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Abstract Structural trapping, the most important CO2 geostorage mechanism during the first decades
of a sequestration project, hinges on the traditional assumption that the caprock is strongly water wet.
However, this assumption has not yet been verified; and it is indeed not generally true as we demonstrate
here. Instead, caprock can be weakly water wet or intermediate wet at typical storage conditions; and water
wettability decreases with increasing pressure or temperature. Consequently, a lower storage capacity can
be inferred for structural trapping in such cases.

1. Introduction

Carbon geosequestration (CGS) has been identified as a feasible technology to reduce anthropogenic CO2

emissions and thus mitigate global warming [Lackner, 2003; Intergovernmental Panel on Climate Change,
2005; Orr, 2009]. In CGS, CO2 is captured from large point-source emitters (e.g., coal-fired power stations),
purified, compressed, and injected deep into the subsurface for storage. However, the CO2 is buoyant as it
has a lower density than the resident formation brine and thus flows upward. The primary sequestration
mechanism during the first few decades of a storage project is structural trapping, where a caprock acts as
a seal barrier to the CO2 flow [Armitage et al., 2013; Wollenweber et al., 2010]. Caprock has a low permeability
and associated with that small pores. Because of the small pore sizes (cp. equation (2) below), it is typically
assumed that high capillary forces are created which prevent the CO2 from entering the caprock [e.g., Hesse
et al., 2008]. However, a growing body of research papers suggests that pureminerals are not completely water
wet [e.g. Chiquet et al., 2007; Broseta et al., 2012; Farokhpoor et al., 2013; Saraji et al., 2013; Iglauer et al., 2014;
Sarmadivaleh et al., 2015; Al-Yaseri et al., 2015a, 2015b; Arif et al., 2016], and thus the capillary entry pressure
for CO2 can be dramatically reduced (and consequently also the structural trapping capacity).

However, despite these efforts, there is a serious lack of information in terms of real natural caprock, which is never-
theless most important. We thus tested several selected real caprock samples from a proposed storage site, and
we demonstrate that the structural trapping capacity is significantly reduced at (high pressure) storage conditions.

2. Experimental Procedure
2.1. Caprock Samples

In order to constrain the uncertainty associated with structural trapping capacity predictions to an acceptable
level, we selected eight caprock samples (Table 1) to experimentally evaluate their CO2 wettability. These
samples were retrieved from a proposed CO2 storage site in New South Wales/Australia and thoroughly
characterized [quantitative X-ray diffraction (XRD), total organic content (TOC), scanning electron
microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), thin section petrology, surface roughness,
andmercury (Hg) intrusionmeasurements]. Most samples consistedmainly of quartz (~50–60wt %), substan-
tial amounts of clay (~20wt % illite and chlorite), significant amounts of feldspar, and a few other minerals in
low tomedium concentrations, Table 1. An exception was sample 5, which had a high calcite content (47wt%),
and sample 3, which contained high amounts of illite (33wt%). TOC ranged between 510 and 4400mg/kg,
typical for a deep saline aquifer. The SEM images show that clay (illite, illite-smectite, smectite, or kaolinite)
filled the pore space and thus covered the surface of the grains. This observation is consistent with the
EDS analysis, which mainly detected clay. Thin sections were analyzed for each sample at 40X and 100X mag-
nification (Figure 1), and these results reflected the XRD and SEM-EDS measurements: the samples consisted
mainly of quartz grains of varying size and angularity, with significant amounts of clays present. Several
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Table 1. Geological and Chemical Properties of Caprock Samples Tested

Sample Depth (m) TOC (mg/kg) Chemical Compositiona (wt %) Contact Angle (deg)b
Capillary Threshold
Pressure (MPa)c

CO2 Column
Height (m)d

1-Argillaceous siltstone 1979.00 510 Quartz 54 47 0.82 241.3
Illite 17
Albite 11
Chlorite 9

K-feldspar (microcline) 7
Hematite 2

2-Calcareous sandstone 1746.50 2600 Quartz 56 50 n/a n/a
Ankerite 12
Calcite 9
Illite 7
Albite 6
Chlorite 6
Anhydrite 4

3-Shale 1547.00 810 Illite 33 49 0.40 116.6
Quartz 31
Analcite 15
Albite 9
Chlorite 8
Hematite 4

4-Siltstone 1506.00 2000 Quartz 46 44 1.35 392.8
Analcite 20
Chlorite 12
Illite 12
Albite 9

K-feldspar (microcline) 1
5-Calcareous siltstone 1426.50 4400 Calcite 47 68 3.58 1043.5

Quartz 27
Albite 8

Ankerite 5
Illite 5

Analcite 3
Chlorite 3

K-feldspar (microcline) 2
6-Silty, argillaceous very
fine grained sandstone

1859.75 870 Quartz 64 48 0.25 74.5
Albite 12
Chlorite 11
Illite 10

Hematite 2
Calcite 1

7-Very fine grained clay
bearing sandstone

1865.06 1100 Quartz 62 50 0.24 69.5
Illite 10

Chlorite 10
Calcite 8
Albite 5

Anhydrite 4
Hematite 1

8-Very fine grained clay
bearing sandstone

1872 1600 Quartz 65 48 0.35 103.0
Albite 13
Illite 10

Chlorite 10
Hematite 1
Calcite 1

aMeasured with a Bruker AXS XRD instrument.
bWater receding contact angle.
cEstimate for the conditions at 323 K and 15MPa pore pressure using the Boult et al. [1997] method.
dEstimated from capillary threshold pressures using a capillary force-buoyancy force balance, equation (2).
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samples also contained calcite and dolo-
mite intergranular cements. Quartz over-
growth and intergranular clay formation
were the dominant diagenetic features.

2.2. Experimental Tests

For the CO2-wettability experiments,
cuboid sampleswere cutwith a high-speed
diamond blade (to~0.5 cm×1cm×1cm
dimensions) and each sample was
exposed to air plasma for 5min to remove
surface contaminants (note that this
cleaning step is vital as otherwise the
measurements are highly biased; con-
taminants are essentially all organic mole-
cules present in the laboratory air;
although their concentrations are low,
they can significantly change the contact

angles) [Love et al., 2005; Iglauer et al., 2014]. Importantly, the caprocks contained large amounts (when compared
to molecular layers on a crystal surface) of organic material (TOC ranged from 510 to 4400mg/kg, see above).
During plasma cleaning, however, only the uppermost molecular layers of material are removed [Alam et al.,
2014]. As the caprock contained much more of the organic molecules, these naturally occurring organics were
effectively not removed, and significantly higher contact angles (intermediate wetting) then for pure quartz crys-
tals were measured, see below—thus the natural organic molecules in the caprock were preserved in the best
possible way. Subsequently, the advancing (θa) and receding (θr) water contact angles were measured using
the tilted plate method [Lander et al., 1993] at storage conditions (15MPa, 323K, (20wt% NaCl +1wt%
KCl=4.15M ionic strength) brine). Note that prior to the measurements the surface topography of each sample
wasmeasuredwith an atomic forcemicroscope (AFM, instrumentmodel DSE 95–200), and the surface roughness
was quantified as it can significantly influence θ and typically induces a difference between advancing and reced-
ing θ [Marmur, 2006] (Figure 2). The receding water contact angle θr corresponds to CO2 entering the caprock
and displacing brine and is thus most relevant to structural trapping capacity estimates (see equation (2) below).
Root-mean-square (RMS) surface roughness ranged from 1100 to 1700nm, which is fairly rough when compared
to pure mineral substrates, with the exception of sample 1, which was very smooth (28nm), similar to a geologi-
cal single crystal mineral surface [Sarmadivaleh et al., 2015]. The standard deviation of the measurements was
determined as ±3° based on replicate measurements.

3. Results and Discussion
3.1. Contact Angles

All contact angles measured were quite similar, ~50°, except sample 5 had a higher contact angle (~70°).
The hysteresis between θa and θr was small and insignificant despite significant surface roughness. We

Figure 2. (a) Surface topography (measured with AFM, RMS surface roughness = 1100 nm, sample 7) and (b) brine drop on
caprock sample with advancing (θa) and receding (θr) contact angles indicated.

Figure 1. Selected thin section (clay = C and Q = quartz) image of caprock
sample 6, 100X magnification.
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subsequently measured θ as a func-
tion of pressure at 343 K for samples
3 and 7, Figure 3, as pressure and
temperature are expected to vary
with storage depth [Dake, 1978].
Both caprock samples showed a
similar CO2-wettability behavior: θ
increased dramatically with pressure
and reached ~70° at 20MPa. Such
a trend has also been observed for
clean silica surfaces [Chiquet et al.,
2007; Jung and Wan, 2012; Saraji
et al., 2013; Iglauer et al., 2014;
Sarmadivaleh et al., 2015; Al-Yaseri
et al., 2015a, 2015b] and oil-wet
surfaces [Chi et al., 1988; Dickson
et al., 2006; Li et al., 2007; Yang
et al., 2008]. Theoretical molecular
dynamics predictions associate this
effect with stronger CO2-rock intermo-

lecular interactions (which rise with pressure) [Iglauer et al., 2012a]. An increase in temperature by 20K (from
323K to 343K) increased θ by ~15°, a significant increase. Although this is consistent with what has been
observed on quartz by some researchers [Saraji et al., 2013; Sarmadivaleh et al., 2015], it is inconsistent with
Wang et al.’s [2013] and Farokhpoor et al.’s [2013] measurements where no temperature influence was observed
and with Iglauer et al.’s [2012a] molecular dynamics predictions (note that in the molecular dynamics work, fully
coordinated surfaces were investigated which are not fully representative of subsurface conditions). θ was signif-
icantly higher on the caprocks than on clean quartz [e.g., compare Chiquet et al., 2007; Farokhpoor et al., 2013;
Saraji et al., 2013; Iglauer et al., 2014; Sarmadivaleh et al., 2015; Al-Yaseri et al., 2015a, 2015b] or calcite
[Farokhpoor et al., 2013], consistent with microcomputed tomography measurements [Chaudhary et al., 2015];
this is probably due to the presence of organic material in the caprock. This conclusion is based on the fact that
high water contact angles were measured on oil-wet substrates [e.g., Dickson et al., 2006; Li et al., 2007; Espinoza
and Santamarina, 2010], compare the summary provided by Iglauer et al. [2015]. Hysteresis was small for sample
7, while a ~10° lower θr wasmeasured for sample 3, which is probably due to its higher chemical heterogeneity as
surface roughness of both samples were similar (1100nm versus 1300nm). The samples were thus weakly water
wet or intermediate wet. This implies significantly lower structural trapping capacities [Iglauer et al., 2015].

3.2. CO2 Drainage Behavior

CO2 drainage curves (Figure 4)—
which characterize how CO2 dis-
places brine from the caprock—were
obtained by scaling mercury intru-
sion data (equation (1)):

P CO2ð Þ ¼ P Hgð Þγ CO2ð Þ cosθ CO2ð Þ
γ Hgð Þ cosθ Hgð Þ ;

(1)

where P(CO2) is the CO2 (drainage
or capillary) pressure, P(Hg) is the
mercury intrusion pressure, γ(CO2)
is the CO2-brine interfacial tension
(40mN/m, taken from Li et al.
[2012]), γ(Hg) is the mercury-air inter-
facial tension (480mN/m; Tiab and
Donaldson [2004]), cosθ(CO2) is the

Figure 4. Supercritical CO2 Primary Drainage Capillary Pressure Curves for the
Caprock Samples Tested.

Figure 3. Advancing and receding water contact angles on caprock
samples 3 and 7 as a function of pressure (measured at 343 K in (20 wt %
NaCl + 1 wt % KCl) brine).
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CO2-brine-rock contact angle (measured here, cp. Figure 3), and cosθ(Hg) is the mercury-air-rock contact
angle (140°) [Tiab and Donaldson, 2004].

From these capillary pressure curves, the threshold pressures (pt)—which correspond to the percolation
threshold [Thompson et al., 1987]—can be extracted. The threshold pressures extracted for the tested
caprock samples varied substantially, between 0.2 and 3.6MPa (Table 1), which is a significant variation
and implies that a broad range of storage capacities can be expected (cp. equation (2) and Table 1). Please
note that these are approximate estimates, as the extracted values depend on the method used to determine
the threshold pressure (we used the method proposed by Boult et al. [1997], where a tangent through the
drainage curve plateau is extrapolated to the pressure axis).

4. Conclusions and Implications

There is a serious lack of information regarding the CO2 wettability of caprock despite its vital role for struc-
tural trapping capacity and containment security predictions. We thus measured CO2 wettability of eight real
natural caprock samples extracted from a proposed storage site in New South Wales in Australia. Our results
demonstrate that the traditional assumption that a caprock for a brine-CO2 system is completely water wet
may not be true; instead, at reservoir conditions, the wettability of a caprock can reach up to 70°, implying a
dramatically reduced sealing efficiency. Using the threshold pressures, equation (2) below [Dake, 1978],
(capillary force-buoyancy force equilibrium) and assuming Δ ρ=350 kg/m3 as a typical value for the fluid
density difference [Iglauer et al., 2015], we were able to predict maximum CO2 column heights, which varied
substantially, between ~70 and 1000m. This implies that structural trapping is a feasible storage mechanism.

h ¼ pt
Δ ρg

¼ 2γ cosθ
Δρgr

; (2)

where h is the CO2 column height which can be permanently immobilized beneath a caprock, pt is the
threshold pressure of the caprock, γ is the CO2-brine interfacial tension, θ is the brine-CO2-rock contact angle,
Δρ is the CO2-brine density difference, g is the gravitational constant, and r is the average pore throat radius
of the caprock material. While equation (2) assumes a fully connected CO2 ganglion spanning the length h
as per Archimedes’ principle, such connection, however, is difficult if not impossible to observe at the scale
of tens to hundreds of meters. Hence, we must base our prediction on the experimental data and the best
theory available. In this context, such large CO2 clusters—which span essentially over the whole observed
volume—have been measured with X-ray microcomputed tomography [e.g., Iglauer et al., 2011; Andrew
et al., 2013] (note that “large” here means several millimeters as this is the limit for microtomography).
Invasion percolation theory then predicts a cluster size distribution, which follows a power law (as confirmed
by many experiments: Iglauer et al. [2010, 2011, 2012b, 2013], Georgiadis et al. [2013], Andrews et al. [2013],
Geistlinger and Mohammadian [2015], etc.), which means that there are many small ganglia and only very
few large ganglia. But (1) the large ganglia contribute most to the saturation, and (2) there are very large
ganglia (although only very few of them) spanning through the whole volume, even if this volume is very
large, and even for residual CO2 clusters. Invasion percolation theory also predicts that the maximum CO2

cluster volume Smax (= largest ganglion size) scales as

Smax ¼ Sporesn
D; (3)

where Spores is the volume of a typical pore, n is the number of pores across the sample, and D is the fractal
dimension (normally = 2.5) [Wilkinson and Willemsen, 1983; Dias and Wilkinson, 1986; Iglauer et al., 2010].

In summary, importantly, structural trapping capacities are significantly reduced (when compared to comple-
tely water wet caprock) by a factor of cos θ = cos(50°)≈ 0.64 at ~1500m storage depth or cos (70°)≈ 0.34 at
~2000m storage depth. These data need to be incorporated into reservoir simulators in order to obtain
reliable predictions and to guarantee containment security.
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