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Abstract 

 

In this paper it is shown how non-pointed exactness provides a 

framework which allows a simple categorical treatment of the basics 

of KuroshAmitsur radical theory in the non-pointed case. This is 

made possible by a new approach to semi-exactness, in the sense of 

the first author, using adjoint functors. This framework also reveals 

how categorical closure operators arise as radical theories.  

 

Introduction 
 

Classically, every ring A admits short exact sequences of the form  

 

          0  R(A)  A  S(A)  0,                                                                          (0.1) 

 

in which R(A) is the radical of A, and the ring S(A) is semisimple; note that, here and 

below, rings are not required to be unital, and not even to be associative. There are 

several non-equivalent notions of radical, and each of them has its corresponding 

notion of semisimple ring. Moreover, there is a general notion, going back to old 

work of A. G. Kurosh and S. A. Amitsur (see e.g. [W1983] or [GW2004] and 

references therein), of a pair (R,S), consisting of a radical class and its corresponding 

semisimple class, so that: 
 

 The classes R and S consist of rings, or, more generally, of objects in a fixed 

pointed category with kernels and cokernels, satisfying certain exactness 

conditions, e.g. as in [MW1982]. 

 The classes R and S uniquely determine each other, and have several special 

properties, including the existence of the short exact sequence (0.1), for each 
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ring or object A, in which R(A) is the largest normal subobject of A that is in 

R, and S(A) is the largest normal quotient of A that is in S. 

 In particular, when the ground category is abelian, such a pair (R,S) is nothing 

but a torsion theory in the sense of S. E. Dickson [D1966]. 

 

Let us compare the following two well-known observations: 

 

Observation 0.1. (a) A radical class of rings is a class R of rings such that a ring A 

belongs to R if and only if every non-zero quotient B of A has a non-zero ideal C 

which is in R. 
 

(b) A semisimple class of rings is a class S of rings such that a ring A belongs to S if 

and only if every non-zero ideal B of A has a non-zero quotient C which is in S.  

 

Observation 0.2. Let C be an abelian category that admits arbitrary intersections of 

subobjects and arbitrary co-intersections of quotients. Then: 
 

(a) A torsion class is a class R of objects of C such that an object A in C belongs to R 

if and only if it has no non-zero morphism into any object B that admits no non-zero 

morphism from any object C in R. 
 

(b) A torsion-free class is a class S of objects of C such that an object A in C belongs 

to S if and only if it has no non-zero morphism from any object B that admits no non-

zero morphism into any object C in S.  

 

Observation 0.2 immediately tells us that torsion theories are defined via the Galois 

connection determined by the (non-symmetric) orthogonality relation , on the class 

of objects in C, defined as 

 

          A  B  Hom(A,B) = 0;                                                                                 (0.2) 

 

indeed, we can rewrite conditions 0.2(a) and 0.2(b) as 

 

          R = {A  C  if, for all C  R, C  B then A  B}                                         (0.3) 

and 

          S = {A  C  if, for all C  S, B  C then B  A},                                         (0.4) 

 

respectively. In contrast to this, Observation 0.1 obviously uses two binary relations 

on the class of rings, but, on the other hand, there is a similarity, suggesting to rewrite 

0.1(a) and 0.1(b) as 

 

          R = {A  C  if, for all C  R, C i B then A h B}                                       (0.5) 

and 

          S = {A  C  if, for all C  S, B h C then B i A},                                       (0.6) 

 

where now C is the category of rings, and i, h are the binary relations on the class 

of all rings defined by 

 

          B i A  (B is not isomorphic to any non-zero ideal in A)                            (0.7)  

and 

          A h B  (B is not a non-zero homomorphic image of A).                           (0.8) 
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In the present paper: 

 

We begin (Section 1) with a new approach to non-pointed exactness studied by the 

first named author before. Surprisingly, to give a semiexact category (=ex1-category) 

in the sense of [G1992a, G1992b] is the same as to give a pair (C1,C0) in which C1 is 

a category with certain pullbacks and pushouts and C0 is a full subcategory in C1 that 

is epi-reflective and mono-coreflective at the same time. The short Sections 2 and 3 

are devoted to two main special cases: the ‘standard’ pointed case, where C0 is the 

trivial category, and the ‘other extreme’ case considered in [G1992a, G2013] (under 

the name of ‘categories of pairs’), where C1 is determined by a class M of morphisms 

in C0 satisfying suitable conditions; here we shall briefly refer to the latter case as the 

C1 = M case. 

 

In Section 4, after recalling how a binary relation between two sets X and of Y 

determines a Galois connection between their power sets, we explain in detail how we 

are modifying this construction (in a very simple way) to involve two binary relations 

between these two sets. Then Example 4.1 shows (many readers would say “recalls”) 

how these two constructions can be used as two equivalent approaches to torsion 

theories in abelian categories. After that we consider two non-abelian orthogonality 

relations ⨞ and -⊳, defined by 

 

          B ⨞ A  (there is no non-zero normal monomorphism B  A)                  (0.9)  

and 

          A -⊳ B  (there is no non-zero normal epimorphism A  B),                  (0.10) 

 

respectively. Using these symbols we follow a tradition in classical algebra and 

radical theory (see e.g. [GW2004]), according to which X ⨞ Y means “X is an ideal of 

Y ”, or “X is a normal subobject of Y ”, while X -⊳ Y means “Y is a homomorphic 

image of X ”, or “Y is a normal quotient of X ”. Next we introduce our main definition 

(Definition 4.2), which we propose as a general framework for the theory of radicals, 

and prove (see Theorem 4.5) that this notion of radical and semisimple classes agrees 

with the usual one in Kurosh-Amitsur radical theory for pointed categories close to 

that of rings.   

 

Remark 0.3. While (0.5) and (0.6) are straightforward reformulations of well-known 

descriptions (see e.g. [GW2004]), and the very idea of using two binary relations (in 

fact, two arbitrary preorders) goes back to [FW1975], our formulation of Definition 

4.2 of a radical-semisimple pair is new. Moreover, it is new even in the following 

cases, where, however, it is easily seen to be equivalent to known formulations: 
 

 the pointed case; 

 for topological spaces, graphs, and so-called abstract relational structures, 

where radical-semisimple pairs are called connectedness-disconnectedness 

theories (see [AW1975], [FW1975] and [FW1982]).    

 

Another surprising fact (Section 5) is: in the C1 = M case radical theory becomes the 

theory of closure operators, with dense morphisms playing the role of radical objects 

and closed morphisms playing the role of semisimple objects. In particular, for the 
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(dense, closed)-factorization m = cd of m  M with respect to a given closure 

operator, the corresponding short exact sequence (0.1) is  

 

           
d
   

c
   =    =   

              d     m   c                                                                                           (0.11) 

            =    =   
d
   

c
   

 

In fact it was this example that convinced us that our main definition should be given 

in the non-pointed context. 

 

Remark 0.4. (a) From the point of view of the simplicial approaches introduced in 

[JM2003] and [JM2009], it is convenient to think of the frameworks considered  
 

 in this paper (that is, a set with two binary relations on it),  

 in [JM2003],  

 in [JM2009] 
 

as 1-, 2-, and 3-dimensional exactness structures, respectively. In subsequent papers, 

we plan to extend the 2- and 3-dimensional exactness structures to include the  

non-pointed context, showing how the higher dimensional framework allows us to 

generalize more complex results of radical theory. Not to mention anything else, the 

1-dimensional exactness structure does not even allow to formulate the existence of 

the short exact sequences (0.1).  
 

(b) The “homomorphic orthogonality” approach of (0.3) and (0.4) works also for 

associative rings, as shown by B. Gardner [G1974], if we replace all homomorphisms 

by homomorphisms with an accessible image, where a subring A of a ring R is said to 

be accessible if there is a finite chain A = A0 ⨞ A1 ⨞ ... ⨞ An ⨞ R. The same approach 

works also for ‘close-to-associative’ rings (like alternative rings) but not for rings in 

general, as noted in [JM2003] (it may have been known before). 
 

(c) The Reader might ask: what if we go back to (0.3) and (0.4), and use them in the 

non-pointed context to define radical-semisimple pairs? Such an approach exists and 

leads to interesting examples (see [AW1975], [FW1975]). Also, the way B. Gardner 

looks at (pre)factorization systems in [G1994] is similar, to some extent, to the way 

we look at the closure operators in the above-mentioned C1 = M case.   

 

1. Simultaneously reflective and coreflective full subcategories versus 

null ideals 
 

Consider a diagram 

 

                          D 
 

                                                                                                

          C1            
E

             C0,   C – E – D                                                               (1.1)           

                         

                         

                          C 
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of categories and functors, in which E is fully faithful and D and C are a right adjoint 

left inverse and a left adjoint left inverse of E, respectively. For simplicity we will 

assume that C0 is a full replete subcategory in C1 and E is the inclusion functor, and 

the unit of the adjunction E – D and the counit of the adjunction C – E are identity 

natural transformations; the counit of E – D and the unit of C – E will be denoted by  

and , respectively. Since E is the inclusion functor, for an object A in C1, we shall 

simply write 

 
 

          D(A)          
A

            A           
A

           C(A).                                                  (1.2)  

 

The data (1.1) can be seen as a category, namely C1, equipped with a closed ideal N 

of null maps in the sense of [G1992a, G1992b]. This ideal N is generated by C0 in the 

sense that a morphism in C1 belongs to it if and only if it factors through an object in 

C0. At the same time N determines C0 as the full subcategory of all those objects 

whose identity morphisms belong to it; this follows from the fact that C0 is closed 

under retracts.    

 

The following table shows the precise correspondence between the terminology and 

notation used here and those used in [G1992a, G1992b] and subsequent papers of the 

same author, see also the book to appear [G2013].  

 

present paper [G1992a, G1992b] 

the data (1.1) (X,N), a category equipped with a closed ideal 

C1 X 

C0 
the class of null objects in X, that is, the class of 

objects whose identity morphisms belong to N 

A : D(A)  A 0A : A0  A 

A : A  C(A) 0
A
 : A  A

0
 

null morphisms, that is, morphisms 

that factor through an object of C0 
null morphisms, that is, the elements of N 

  

Note that although the data (1.1) is stronger than a category equipped with a closed 

ideal, there are natural additional conditions on both of them making the resulting 

structures equivalent (see Theorem 1.4 below). 

 

As defined in [G1992a, G1992b], a semiexact category (or ex1-category) is a 

category equipped with a closed ideal, where every morphism has a kernel and a 

cokernel with respect to the given ideal; such kernels and cokernels with respect to an 

ideal of maps had also been considered earlier by various authors (see e.g. [E1964]). 

We recall the definition of kernel in terms of the data (1.1): 

 

Definition 1.1. A kernel of a morphism f : A  B in C1 (with respect to the data (1.1)) 

is a pair (K,), where  : K  A is a morphism in C1 satisfying the following 

conditions: 
 

(a) f is a null morphism, that is, it factors through an object of C0; 
 

(b) if ' : K'  A is any morphism for which f' is a null morphism, then there exists a 

unique morphism u : K'  K with u = '. 
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Cokernels with respect to the data (1.1) are defined dually.   

 

It is then natural to ask: how are these “relative kernels” related to the usual (finite) 

limits in C1? Our answer consists of the following two easy propositions: 

 

Proposition 1.2. The following conditions on an object A in C1 are equivalent: 
 

(a) the identity morphism 1A : A  A has a kernel; 
 

(b) (D(A),A) is a kernel of 1A : A  A; 
 

(c) A : D(A)  A is a monomorphism. 

 

Proof. (a)(b): Let K be the category of the pairs (X,) in which  : X  A is a null 

morphism in C1, and let (K,) be a kernel of 1A. Then there are morphisms  

u : (D(A),A)  (K,) and v : (K,)  (D(A),A) in K, and the composites uv and vu 

are identities by the universal properties of (K,) and (D(A),A), respectively. 
 

The implication (b)(a) is trivial. 
 

(b)(c): Use the same straightforward argument as for ordinary kernels. 
 

(c)(b): 1AA = A is obviously a null morphism. If  = 1A : X  A is a null 

morphism, then  is a composite of some f : X  Y and g : Y  A with Y in C0. And 

since Y is in C0, g = Ah for some h by the universal property of (D(A),A). Therefore  

factors through A. And since A is a monomorphism, such a factorization is unique, as 

desired.  

 

Proposition 1.3. Let f : A  B be a morphism in C1 for which B is a monomorphism. 

Then the following conditions on a morphism  : K  A are equivalent: 
 

(a) (K,) is a kernel of f : A  B; 
 

(b) there exists a morphism g : K  D(B) making the diagram 

 

                                g
 

                    K                    D(B) 



                        B                                                                              (1.3)        



A                       B 

                                f 

 

a pullback; 
 

(c) there exists a unique morphism g : K  D(B) making the diagram (1.3) a pullback. 

 

Proof. (a)(b): The universal property of (D(B),B) tells us that a morphism into B is 

a null morphism if and only if it factors through B. After that, comparing the 

universal properties of a kernel and of a pullback, we see that all we need to prove is 

the following assertion: 
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() If g makes (1.3) commute and u : X  K and v : X  D(B) are morphisms in C1 

with fu = Bv, then gu = v.  
 

However, () immediately follows from the commutativity of (1.3) and the fact that B 

is a monomorphism. 
 

The equivalence (b)(c) follows trivially from the fact that B is a monomorphism.  

 

Cokernels are of course defined and constructed dually, and an easy comparison of 

the definitions gives: 

 

Theorem 1.4. In the notation above, the following conditions are equivalent:  
 

 

(a) the data (1.1) determines a semiexact category (=ex1-category) in the sense of 

[G1992a], that is, every morphism in C1 has a kernel and a cokernel; 
 

(b) for every object A in C1, the morphism A : D(A)  A is a monomorphism that 

admits pullbacks along arbitrary morphisms into A, and the morphism A : A  C(A) 

is an epimorphism that admits pushouts along arbitrary morphisms from A.  

 

Remark 1.5. As easily follows from the results of [G1992a], it is also true that every 

semiexact category in the sense of [G1992a] can be obtained as above from data (1.1) 

satisfying 1.4(b).   

 

2. Example 1: the pointed case 
 

This section consists of the obvious observation that when C is a pointed category 

having an initial (=terminal=zero) object, we can construct the data (1.1) by taking: 
 

 C1 = C;  

 C0 = 1, the terminal object in the category of all categories, that is, the 

category with exactly one morphism – although we will identify C0 with the 

full subcategory of all zero objects in C. 

 

For a given C this determines the data (1.1) uniquely (up to isomorphism), kernels 

and cokernels become the ordinary ones, and therefore semiexactness becomes 

equivalent to the existence of ordinary kernels and cokernels. 

  

3. Example 2: semiexact categories of morphisms 
 

In this section we choose the data (1.1) as follows. Starting with an arbitrary category 

C and a class M of morphisms in C that contains all identity morphisms, we take:  
 

 C0 = C;  

 C1 to be the full subcategory of the arrows of C with objects all the morphisms 

in M; the objects of C1 will be written as triples (A,A',a) where a : A'  A is a 

morphism in C that belongs to M; a morphism (A,A',a)  (B,B',b) in C1 is a 

pair (f,f  ') where f : A  B and f  ' : A'  B' are morphisms in C with fa = bf  '; 

 E : C0  C1 to be the diagonal functor defined by E(A) = (A,A,1A), although 

we will identify C0 = C with its replete image in C1, that is, with the category 

of all isomorphisms that are in M; 
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 the functors C and D should be defined accordingly, yielding  

 

                     D(A,A',a) = A' = (A',A',1A'), (A,A',a) = (a,1A'),                                         (3.1) 

                     C(A,A',a) = A = (A,A,1A), (A,A',a) = (1A,a).                                           (3.2) 

 

Proposition 3.1. Suppose the class M satisfies the following condition: for every 

diagram in C of the form 

 

                                                    f 

          S            
s
            Y                          Z            

t 
            T   

                                                    g   

 

with s and t in M, we have 

 

          (fs = gs & tf = tg)  f = g.                                                                          (3.3) 

 

Then all (A,A',) are monomorphisms and all (A,A',) are epimorphisms. In particular, 

this is the case if either every morphism from M is a monomorphism or every 

morphism from M is an epimorphism. 

 

Proof is straightforward. Given morphisms (f,f  '), (g,g') : (X,X ',x)  (A',A',1A'), the 

equality (A,A',a)(f,f ') = (A,A',a)(g,g') means that  

 

          af = ag & f  ' = g' & fx = f  ' & gx = g'. 

 

Therefore we have af = ag & f  ' = g' & fx = gx, and then (f, f  ') = (g,g') by (3.3). This 

proves that (A,A',a) is a monomorphism. Since the required conditions are self-dual, we 

also conclude that (A,A',a) is an epimorphism.  

 

From here and Theorem 1.4, we obtain 

 

Corollary 3.2. If either every morphism from M is a monomorphism or every 

morphism from M is an epimorphism, and C1 admits all pullbacks along morphisms 

of the form (A,A',) and all pushouts along morphisms of the form (A,A',), then the data 

above determines a semiexact category in the sense of [G1992a].  

 

Remark 3.3. Corollary 3.2 certainly applies when M is either a ‘mono-part’ or an 

‘epi-part’ of a proper factorization system in a category with pullbacks and pushouts. 

Both the mono case and the epi case are considered in [G1992a] and subsequent 

papers in detail.  

 

4. Radicals in 1-dimensional exactness structures 
 

Let X and Y be arbitrary sets (or classes). Given a relation  : X  Y (that is,  

  X  Y in set-theoretic notation), the corresponding Galois connection  
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                         * 

          P(X)                 P(Y),                                                                                       (4.1) 

                         
*

 

 

between the power sets of X and of Y, has 
*
 and * defined by  

 

  *(U) = {Y  Y  if U  U then UY}, 
*
(V) = {X  X  if V  V then XV}.    (4.2) 

 

Recall also that  

 

  *(P(X)) = {V  P(Y)  *
*
(V) = V}, 

*
(P(Y)) = {U  P(X)  

*
*(U) = U},   (4.3) 

 

and so the maps (4.1) induce bijections  

 

                                 

          
*
(P(Y))                 *(P(X))                                                                           (4.4) 

                                 
 

inverse to each other. 

 

For our purposes we need to modify the familiar data (4.1) as 

 

                         * 

          P(X)                 P(Y),                                                                                       (4.5) 

                         
*
 

 

where  is another relation between the same sets. In this more general situation we 

have no counterpart of (4.2) of course, but we still have induced bijections 

 

                                                             

          {U  P(X)  
*
*(U) = U}                 {V  P(Y)  *

*
(V) = V}                   (4.6) 

                                                             
 

inverse to each other, which become the bijections (4.4) if  = . Moreover, (4.6) is 

the largest bijection induced by (4.5).  

 

In what follows we shall always have X = Y, and we will say that (4.6) is the 

canonical bijection between the left-closed and the right-closed subsets (with respect 

to  and ) in X. 

 

Example 4.1. Let C be an abelian category that admits arbitrary intersections of 

subobjects and arbitrary co-intersections of quotients, and X be the class of objects in 

C. Then: 
 

(a) If we take  =  to be the orthogonality relation  defined by (0.2), then the 

bijections (4.4), or equivalently (4.6), are exactly the usual bijections, inverse to each 

other, between the torsion classes and the torsion-free classes in C. In particular, a 

class of objects in C is left-closed if and only if it is a torsion class; similarly, a class 
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of objects in C is right-closed if and only if it is a torsion-free class (cf. Observation 

0.2 and the sentence containing (0.2)-(0.4)). 
 

(b) Let us now make  and  smaller and different from each other as follows: 

 

           = {(X,Y)  X  X  there is no non-zero monomorphism X  Y},             (4.7) 

 

           = {(X,Y)  X  X  there is no non-zero epimorphism X  Y}.                 (4.8) 

 

Remarkably, it is easy to see (and known, in a sense) that although this modification 

yields different maps * and 
*
 and different images *(P(X)) and 

*
(P(Y)), it gives 

nevertheless the same left-closed and right-closed subsets and the same bijection 

between them.  

 

There are several non-equivalent ways to generalize the data considered in this 

example to the context where C is only required to be pointed and to have kernels and 

cokernels. We start from 4.1(b), not 4.1(a), and generalize it as follows. As already 

mentioned in the Introduction, we write:  

 

          X ⨞ Y when X is (or can be presented as) a normal subobject of Y,                        (4.9) 

 

          X -⊳ Y when Y is (or can be presented as) a normal quotient of X,                      (4.10) 

 

and define the corresponding orthogonality relations ⨞ and -⊳ accordingly, that is, 

by (0.9) and (0.10), respectively. Since in an abelian category all monomorphisms and 

all epimorphisms are normal, we can say that the orthogonality relations ⨞ and -⊳ 

are non-abelian versions of the relations (4.7) and (4.8), respectively. Having in mind 

the connection with the radical theory of rings briefly described in the Introduction, 

we call the resulting left-closed and right-closed classes of objects radical and 

semisimple classes, respectively. Let us, however, make a further generalization 

immediately – to the context of a semiexact category in the sense of the first author, 

that is, using data (1.1) satisfying the equivalent conditions of Theorem 1.4. 

 

Definition 4.2. (a) A 1-dimensional exactness structure is a system X = (X,Z,⨞,-⊳), in 

which X is a set, Z is a subset in X, and ⨞ and -⊳ are binary relations on X such that, 

for every X in X, there exist Z and Z ' in Z with Z ⨞ X and X  -⊳ Z '.  
 

(b) Let X = (X,Z,⨞,-⊳) be a 1-dimensional exactness structure. A pair (R,S) of subsets 

of X is said to be a radical-semisimple pair if R and S correspond to each other under 

the canonical bijection (4.6) for Y = X and  

 

           = (X,Y)  X ⨞ Y  X  Z and  = (X,Y)  X  -⊳ Y  Y  Z.               (4.11) 

 

That is, (R,S) is a radical-semisimple pair if and only if R = 
*
(S) and S = *(R). 

Accordingly, the radical (semisimple) classes with respect to X are the same as the 

left-closed (right-closed) classes with respect to relations (4.9), (4.10).  
 

(c) For data (1.1) satisfying the equivalent conditions of Theorem 1.4, a pair (R,S) of 

classes of objects of C1 is said to be a radical-semisimple pair if it is in the sense of 

(b), where: 
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 X is the class of objects in C1; 

 Z is the class of objects in C0; 

 X ⨞ Y when X is a normal subobject of Y, that is, there exist morphisms  

 : X  Y and f : Y  Y ' such that  is the kernel of f (in the sense of 

Definition 1.1). 

 X  -⊳ Y when Y is a normal quotient of X, that is, there exist morphisms  

g : X '  X and  : X  Y such that  is the cokernel of g (in the sense of 

Definition 1.1).  
 

A class Y  X is said to be a radical class (semisimple class) if Y = 
*
*(Y)  

(Y = *
*
(Y)).  

 

The following two propositions are in fact nothing but explicit reformulations of 

Definition 4.2(b): 

 

Proposition 4.3. Let X = (X,Z,⨞,-⊳) be a 1-dimensional exactness structure. A subset 

R in X is a radical class if and only if satisfies the following conditions: 
 

(a) if A is in R, then, for every B  X \ Z with A -⊳ B, there exists C  R \ Z with  

C ⨞ B; 
 

(b) given A in X, if, for every B  X \ Z with A -⊳ B, there exists C  R \ Z with  

C ⨞ B, then A is in R.  
 

Proof. Just observe that conditions (a) and (b) are equivalent to the inclusions  

R  
*
*(R) and 

*
*(R)  R, respectively.  

 

Proposition 4.4. Let X = (X,Z,⨞,-⊳) be a 1-dimensional exactness structure. A subset 

S in X is a semisimple class if and only if satisfies the following conditions: 
 

(a) if A is in S, then, for every B  X \ Z with B ⨞ A, there exists C  R \ Z with  

B -⊳ C; 
 

(b) given A in X, if, for every B  X \ Z with B ⨞ A, there exists C  R \ Z with  

B -⊳ C, then A is in R.  
 

Proof. Just observe that conditions (a) and (b) are equivalent to the inclusions  

S  *
*
(S) and *

*
(S)  S, respectively.  

 

Conditions 4.3(a), 4.3(b), 4.4(a), 4.4(b) of these propositions are straightforward 

generalizations of the standard radical-theoretic conditions (R1), (R2), (S1), (S2), see 

e.g. [W1983] or [GW2004]. This proves: 

 

Theorem 4.5. Let the data (1.1) be chosen as in Section 2, and let C be the category 

of rings, or, more generally, any category satisfying one of the essentially equivalent 

sets of axioms of [MW1982] (see Remark 4.6(e) below). Then the radical and the 

semisimple classes (with respect to this data) in the sense of Definition 4.2(c) are the 

same as the radical and the semisimple classes in the sense of the usual 

KuroshAmitsur radical theory. Furthermore, the radical-semisimple pairs are the 

same as the pairs consisting of a radical class and a semisimple class corresponding to 

each other in the usual sense.   
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Remark 4.6. (a) Let us reconsider the passage from torsion theories to radicals. It 

consists of the following steps: 
 

 We recall (see Example 4.1(a)) that torsion theories in an abelian category C 

are defined via the Galois connection determined by the orthogonality relation 

 defined by (0.2). 

 Next, we observe (see Example 4.1(b)) that the same can be done in a slightly 

different way by using two (smaller) orthogonality relations that use mono- 

and epimorphisms instead of all morphisms. 

 When C is not abelian, we choose those two orthogonality relations to be ⨞ 
and -⊳ defined by (0.9) and (0.10), respectively. And the accordingly 

modified notions of torsion and torsion-free classes give us the notions of 

radical and semisimple classes, respectively. Since these ⨞ and -⊳ are 

defined using normal mono- and epimorphisms in the same way as we used 

mono- and epimorphisms before, this does not change anything in the abelian 

case. 
 

(b) Why not using a single orthogonality relation in non-abelian cases? The answer is: 

that approach would not be suitable for the KuroshAmitsur radical theory in general 

(see Remark 0.4(b)). 
 

(c) Since the structure involving two orthogonality relations is relatively complicated, 

many explicit formulations of ‘obvious’ radical-theoretic results are useful. For 

instance, let us mention that (R,S) is a radical-semisimple pair in X if and only if 

 

          R = {X  X  every S  S with X -⊳ S is in Z},                                            (4.12) 

 

          S = {X  X  every R  R with R ⨞ X is in Z}.                                            (4.13) 

 

Note also that the above-mentioned conditions (R1), (R2), (S1), (S2), and so also 

Propositions 4.3 and 4.4, are essentially the same as Observation 0.1 (for rings, but 

similarly in general).  
 

(d) As we see e.g. from Proposition 4.4, alternatively, we could simply use the set  

X \ Z (instead of both X and Z), but that small simplification would become 

inconvenient for considering examples, and also for considering 2- and 3-dimensional 

exactness structures as we plan in subsequent papers. 
 

(e) In the pointed case considered in Section 2, requiring further conditions on the 

ground category C, one obtains various standard results of the theory of 

KuroshAmitsur radicals. This can be done when the category C satisfies any of the 

(essentially equivalent) systems of axioms considered in [MW1982]. As follows from    

the results of [MW1982], this holds for instance if C is Kelly well complete (that is, 

small complete and has arbitrary intersections of subobjects) and semi-abelian in the 

sense of [JMT2002]. 
 

(f) An important special case of the previous item, considered by many authors, is the 

case of C being a variety of groups with multiple operators in the sense P. Higgins 

[H1965]. Although this case is considered in [W1983], most of the material of 

[W1983] is devoted to the more special case of rings; for this and especially for the 

associative case see [GW2004].  
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5. Towards generalized closure operators 
 

In this section we make a simple analysis of Definition 4.2(c) in the situation 

considered in Section 3 under the assumptions of Corollary 3.2 and assuming for 

simplicity that the class M is the “mono-part” of a proper factorization system in a 

category with pullbacks and pushouts (see Remark 3.3). As is shown in [G1992a] and 

can be easily checked directly, we have: 

 

Proposition 5.1. (a) A morphism (f,f  ') : (A,A',a)  (B,B',b) in C1 is a normal 

monomorphism (that is, the kernel of some morphism in the sense of Definition 1.1) if 

and only if f is in M and f  ' is an isomorphism. 
 

(b) A morphism (f,f  ') : (A,A',a)  (B,B',b) in C1 is a normal epimorphism (the 

cokernel of some morphism in the sense of Definition 1.1) if and only if f is an 

isomorphism and f  ' is in M.  

 

Using triples (A,A',a) instead of just morphisms a is of course convenient for working 

with the category C1. But now it is more convenient not to do so, and then, having in 

mind Proposition 5.1, (4.12) and (4.13) become: 

 

Theorem 5.2. Under the assumptions above, two subclasses R and S of M form a 

radical-semisimple pair (R,S) if and only if the following conditions hold for every  

m  M: 
 

(a) m is in R if and only if for every s  S and n  M with m = sn, the morphism s 

must be an isomorphism; 
 

(b) m is in S if and only if for every r  R and n  M with m = nr, the morphism s 

must be an isomorphism.  

 

As Theorem 5.2 shows, the classes R and S have the same properties as the classes of 

dense and closed morphisms with respect to a closure operator, considered in various 

contexts for instance by D. Dikranjan and W. Tholen [DT1995]. This suggests using 

this theorem as a definition of a generalized closure operator. 
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