Every point is critical

Imre Bárány, Jin-ichi Itoh, Costin Vîlcu and Tudor Zamfirescu

May 20, 2008

Abstract

We show that, for any compact Alexandrov surface S and any point y in S, there exists a point x in S for which y is a critical point. Moreover, we prove that uniqueness characterizes the surfaces homeomorphic to the sphere among smooth orientable surfaces.

Math. Subj. Classification (2000): 53C45

Introduction. In this paper, by surface we always mean a compact Alexandrov surface with curvature bounded below and without boundary, as defined for example in [1]. It is known that our surfaces are topological manifolds. Let \mathcal{A} be the space of all surfaces.

For any surface S, denote by ρ its intrinsic metric, and by ρ_{x} the distance function from x, given by $\rho_{x}(y)=\rho(x, y)$. A point $y \in S$ is called critical with respect to ρ_{x} (or to x), if for any direction v of S at y there exists a segment (i.e., a shortest path) from y to x whose direction at y makes an angle $\alpha \leq \pi / 2$ with v. For the definition of a direction in Alexandrov surfaces, see again [1].

The survey [2] by K. Grove presents the principles, as well as applications, of the critical point theory for distance functions.

For any point x in S, denote by Q_{x} the set of all critical points with respect to x, and by Q_{x}^{-1} the set of all points $y \in S$ with $x \in Q_{y}$. Let M_{x}, F_{x} be the sets of all relative, respectively absolute, maxima of ρ_{x}. For properties of Q_{x} and its subsets M_{x} and F_{x} in Alexandrov spaces, see [3], [7], and the survey [5].

Our Theorem 1 establishes that $\operatorname{card} Q_{y}^{-1} \geq 1$ for any point y on any surface S. This lower bound is sharp, as Theorem 2 shows. We apply it to prove a Corollary, which characterizes the smooth orientable surfaces homeomorphic to the sphere.

In a forthcoming paper [4], we provide for orientable surfaces an upper bound for $\operatorname{card} Q_{y}^{-1}$ depending on the genus, and use it to estimate the cardinality of diametrally opposite sets on S. The case of points y in orientable Alexandrov surfaces, which are common maxima of several distance functions, is treated in [6].

We denote by T_{x} the space of directions at $x \in S$; the length λT_{x} of T_{x} satisfies $\lambda T_{x} \leq 2 \pi$. If $\lambda T_{x}=2 \pi$ then x is called smooth, otherwise a conical point of S.

There might exist a direction $\tau \in T_{x}$ such that no segment starts at x in direction τ. On most convex surfaces, the set of such directions τ, called singular, is even residual in T_{x}, for each x (see Theorem 2 in [8]). However, the set of non-singular directions is always dense in T_{x}. For those τ, for which there is a geodesic Γ with
direction τ at x, a so-called cut point $c(\tau)$ is associated, defined by the requirement that the arc $x c(\tau) \subset \Gamma$ is a segment which cannot be extended further beyond $c(\tau)$. The set of all these cut points is the cut locus $C(x)$ of the point x.

It is known that $C(x)$, if it is not a single point, is a local tree (i.e., each of its points z has a neighbourhood V in S such that the component $K_{z}(V)$ of z in $C(x) \cap V$ is a tree), even a tree if S is homeomorphic to the sphere. Theorem 4 in [9] and Theorem 1 in [8] yield the existence of surfaces S on which the set of all extremities of any cut locus is residual in S. It is, however, known that $C(x)$ has an at most countable set $C_{3}(x)$ of ramification points.

If S is not a topological sphere, the cyclic part of $C(x)$ is the minimal (with respect to inclusion) subset $C^{c p}(x)$ of $C(x)$, whose removal from S produces a topological (open) disk. It is easily seen that $C^{c p}(x)$ is a local tree with finitely many ramification points and no extremities. Let $C_{3}^{c p}(x)$ be the set of points of degree at least 3 in $C^{c p}(x)$. We stress that the degree is not taken in $C(x)$, but in $C^{c p}(x)$.

Recall that a tree is a set T any two points of which can be joined by a unique Jordan arc included in T. The degree of a point y of a local tree is the number of components of $K_{y}(V) \backslash\{y\}$ if the neighbourhood V of y is chosen such that $K_{y}(V)$ is a tree. A point y of the local tree T is called an extremity of T if it has degree 1, and a ramification point of T if it has degree at least 3 .

Results. Every point on a surface admits a critical point. It suffices, indeed, to take a point farthest from it. Conversely, is it true that every point is a critical point of some other point? Certainly, not every point on every surface is a farthest point from some other point!

Theorem 1 Every point on every surface is critical with respect to some point of the surface.

Proof. Let $S \in \mathcal{A}$ and $y \in S$. We will identify here T_{y} with a Euclidean circle of centre $\mathbf{0}$ and length $\lambda T_{y} \leq 2 \pi$.

Case 1. S is homeomorphic to S^{2}.
If $C(y)$ is a single point, the conclusion is true. Suppose $C(y)$ is not a point, but remember it is a tree.

Let $x \in C(y)$. If all components of $T_{y} \backslash c^{-1}(x)$ have length at most π, then $y \in Q_{x}$. Suppose one component, A, has length $\lambda A>\pi$. For any non-singular $\tau \in A, c^{-1}(c(\tau)) \subset A$; let B_{τ} be the shortest subarc of A including $c^{-1}(c(\tau))$ (possibly reduced to $\{\tau\}$). Take the midpoint τ_{0} of A. Then $\mathbf{0} \in \operatorname{conv} c^{-1}\left(c\left(\tau_{0}\right)\right)$, or $B_{\tau_{0}}=\left\{\tau_{0}\right\}$ (and $c\left(\tau_{0}\right)$ is an extremity of $\left.C(y)\right)$, or $0<\lambda B_{\tau_{0}}<\pi$, or else $c\left(\tau_{0}\right)$ is not defined.

In the first three cases, let $x^{\prime}=c\left(\tau_{0}\right)$. In the fourth case, there is a point $x^{\prime} \in C(y)$ close to y with the whole set $c^{-1}\left(x^{\prime}\right)$ close to τ_{0} and containing points on both sides of τ_{0}.

In the first case, $y \in Q_{x^{\prime}}$. In the last three cases, there is a single Jordan arc $J \subset C(y)$ from x to x^{\prime}. The multivalued mapping $z \mapsto c^{-1}(z)$ defined on J is upper semicontinuous. Since, for $z \in J \backslash C_{3}(y)$ close to x and $\tau \in c^{-1}(z), \lambda B_{\tau}>\pi$, and,
for $z \in J \backslash C_{3}(y)$ close to x^{\prime}, and $\tau \in c^{-1}(z), \lambda B_{\tau}<\pi$, there is a point $z_{0} \in J$ for which $\mathbf{0} \in \operatorname{conv}^{-1}\left(z_{0}\right)$. Hence $y \in Q_{z_{0}}$.

Case 2. S is not homeomorphic to S^{2}.
Consider a point $x \in C_{3}^{c p}(y)$, and a direction $\alpha \in c^{-1}(x)$.
Let $\alpha_{-} \alpha_{+} \subset T_{y}$ be the maximal arc containing α such that, for each non-singular $\tau \in \alpha_{-} \alpha_{+}$, either $c(\tau) \notin C^{c p}(y)$ or $c(\tau)=x$. (The indices,-+ are taken according to a certain orientation of T_{y}.) Of course, $\alpha_{-} \alpha_{+}$may be reduced to the singleton $\{\alpha\}$. For each x we have finitely many arcs of type $\alpha_{-} \alpha_{+}$.

Let $\tau \in c^{-1}\left(C^{c p}(y)\right) \backslash c^{-1}\left(C_{3}^{c p}(y)\right)$ converge to $\alpha_{-}-\left(\right.$resp. $\alpha_{+}+$). Then the point $g(\tau)$ of $c^{-1}(c(\tau))$ different from τ converges to some point α^{-}(resp. α^{+}), both in $c^{-1}(x)$.

Join by line-segments α^{-}to α_{-}, α_{-}to α_{+}, and α_{+}to α^{+}. Repeating this for all directions in $c^{-1}(x)$, we obtain a cycle whose edges are the line-segments $\overline{\alpha^{-} \alpha_{-}}$, $\overline{\alpha_{-} \alpha_{+}}, \overline{\alpha_{+} \alpha^{+}}$and all their analogs. And repeating the procedure for all $x \in C_{3}^{c p}(y)$, we obtain a graph, which is finite because S, being compact, has finite genus.

Let $\alpha_{-} \alpha_{+} \subset T_{y}$ be as defined above, and $\beta_{-} \beta_{+}$an analogous arc, the two graph vertices α_{+}, β_{-}being consecutive on T_{y}. Then α^{+}and β^{-}are consecutive too, and we consider the cycle $\alpha_{+} \beta_{-} \beta^{-} \alpha^{+}$, with edges $\alpha_{+} \beta_{-}, \overline{\beta_{-} \beta^{-}}, \beta^{-} \alpha^{+}, \overline{\alpha^{+} \alpha_{+}}$, and all analogous cycles, in addition to the previous ones.

Moreover, consider the cycle formed by the arc $\alpha_{-} \alpha_{+}$and the line-segment $\overline{\alpha_{+} \alpha_{-}}$, plus all analogous cycles.

Let C_{1}, \ldots, C_{n} be all these cycles.
If $\mathbf{0} \in \cup_{j=1}^{n} C_{j}$, then $\mathbf{0}$ belongs to one of the line-segments, whence $c^{-1}(x)$ contains, for some $x \in C_{3}^{c p}(y)$, two diametrally opposite points of T_{y}, and we are done.

If not, consider the winding number $w\left(C_{j}\right)=w\left(\mathbf{0}, C_{j}\right)$ of every cycle C_{j} with respect to $\mathbf{0}$. We have

$$
\sum_{i=1}^{n} w\left(C_{i}\right)=w\left(\sum_{i=1}^{n} C_{i}\right)=w\left(T_{y}\right)=1 \quad(\bmod 2)
$$

irrespective of the orientations, because each edge not in T_{y} is used exactly twice. This shows that $w\left(C_{i}\right) \neq 0$ for some cycle C_{i}.

If this cycle C_{i} is a cycle $\alpha_{+} \beta_{-} \beta^{-} \alpha^{+}$with $\alpha_{+} \beta_{-}$and $\beta^{-} \alpha^{+}$of the same orientation on T_{y}, then the proof parallels that of Case $1\left(\tau \in \alpha_{+} \beta_{-}\right.$and $g(\tau) \in \alpha^{+} \beta^{-}$move in contrary directions).

If C_{i} is a cycle $\alpha_{+} \beta_{-} \beta^{-} \alpha^{+}$with $\alpha_{+} \beta_{-}$and $\beta^{-} \alpha^{+}$of contrary orientations on T_{y}, then τ and $g(\tau)$ move in the same direction, but $\mathbf{0}$ lies on different sides of $\tau g(\tau)$ for $\tau=\alpha_{+}$and $\tau=\beta_{-}$; this and the argument of Case 1 yield the conclusion.

If C_{i} is a cycle $\alpha_{-} \alpha_{+} \cup \overline{\alpha_{+} \alpha_{-}}$, then the proof again parallels that of Case 1.
Finally, if C_{i} is ones of the other cycles (with all edges line-segments), $w\left(C_{i}\right) \neq 0$ means that $\mathbf{0}$ is surrounded by C_{i}, which is impossible if $\mathbf{0} \notin \operatorname{conv} C_{i}$. By construction, $\operatorname{conv} C_{i}=\operatorname{conv} c^{-1}(x)$ for some $x \in C_{3}^{c p}(y)$. The proof is complete.

The following result shows that in general one cannot hope for a better lower bound. It extends Theorem 3 in [7] and admits a similar proof, which will therefore be omitted.

Theorem 2 Assume $S \in \mathcal{A}, y \in S$ is smooth, and $x \in Q_{y}^{-1}$ is such that the union U of two segments from x to y separates S. If a component $S^{\prime \prime}$ of $S \backslash U$ contains no segment from x to y then $Q_{y}^{-1} \cap S^{\prime}=\emptyset$. In particular, if the union of any two segments from x to y separates S then $Q_{y}^{-1}=\{x\}$.

Corollary A smooth orientable surface S is homeomorphic to the sphere S^{2} if and only if each point in S is critical with respect to precisely one other point of S.

Proof. If S is homeomorphic to the sphere S^{2} then $\operatorname{card} Q_{y}^{-1}=1$ for any point y in S, by Theorems 1 and 2 .

Next we show that every orientable surface non-homeomorphic to S^{2} contains a point y with $\operatorname{card} Q_{y}^{-1}>1$.

To see this, let Ω denote a shortest simple closed curve which does not separate S. Then Ω is a closed geodesic. Moreover, for any of its points z, Ω is the union of two segments of length $\lambda \Omega / 2$ starting at z and ending at z_{Ω}. Consider the family \mathcal{C} of all simple closed not contractible curves C which cut Ω at precisely one point, such that Ω separates C locally at $\Omega \cap C$. Then clearly $\mathcal{C} \neq \emptyset$, by the choice of Ω. Let Ω^{\prime} be a shortest curve in \mathcal{C}; it is a closed geodesic too. Moreover, by the definition of \mathcal{C} and by the choice of Ω^{\prime}, the latter is the union of two segments starting at $\{y\}=\Omega \cap \Omega^{\prime}$ and ending at $y_{\Omega^{\prime}}$. It follows that Q_{y}^{-1} contains at least two points, y_{Ω} and $y_{\Omega^{\prime}}$.

Open question. Every orientable surface of genus $g>0$ possesses points x, y such that y is critical with respect to x and two segments from y to x have opposite directions at y (see the proof of the Corollary). Is the same true for all surfaces homeomorphic to the sphere? Or, at least, if \mathcal{A}_{0} denotes the space of all Alexandrov surfaces homeomorphic to the sphere, endowed with the Hausdorff-Gromov metric, is there a dense set in \mathcal{A}_{0} with the above property? For a similar - still open problem concerning convex surfaces, see [10].

Acknowledgement C. Vîlcu and T. Zamfirescu gratefully acknowledge partial support by JSPS and by the grant 2-Cex 06-11-22/2006 of the Romanian Government.

References

[1] Y. Burago, M. Gromov and G. Perelman, A. D. Alexandrov spaces with curvature bounded below, Russian Math. Surveys 47 (1992), 1-58
[2] K. Grove, Critical point theory for distance functions, Amer. Math. Soc. Proc. of Symposia in Pure Mathematics, vol. 54 (1993), 357-385
[3] K. Grove and P. Petersen, A radius sphere theorem, Inventiones Math. 112 (1993), 577-583
[4] J. Itoh, C. Vîlcu and T. Zamfirescu, With respect to whom are you critical?, to appear
[5] C. Vîlcu, Properties of the farthest point mapping on convex surfaces, Rev. Roumaine Math. Pures Appl. 51 (2006), 125-134
[6] C. Vîlcu, Common maxima of distance functions on orientable Alexandrov surfaces, J. Math. Soc. Japan 60 (2008), 5164
[7] C. Vîlcu and T. Zamfirescu, Multiple farthest points on Alexandrov surfaces, Adv. Geom. 7 (2007), 83-100
[8] T. Zamfirescu, Many endpoints and few interior points of geodesics, Inventiones Math. 69 (1982), 253-257
[9] T. Zamfirescu, On the cut locus in Alexandrov spaces and applications to convex surfaces, Pacific J. Math. 217 (2004), 375-386
[10] T. Zamfirescu, Extreme points of the distance function on convex surfaces, Trans. Amer. Math. Soc. 350 (1998), 1395-1406

Imre Bárány
Rényi Institute of Mathematics, Hungarian Academy of Sciences
POB 127, 1364 Budapest, Hungary
barany@renyi.hu
and
Department of Mathematics, University College London, Gower Street, London WC1E6BT, England

Jin-ichi Itoh
Faculty of Education, Kumamoto University
Kumamoto 860-8555, Japan
j-itoh@gpo.kumamoto-u.ac.jp
Costin Vîlcu
Institute of Mathematics "Simion Stoilow" of the Romanian Academy
P.O. Box 1-764, Bucharest 014700, Romania

Costin.Vilcu@imar.ro
Tudor Zamfirescu
Fachbereich Mathematik, Universität Dortmund
44221 Dortmund, Germany
tudor.zamfirescu@mathematik.uni-dortmund.de
and
Institute of Mathematics "Simion Stoilow" of the Romanian Academy

