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Abstract. We show that, for any compact Alexandrov surface S and any point y in S,
there exists a point x in S for which y is a critical point. Moreover, we prove that unique-
ness characterizes the surfaces homeomorphic to the sphere among smooth orientable
surfaces.
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Introduction. In this paper, by surface we always mean a compact Alexandrov
surface with curvature bounded below and without boundary, as defined for example
in [1]. It is known that our surfaces are topological manifolds. Let A be the space
of all surfaces.

For any surface S, denote by ρ its intrinsic metric, and by ρx the distance function
from x, given by ρx(y) = ρ(x, y). A point y ∈ S is called critical with respect to ρx

(or to x), if for any direction v of S at y there exists a segment (i.e., a shortest path)
from y to x whose direction at y makes an angle α ≤ π/2 with v. For the definition
of a direction in Alexandrov surfaces, see again [1].

The survey [2] by K. Grove presents the principles, as well as applications, of
the critical point theory for distance functions.

For any point x in S, denote by Qx the set of all critical points with respect to
x, and by Q−1

x the set of all points y ∈ S with x ∈ Qy. Let Mx, Fx be the sets of all
relative, respectively absolute, maxima of ρx. For properties of Qx and its subsets
Mx and Fx in Alexandrov spaces, see [3], [7], and the survey [5].

Our Theorem 1 establishes that cardQ−1
y ≥ 1 for any point y on any surface S.

This lower bound is sharp, as Theorem 2 shows. We apply it to prove a Corollary,
which characterizes the smooth orientable surfaces homeomorphic to the sphere.

In a forthcoming paper [4], we provide for orientable surfaces an upper bound for
cardQ−1

y depending on the genus, and use it to estimate the cardinality of diametrally
opposite sets on S. The case of points y in orientable Alexandrov surfaces, which
are common maxima of several distance functions, is treated in [6].

We denote by Tx the space of directions at x ∈ S; the length λTx of Tx satisfies
λTx ≤ 2π. If λTx = 2π then x is called smooth, otherwise a conical point of S.

There might exist a direction τ ∈ Tx such that no segment starts at x in direction
τ . On most convex surfaces, the set of such directions τ , called singular, is even
residual in Tx, for each x (see Theorem 2 in [8]). However, the set of non-singular
directions is always dense in Tx. For those τ , for which there is a geodesic Γ with
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direction τ at x, a so-called cut point c(τ) is associated, defined by the requirement
that the arc xc(τ) ⊂ Γ is a segment which cannot be extended further beyond c(τ).
The set of all these cut points is the cut locus C(x) of the point x.

It is known that C(x), if it is not a single point, is a local tree (i.e., each of
its points z has a neighbourhood V in S such that the component Kz(V ) of z in
C(x) ∩ V is a tree), even a tree if S is homeomorphic to the sphere. Theorem 4 in
[9] and Theorem 1 in [8] yield the existence of surfaces S on which the set of all
extremities of any cut locus is residual in S. It is, however, known that C(x) has an
at most countable set C3(x) of ramification points.

If S is not a topological sphere, the cyclic part of C(x) is the minimal (with
respect to inclusion) subset Ccp(x) of C(x), whose removal from S produces a topo-
logical (open) disk. It is easily seen that Ccp(x) is a local tree with finitely many
ramification points and no extremities. Let Ccp

3 (x) be the set of points of degree at
least 3 in Ccp(x). We stress that the degree is not taken in C(x), but in Ccp(x).

Recall that a tree is a set T any two points of which can be joined by a unique
Jordan arc included in T . The degree of a point y of a local tree is the number of
components of Ky(V ) \ {y} if the neighbourhood V of y is chosen such that Ky(V )
is a tree. A point y of the local tree T is called an extremity of T if it has degree 1,
and a ramification point of T if it has degree at least 3.

Results. Every point on a surface admits a critical point. It suffices, indeed, to
take a point farthest from it. Conversely, is it true that every point is a critical
point of some other point? Certainly, not every point on every surface is a farthest
point from some other point!

Theorem 1 Every point on every surface is critical with respect to some point of
the surface.

Proof. Let S ∈ A and y ∈ S. We will identify here Ty with a Euclidean circle of
centre 0 and length λTy ≤ 2π.

Case 1. S is homeomorphic to S2.
If C(y) is a single point, the conclusion is true. Suppose C(y) is not a point, but

remember it is a tree.
Let x ∈ C(y). If all components of Ty \ c−1(x) have length at most π, then

y ∈ Qx. Suppose one component, A, has length λA > π. For any non-singular
τ ∈ A, c−1 (c(τ)) ⊂ A; let Bτ be the shortest subarc of A including c−1 (c(τ))
(possibly reduced to {τ}). Take the midpoint τ0 of A. Then 0 ∈ convc−1 (c(τ0)), or
Bτ0 = {τ0} (and c(τ0) is an extremity of C(y)), or 0 < λBτ0 < π, or else c(τ0) is not
defined.

In the first three cases, let x′ = c(τ0). In the fourth case, there is a point
x′ ∈ C(y) close to y with the whole set c−1(x′) close to τ0 and containing points on
both sides of τ0.

In the first case, y ∈ Qx′ . In the last three cases, there is a single Jordan arc
J ⊂ C(y) from x to x′. The multivalued mapping z 7→ c−1(z) defined on J is upper
semicontinuous. Since, for z ∈ J \ C3(y) close to x and τ ∈ c−1(z), λBτ > π, and,
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for z ∈ J \ C3(y) close to x′, and τ ∈ c−1(z), λBτ < π, there is a point z0 ∈ J for
which 0 ∈ convc−1(z0). Hence y ∈ Qz0 .

Case 2. S is not homeomorphic to S2.
Consider a point x ∈ Ccp

3 (y), and a direction α ∈ c−1(x).
Let α−α+ ⊂ Ty be the maximal arc containing α such that, for each non-singular

τ ∈ α−α+, either c(τ) /∈ Ccp(y) or c(τ) = x. (The indices −, + are taken according
to a certain orientation of Ty.) Of course, α−α+ may be reduced to the singleton
{α}. For each x we have finitely many arcs of type α−α+.

Let τ ∈ c−1 (Ccp(y))\c−1 (Ccp
3 (y)) converge to α−− (resp. α++). Then the point

g(τ) of c−1(c(τ)) different from τ converges to some point α− (resp. α+), both in
c−1(x).

Join by line-segments α− to α−, α− to α+, and α+ to α+. Repeating this for
all directions in c−1(x), we obtain a cycle whose edges are the line-segments α−α−,
α−α+, α+α+ and all their analogs. And repeating the procedure for all x ∈ Ccp

3 (y),
we obtain a graph, which is finite because S, being compact, has finite genus.

Let α−α+ ⊂ Ty be as defined above, and β−β+ an analogous arc, the two graph
vertices α+, β− being consecutive on Ty. Then α+ and β− are consecutive too, and
we consider the cycle α+β−β−α+, with edges α+β−, β−β−, β−α+, α+α+, and all
analogous cycles, in addition to the previous ones.

Moreover, consider the cycle formed by the arc α−α+ and the line-segment α+α−,
plus all analogous cycles.

Let C1, ..., Cn be all these cycles.
If 0 ∈ ∪n

j=1Cj, then 0 belongs to one of the line-segments, whence c−1(x) contains,
for some x ∈ Ccp

3 (y), two diametrally opposite points of Ty, and we are done.
If not, consider the winding number w(Cj) = w(0, Cj) of every cycle Cj with

respect to 0. We have

n∑

i=1

w (Ci) = w

(
n∑

i=1

Ci

)
= w (Ty) = 1 (mod 2),

irrespective of the orientations, because each edge not in Ty is used exactly twice.
This shows that w(Ci) 6= 0 for some cycle Ci.

If this cycle Ci is a cycle α+β−β−α+ with α+β− and β−α+ of the same orientation
on Ty, then the proof parallels that of Case 1 (τ ∈ α+β− and g(τ) ∈ α+β− move in
contrary directions).

If Ci is a cycle α+β−β−α+ with α+β− and β−α+ of contrary orientations on Ty,
then τ and g(τ) move in the same direction, but 0 lies on different sides of τg(τ)
for τ = α+ and τ = β−; this and the argument of Case 1 yield the conclusion.

If Ci is a cycle α−α+ ∪ α+α−, then the proof again parallels that of Case 1.
Finally, if Ci is ones of the other cycles (with all edges line-segments), w(Ci) 6= 0

means that 0 is surrounded by Ci, which is impossible if 0 /∈ convCi. By construc-
tion, convCi = convc−1(x) for some x ∈ Ccp

3 (y). The proof is complete.

The following result shows that in general one cannot hope for a better lower
bound. It extends Theorem 3 in [7] and admits a similar proof, which will therefore
be omitted.
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Theorem 2 Assume S ∈ A, y ∈ S is smooth, and x ∈ Q−1
y is such that the union

U of two segments from x to y separates S. If a component S ′ of S \ U contains
no segment from x to y then Q−1

y ∩ S ′ = ∅. In particular, if the union of any two
segments from x to y separates S then Q−1

y = {x}.

Corollary A smooth orientable surface S is homeomorphic to the sphere S2 if and
only if each point in S is critical with respect to precisely one other point of S.

Proof. If S is homeomorphic to the sphere S2 then cardQ−1
y = 1 for any point y

in S, by Theorems 1 and 2.
Next we show that every orientable surface non-homeomorphic to S2 contains a

point y with cardQ−1
y > 1.

To see this, let Ω denote a shortest simple closed curve which does not separate
S. Then Ω is a closed geodesic. Moreover, for any of its points z, Ω is the union of
two segments of length λΩ/2 starting at z and ending at zΩ. Consider the family
C of all simple closed not contractible curves C which cut Ω at precisely one point,
such that Ω separates C locally at Ω∩C. Then clearly C 6= ∅, by the choice of Ω. Let
Ω′ be a shortest curve in C; it is a closed geodesic too. Moreover, by the definition
of C and by the choice of Ω′, the latter is the union of two segments starting at
{y} = Ω∩Ω′ and ending at yΩ′ . It follows that Q−1

y contains at least two points, yΩ

and yΩ′ .

Open question. Every orientable surface of genus g > 0 possesses points x, y
such that y is critical with respect to x and two segments from y to x have opposite
directions at y (see the proof of the Corollary). Is the same true for all surfaces
homeomorphic to the sphere? Or, at least, if A0 denotes the space of all Alexandrov
surfaces homeomorphic to the sphere, endowed with the Hausdorff-Gromov metric,
is there a dense set in A0 with the above property? For a similar – still open –
problem concerning convex surfaces, see [10].
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