non-zero eigenvalues ofAX , and a generalised eigen-
values at infinity whose algebraic multiplicity is equal tom
plus the algebraic multiplicity of the eigenvalue ofAX at
the origin. The matrix pencilIn − zA T

X has no generalised
eigenvalues atz = 0. This means thatz = 0 is a generalised
eigenvalue of the matrix pencilUX (N − zM)VX if and
only if it is a generalised eigenvalue of the matrix pencil
AX − zIn, because certainlyz = 0 cannot cause the rank of
In − zA T

X to be smaller than its normal rank and because
the normal rank ofN − zM is 2n+m. This means that the
Kronecker eigenstructure of the eigenvalue at the origin of
UX (N − zM)VX coincides with the Jordan eigenstructure of

2Recall that a generalised eigenvalue of a matrix pencilN−zM is a value
of z ∈ C for which the rank of the matrix pencilN − zM is lower than its
normal rank.

the eigenvalue at the origin of the closed-loop matrixAX .
Since the generalised eigenvalues ofN − zM do not depend
on the particular solutionX = X T of CGDARE(Σ), the same
holds for the generalised eigenvalues and the Kronecker
structure ofUX (N−zM)VX for any non-singularUX andVX .
Therefore, the nilpotent structure of the closed-loop matrix
AX – which is the Jordan eigenstructure of the generalised
eigenvalue at the origin ofAX – if any, is independent of the
particular solutionX = X T of CGDARE(Σ). Moreover, since

UX N VX =





AX O B
O In O
O O RX



 , (13)

we see that whenRX is invertibleN is singular if and only
if AX is singular. Therefore, from the observations in the
beginning of this section, we also have the following result.

Lemma 3.3: (see e.g. [2])Let RX be invertible. Then,AX

is singular if and only if at least one of the two matricesR
andA−BR†S T is singular.

However, when the matrixRX is singular, it is no longer
true thatAX is singular if and only ifR or A−BR† S T is
singular. Indeed, (13) shows that the algebraic multiplicity
of the eigenvalue at the origin ofN is equal to the sum of
the algebraic multiplicities of the eigenvalue at the origin of
AX and RX . Therefore, the fact thatN is singular does not
necessarily imply thatAX is singular.

Proposition 3.1: The closed-loop matrixAX is singular if
and only if rankR < rankRX or A−BR†S T is singular.
Proof: Given a square matrixZ, let us denote byµ(Z) the
algebraic multiplicity of its eigenvalue at the origin. Then, we
know from (13) thatµ(N) = µ

([

A B

S T R

])

= µ(AX )+µ(RX).
Consider a basis in the input space that isolates the invertible
part of R. In other words, in this basisR is written asR =
[

R1 O

O O

]

where R1 is invertible, while B =
[

B1 B2
]

and

S =
[

S1 O
]

are partitioned accordingly. It follows that

µ
([

A B

S T R

])

= µ(R)+ µ
([

A B1

S T
1 R1

])

. As such,

µ(AX ) = µ
([

A B
S T R

])

− µ(RX)

= µ
([

A B1

S T
1 R1

])

+ µ(R)− µ(RX). (14)

First, we show that if rankR < rankRX , thenAX is singular.
Since rankR < rankRX , then obviouslyµ(R) > µ(RX ), so
that (14) givesµ(AX)> 0.
Let now A−BR† S T be singular, and let rankR = rankRX .

From (14) we find thatµ(AX)= µ
([

A B1

S T
1 R1

])

. However,A−

BR† S T =A−B1 R−1
1 S T

1 . If A−BR†S T is singular, there exists

a non-zero vectork such that
[

k T −k T B1 R−1
1

]

[

A B1

S T
1 R1

]

=

0. Hence,µ
([

A B1

S T
1 R1

])

> 0, and therefore alsoµ(AX)> 0.

The converse can be proved with a similar argument, using
again (14).

Remark 3.1: We recall that the algebraic multiplicity of
the eigenvalue at the origin ofRX is invariant for any solution



X of CGDARE(Σ), [11]. Hence, as a direct consequence of
(14), we have that the algebraic multiplicity of the eigenvalue
at the origin of AX is the same for any solutionX of
CGDARE(Σ). This means, in particular, that the closed-loop
matrix corresponding to a given a solution of CGDARE(Σ) is
singular if and only if the closed-loop matrix corresponding
to any other solution of CGDARE(Σ) is singular. In the next
section we show that a stronger result holds: when present,
the zero eigenvalue has the same Jordan structure for any pair
AX andAY of closed-loop matrices corresponding to any pair
X ,Y of solutions of CGDARE(Σ). Moreover, the generalised
eigenspaces corresponding to the zero eigenvalue ofAX and
AY coincide. The restriction ofAX andAY to this generalised
eigenspace also coincide. Finally,X and Y coincide along
this generalised eigenspace.

IV. T HE SUBSPACEU

Given a solutionX =X T of CGDARE(Σ), we denote byU
the generalised eigenspace corresponding to the eigenvalue
at the origin ofAX , [7]. In formulae,U , kerAn

X . In this
section we want to prove that all solutions of CGDARE(Σ)
are coincident alongU . In other words, given two solutions
X = X T and Y = Y T of GDARE(Σ), we show thatU ⊆
ker(X −Y ). Stated differently, given a basis matrix3 U of the
subspaceU , the change of coordinate matrixT = [U Uc ]
yields

T−1 X T =

[

X11 X12

X T
12 X22

]

and T−1Y T =

[

X11 X12

X T
12 Y22

]

. (15)

We first present two results that will be useful to prove
this point. LetX = X T ∈ Rn×n. Similarly to [7], we define
the function

D(X) , X −ATXA+(ATXB+ S)(R+BTXB)†

·(BTXA+ ST)−Q. (16)

If in particular X = X T is a solution of GDARE(Σ), then
D(X) = 0. For the sake of conciseness, we recall that
given two solutionsX = X T ∈ Rn×n and Y = Y T ∈ Rn×n

of GDARE(Σ), we have definedRX = R + BT X B, SX =
A T X B+ S andRY = R+BTY B, SY , AT Y B+ S.

Lemma 4.1: Let X = X T ∈ Rn×n andY = Y T ∈ Rn×n be
such that (8) holds, i.e.,

kerRX ⊆ kerSX (17)

kerRY ⊆ kerSY . (18)

Let AX = A−BKX with KX = R†
X S T

X andAY = A−BKY with
KY =R†

Y S T
Y . Moreover, let us define the difference∆,X−Y .

Then,

D(X)−D(Y) = ∆−AT
Y ∆AY +AT

Y ∆BR†
X B T ∆AY . (19)

The proof can be found in [1, p.382].
The following lemma is a generalisation of Lemma 2.2 in

[7] to the case of a closed-loop matrix in which the term
(R+BT X B) appears with the pseudo-inverse instead of the
inverse.

3Given a subspaceS , a basis matrix ofS is a matrix S such that
imS = S and kerS = {0}.

Lemma 4.2: Let X = X T ∈ R
n×n andY = Y T ∈ R

n×n be
such that (17-18) hold. Then,

D(X)−D(Y) = ∆−AT
Y ∆AX . (20)

The following result is an extension of Proposition 2.1 in
[7] to solutions of CGDARE(Σ).

Theorem 4.1: All solutions of CGDARE(Σ) are coincident
alongU , i.e., given two solutionsX andY of CGDARE(Σ),

(X −Y)U = {0};

Moreover, U does not depend on the solutionX of
CGDARE(Σ), i.e., given two solutionsX and Y of
CGDARE(Σ), there holds

kerAn
X = kerAn

Y .

The proof is omitted for the sake of brevity. The proof of
this result follows the same lines of that of [7, Proposition
2.1], and uses the generalised result given in Lemma 4.2.

V. THE GENERALISED RICCATI DIFFERENCEEQUATION

Consider the GRDE(Σ) along with the terminal condition
XT = P = P T ≥ 0. Let us define

R(X), A T X A− (AT X B+ S)(R+BTX B)†(B T X A+ ST)+Q.

With this definition, GRDE(Σ) can be written asXt =
R(Xt+1). Moreover, GDARE(Σ) can be written as

D(X) = X −R(X) = 0.

With a slight abuse of nomenclature, we use the term
nilpotency index of a matrixM to refer to the smallest integer
ν for which kerMν = kerMν+1, which is defined also when
M is not nilpotent. We have the following important result.

Theorem 5.1: Let X0 = X T
0 be a solution of CGDARE(Σ).

Let ν be the index of nilpotency ofAX0. Moreover, letXt be
a solution of (1-2) and define∆t , Xt −X0. Then, forτ ≥ ν,
we have∆T−τ U = {0}.
Proof: SinceX0 = X T

0 is a solution of CGDARE(Σ), we have
D(X0) = 0. This is equivalent to saying thatX0 = R(X0).
From the definition∆t , Xt −X0 we get in particular∆T =
XT −X0. With these definitions in mind, we find

∆t = R(Xt+1)−R(X0) = Xt+1−D(Xt+1)−X0

= ∆t+1−D(Xt+1) = ∆t+1−D(Xt+1)+D(X0)

= ∆t+1− [D(Xt+1)−D(X0)]. (21)

However, we know from (19) that

D(Xt+1)−D(X0) = ∆t+1−AT
X0
[∆t+1

−∆t+1 B(R+BTXt+1B)†B T ∆t+1]AX0 (22)

which, once plugged into (21), gives

∆t = ∆t+1−∆t+1+AT
X0
[∆t+1

+∆t+1 B(R+BTXt+1B)†B T ∆t+1]AX0

= AT
X0
[In −∆t+1B(R+BTXt+1B)†B T ]∆t+1AX0

= Ft+1 ∆t+1 AX0, (23)



where

Ft+1 , A T
X0
−AT

X0
∆t+1 B(R+BTXt+1B)†BT

.

It follows that we can write

∆T−1 = FT ∆T AX0,

∆T−2 = FT−1 ∆T−1 AX0 = FT−1 FT ∆T A2
X0
,

... (24)

∆T−τ =

(

T

∏
i=T−τ+1

Fi

)

∆T Aτ
X0
. (25)

This shows that forτ ≥ ν we have ker∆T−τ ⊇ kerAn
X0

.

Now we show that the result given in Theorem 5.1 can
be used to obtain a reduction for the generalised discrete-
time Riccati difference equation. Consider the same basis
induced by the change of coordinates used in Theorem 4.1,
so that the firstν components of this basis span the subspace
U = kerAn

X . The closed-loop matrix in this basis can be
written as

AX0 =

[

N0 ⋆

O Z

]

,

whereN0 is nilpotent andZ is non-singular. Hence,Aν
X0

=
[

O ⋆

O Zν

]

, where we recall thatν is the nilpotency index of
AX . By writing (25) in this basis, forτ ≥ ν we find

∆T−τ =

[

⋆ ⋆

⋆ ⋆

][

O ⋆

O Zν

]

=

[

O ⋆

O ⋆

]

=

[

O O
O ⋆

]

,

where the last equality follows from the fact that∆T−τ is
symmetric.

Now, let us rewrite the Riccati difference equation (23) as

∆t = A T
X0

∆t+1AX0 −AT
X0

∆t+1 B(R+BTXt+1B)†B T ∆t+1AX0. (26)

For t ≤ T −ν, we get∆ =
[

O O
O Ψt

]

, and the previous equation
becomes

[

O O
O Ψt

]

=

[

N T
0 O
⋆ Z T

][

O O
O Ψt+1

][

N0 ⋆

O Z

]

−

[

N T
0 O
⋆ Z T

][

O O
O Ψt+1

]

B(R+BTXt+1B)†B T

[

O O
O Ψt+1

][

N0 ⋆

O Z

]

=

[

O O
O Z T Ψt+1 Z

]

−

[

O O
O Z T Ψt+1

][

B1

B2

]

(

R+
[

B T
1 B T

2

]

(∆t+1+X0)

[

B1

B2

]

)†

·
[

BT
1 B T

2

]

[

O O
O Ψt+1 Z

]

.

By partitioningX0 asX0 =

[

X0,11 X0,12

X T
0,12 X0,22

]

, we get

[

O O
O Ψt

]

=

[

O O
O Z T Ψt+1 Z

]

−

[

O O
O Z T Ψt+1

]

·

[

⋆ ⋆

⋆ B2 (R0+BT
2 Ψt+1 B2)

† BT
2

][

O O
O Ψt+1 Z

]

=

[

O O
O Z T Ψt+1 Z

]

−

[

O O
O Z T Ψt+1 B2 (R0+BT

2 Ψt+1 B2)
† B T

2 Ψt+1 Z

]

,

where R0 , R+B T
2 X0,22B2. Therefore,Ψt satisfies the re-

duced homogeneous Riccati difference equation

Ψt =Z TΨt+1Z−Z TΨt+1B2(R0+B T
2Ψt+1B2)

†BT
2Ψt+1Z. (27)

The associated generalised discrete Riccati algebraic equa-
tion is

Ψ−Z T ΨZ +Z T ΨB2 (R0+BT
2 ΨB2)

† B T
2 ΨZ = 0. (28)

Being homogeneous, this equation admits the solutionΨ= 0.
This fact has two important consequences:

• The closed-loop matrix associated with this solution is
clearlyZ, which is non-singular. On the other hand, we
know that the nilpotent part of the closed-loop matrix is
independent of the particular solution of CGDARE(Σ)
considered. This means that all solutions of (28) have a
closed-loop matrix that is non-singular;

• Given a solutionΨ of (28), the null-space ofR0 +
BT

2 ΨB2 coincides with the null-space ofR0, since the
null-space ofR0 + B T

2 ΨB2 does not depend on the
particular solution of (28) and we know that the zero
matrix is a solution of (28).

As a result of this discussion, it turns out that given
a reference solutionX0 of CGDARE(Σ), the solution of
GDRE(Σ) with terminal conditionXT = P can be computed
backward as follows:

1) For the firstν steps, i.e., fromt = T to t = T −ν, Xt is
computed by iterating the GDRE(Σ) starting from the
terminal conditionXT = P;

2) In the basis that isolates the nilpotent part ofAX , we
have

∆T−ν =

[

O O
O ΨT−ν

]

.

From t = T −ν −1 to t = 0, the solution of GDRE(Σ)
can be found iterating the reduced order GDRE in (27)
starting from the terminal conditionΨT−ν .

Remark 5.1: The advantage of using the reduced-order
generalised difference Riccati algebraic equation (27) con-
sists in the fact that the closed-loop matrix of any solutionof
the associated generalised discrete Riccati algebraic equation
is non-singular. Hence, when the reduced-order system is
left invertible, the solution of the reduced-order generalised
difference Riccati algebraic equation (27) can also be com-
puted in closed-form, using the results in [6] or [4], which
are adaptation to the discrete case of the techniques first



presented in [3], [9], [5]. Indeed, consider a solutionΨ of
(28) with its non-singular closed-loop matrixAΨ and letY
be the corresponding solution of the closed-loop Hermitian
Stein equation

AΨ Y AT
Ψ −Y +B2(R0+BT

2 ΨB2)
−1BT

2 = 0. (29)

The set of solutions of the extended symplectic difference
equation for the reduced system is parameterised in terms of
K1,K2 ∈ Rn×n as




Xt

Λt

Ωt



=





In−ν
Ψ

−KΨ



 At
Ψ K1+





Y A T
Ψ

(ΨY − In−ν)AT
Ψ

−K⋆



 (A T
Ψ)

T−t−1 K2,

for 0≤ t ≤ T . The values of the parameter matricesK1 and
K2 can be computed so that the terminal condition satisfies
XT = In and ΛT = ΨT−ν . Such values exist becauseAΨ is
non-singular, and are given by

K1 = A−T
Ψ (In −Y (Ψ−ΨT−ν))

K2 = Ψ−ΨT−ν .

Then, the solution of (27) is given byΨt = Λt X−1
t .
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