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Abstract

An operator convex function on (0,∞) which satisfies the symmetry condition k(x−1) =
xk(x) can be used to define a type of non-commutative multiplication by a positive definite
matrix (or its inverse) using the primitive concepts of left and right multiplication and
the functional calculus. The operators for the inverse can be used to define quadratic
forms associated with Riemannian metrics which contract under the action of completely
positive trace-preserving maps.

We study the question of when these operators define maps which are also completely
positive (CP). Although A 7→ D−1/2AD−1/2 is the only case for which both the map and
its inverse are CP, there are several well-known one parameter families for which either
the map or its inverse is CP. We present a complete analysis of the behavior of these
families, as well as the behavior of lines connecting an extreme point with the smallest
one and some results for geometric bridges between these points.

Our primary tool is an order relation based on the concept of positive definite func-
tions. Although some results can be obtained from known properties, we also prove
new results based on the positivity of the Fourier transforms of certain functions. Con-
crete computations of certain Fourier transforms not only yield new examples of positive
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definite functions, but also examples in the much stronger class of infinitely divisible
functions.
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1 Introduction

On a commutative algebra the operations of multiplication and “division” by elements of
the positive cone take the positive cone into itself. However, this is not the case for non-
commutative algebras, on which these operations are not even uniquely defined.

Various non-commutative versions of multiplication and division (i.e., multiplication by
the inverse) by elements of the cone of positive definite matrices or operators correspond to
maps on matrix algebras, and some of these maps play an important role in many contexts.
For D > 0, some naive definitions of multiplication by the inverse are given by the maps
X 7→ D−1/2XD−1/2, X 7→ D−1X and X 7→ XD−1. The first maps the cone of positive
operators to itself, while the other two do not even preserve self-adjointness. There are many
other possible generalizations of multiplication by D−1. In Section 4 we consider several
different one parameter families of such maps.

Perhaps, the best known example is

ΩD(X) =

∫ ∞
0

(D + tI)−1X(D + tI)−1 dt , (1.1)

which gives a well-defined (and highly symmetric) notion of non-commutative multiplication
by D−1. Its inverse is well-known to be

Ω−1
D (Y ) =

∫ 1

0
Dt Y D1−t dt (1.2)

which is a form of non-commutative multiplication by D. The quadratic form TrA∗Ω−1
D (B)

is known as the Bogoliubov or Kubo-Mori inner product. Although the inverse relationship
between (1.2) and (1.1) is well-known, and follows from more general results given later, we
include an explicit proof in Appendix C.2.

We consider here a class of such maps which arise in quantum information theory, in the
context of what are known as monotone Riemannian metrics [45, 33].

We study the question of which maps within this class have the property known as com-
pletely positivity defined in Section 2.3. The map in (1.1) has this property, but its inverse
(1.2) does not.

3



This question was motivated by an observation in [33, 54] about bounds on the contrac-
tion of monotone metrics under the action of completely positive trace-preserving (CPT)
maps which are also known as quantum channels in view of their important role as noise
models in quantum information theory. These bounds are discussed briefly in Section 2.4
and Appendix B.

This paper is organized as follows. Section 2 describes the various concepts we need and
introduces the notations we will use. Section 2.4 contains a brief summary of the background
and motivation behind this work. In Section 3 we present some powerful tools we will use
formulated in terms of positive kernels, and a closely related partial order. In Section 4 we
present a large number of examples of one parameter families of functions which provide a
number of inequivalent classes of maps used to define non-commutative multiplication by
the inverse of a positive matrix. In most cases, we can also provide precise ranges for which
these maps or their inverses are CP. Section 5 proves new results about positive kernels based
on Fourier transforms, which are needed to prove some of our results. These results are of
interest in their own right. In Section 6 we complete the proofs of those results stated in
Section 4 which require the results of Section 5.

There are also three appendices. The first contains the detailed proof of the integral
representation needed in Section 2.1. The second gives more details about the motivation in
terms of contraction under CPT maps of the Riemannian metrics associated with our maps.
Finally, for the benefit of non-experts, we present some very pedestrian arguments which
clarify some well-known results that are often glossed over.

2 Preliminaries

2.1 Basics

For each d ∈ N we write Md, Hd, Pd and Pd for the sets of d×d complex, Hermitian, positive
definite and positive semi-definite matrices, respectively. Functions of matrices in Hd can be
defined by using the spectral theorem; this is sometimes called “functional calculus” (see,
e.g., [49, Section VII.1]).

A real function f on (0,∞) is said to be operator monotone (or operator monotone in-
creasing) if A ≥ B implies f(A) ≥ f(B) for every A,B ∈ Pd with any d ∈ N, operator
monotone decreasing if −f is operator monotone. A real function k on (0,∞) is said to be
operator convex if

k(λA+ (1− λ)B) ≤ λk(A) + (1− λ)k(B)

for all A,B ∈ Pd with any d ∈ N and all λ ∈ (0, 1), and operator concave if −k is operator
convex. The theory of operator monotone and operator convex functions was initiated by
Löwner [36] and Kraus [29], respectively. It is well-known [7, Section V.4] (also [2, 12, 18]) that
operator monotone (also operator convex) functions on (0,∞) have an analytic continuation
into the upper half-plane of C. Moreover, a necessary and sufficient condition for a function
on (0,∞) to be operator monotone increasing (resp., decreasing) is that it has the “Pick”
mapping property that the analytic continuation maps the upper half-plane into the upper
(resp., lower) half-plane. The integral representation theory for Pick functions and operator
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monotone functions are also well-known, see, e.g., [1, Section 59] or [7, Section V.4] and
[2, 12, 18].

Definition 2.1. Let K denote the class of functions k : (0,∞)→ (0,∞) which are operator
convex and satisfy the symmetry condition xk(x) = k

(
x−1

)
and the normalization condition

k(1) = 1.

There are a number of equivalent characterizations of the class K which are given in
Theorem 2.4 below. Its proof uses an integral representation, which is important in its own
right and presented in Theorem 2.3. We also observe that although k(x) ∈ K may diverge as
x↘ 0, it cannot diverge more rapidly than x−1. This was proved in [22]. For completeness,
we include its proof as well as the proof of Theorem 2.3 in Appendix A.

Proposition 2.2. Let k : (0,∞)→ (0,∞) be operator convex. Then limx→0 xk(x) exists and
is finite. When xk(x) = k

(
x−1

)
, limx→∞ k(x) also exists and is finite.

Theorem 2.3. For every k ∈ K, there exists a unique probability measure m on [0, 1] such
that for x ∈ (0,∞)

k(x) =

∫
[0,1]

1 + x

(x+ ν)(1 + νx)
· (1 + ν)2

2
dm(ν)

=

∫
[0,1]

(
1

x+ ν
+

1

1 + xν

)
(1 + ν)

2
dm(ν).

Theorem 2.4. For each function k : (0,∞)→ (0,∞) the following are equivalent:

(a) k is operator convex and xk(x) = k
(
x−1

)
;

(b) k is operator monotone decreasing and xk(x) = k
(
x−1

)
;

(c) f(x) ≡ 1/k(x) is operator concave and f(x) = xf
(
x−1

)
;

(d) f(x) ≡ 1/k(x) is operator monotone and f(x) = xf
(
x−1

)
.

Proof. The equivalence of xk(x) = k
(
x−1

)
and f(x) = xf

(
x−1

)
is easily checked. The

equivalence (c) ⇔ (d) for positive functions on (0,∞) is well-known (see, e.g., [7, Theorem
V.2.5]), and (b)⇔ (d) follows from the fact that x 7→ 1/x is operator monotone decreasing on
(0,∞). The implication (a)⇒ (b) follows immediately from Theorem 2.3 and the well-known
fact that the map x 7→ 1/(αx + β) is operator monotone decreasing on (0,∞) for any fixed
α, β ≥ 0. We finally show that (b)⇒ (a). Assume (b); then 1/k(x) is operator monotone and
so operator concave on (0,∞). This implies (a) since x−1 is operator monotone decreasing
and operator convex. QED

As shown in the above proof, the implication (b)⇒ (a) and the equivalence of (b)–(d) hold
true without the symmetry assumption xk(x) = k

(
x−1

)
. However, the reverse implication

(a) ⇒ (b) only holds under this additional assumption and appears to be new.

The next result is easy to verify, but stated explicitly for completeness.

Proposition 2.5. The map k(x) 7→ k̂(x) ≡ 1/k
(
x−1

)
is a bijection on K and the map

f(x) 7→ f̂(x) ≡ 1/f
(
x−1

)
induces the same bijection with f(x) = 1/k(x) and f̂(x) = 1/k̂(x).
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2.2 The multiplication map and its inverse Ωk
D

For each D ∈ Pd we write LD and RD for the left and the right multiplication operators,
respectively, i.e., LDX ≡ DX and RDX ≡ XD for X ∈ Md. Note that LD and RD are
commuting positive invertible operators on Md considered as a Hilbert space equipped with
the Hilbert-Schmidt inner product 〈X,Y 〉HS ≡ TrX∗Y , where Tr denotes the usual trace
functional on Md. The operator LAR

−1
B was used by Araki [5] to define the relative entropy

of positive operators A,B in far more general situations than matrix algebras, and is often
called the relative modular operator.

For a fixed function k ∈ K we define, for any D ∈ Pd, the linear map Ωk
D : Md →Md by

Ωk
D(X) ≡ R−1

D k
(
LDR

−1
D

)
X = L−1

D k
(
RDL

−1
D

)
X, X ∈Md. (2.1)

Since both of the commuting operators LD and RD are positive with respect to the Hilbert-
Schmidt inner product, it is clear that Ωk

D is also positive (in the same sense). Each map
Ωk
D can be considered as a non-commutative generalization of multiplication by D−1; indeed,

if DX = XD then Ωk
D(X) = D−1X independently of k ∈ K. The equivalence of the two

expressions in (2.1) follows from the symmetry condition xk(x) = k
(
x−1

)
since

R−1
D k

(
LDR

−1
D

)
= L−1

D LDR
−1
D k

(
LDR

−1
D

)
= L−1

D k
((
LDR

−1
D

)−1
)

= L−1
D k

(
RDL

−1
D

)
.

To better understand the action of Ωk
D, we consider the two-variable function

φk(x, y) ≡ (1/y) k(x/y) for x, y > 0 and observe that Ωk
D = φk(LD, RD). When D is a

diagonal matrix with eigenvalues λj , it is an easy consequence of the functional calculus that
the action of Ωk

D on the matrix with entries xij is

xij 7−→ φk(λj , λk)xij =
1

λj
k

(
λi
λj

)
xij

which is the Schur (or Hadamard or pointwise) product A◦X with the matrix A with entries
aij = φk(λi, λj). More generally, let U be a unitary which diagonalizes D so that

D = Udiag(λ1, . . . , λd)U
∗.

Then

Ωk
D(X) = U

(
[φk(λi, λj)] ◦ [U∗XU ]

)
U∗. (2.2)

Since L−1
D = LD−1 and R−1

D = RD−1 , it might be tempting to think that Ω−1
D (X) =

ΩD−1(X). However, this is easily seen to be false by considering specific examples (including
(1.1) and (1.2)). Instead we have for any D ∈ Pd,

JfD ≡ (Ωk
D)−1 = RDf

(
LDR

−1
D

)
= RDk̂(L−1

D RD) = Ωk̂
D−1 (2.3)

with f(x) = 1/k(x) = k̂
(
x−1

)
. To see this, observe that it follows from (2.2) that (Ωk

D)−1 =
(1/φk)(LD, RD). From the relation

1

φk
(x, y) =

y

k(x/y)
= yf(x/y) = xf(y/x),

the functional calculus implies (2.3).
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2.3 Complete positivity of Ωk
D

A linear map Φ : Md 7→ Md is called positive if it is positivity-preserving in the sense that
A > 0 implies Φ(A) ≥ 0, i.e., Φ(Pd) ⊆ Pd. A linear map Φ : Md 7→ Md is called completely
positive (CP) if Φ ⊗ In is positive on Md ⊗Mn for all n ∈ N with In the identity map on
Mn. The notion of complete positivity, introduced by Stinespring [53] and discussed in, e.g.,
[42, Chapter 6] plays an important role in quantum information theory. (See, e.g, [40, 47].)

The recognition in (2.2) that Ωk
D can be implemented as a Schur product yields a simply

stated condition to test that it is CP. In general, complete positivity of a map on Md is a much
stronger condition than positivity. However, for Schur products, it is well-known (see, e.g.,
[42, Theorem 3.7]) that both positivity conditions for the map ΦA(X) = A ◦X (A,X ∈Md)
are equivalent to positivity of A. Indeed, the map ΦA ⊗ In on Mn(Md) ∼= Md ⊗Mn can be
realized as Schur multiplication with A⊗ Jn, where Jn is the n× n matrix with all entries 1.
Therefore, in our setting, the requirement that the map Ωk

D is CP is equivalent to the weaker
positivity requirement, as we explicitly state for completeness in the following:

Theorem 2.6. The following conditions for k ∈ K are equivalent:

(a) Ωk
D : Md →Md is CP for every D ∈ Pd with any d ∈ N;

(b) Ωk
D : Md →Md is positive for every D ∈ Pd with any d ∈ N;

(c) the d× d matrix

A =

[
1

wj
k

(
wi
wj

)]
1≤i,j≤d

(2.4)

is positive semi-definite for every w1, . . . , wd > 0 with any d ∈ N.

The next result allows us to replace the matrix A in part (c) of Theorem 2.6 by some
closely related matrices for which the positivity condition may be more easily checked in
some situations.

Proposition 2.7. The matrix A in (2.4) is positive if and only if one (and hence both) of
the following matrices are positive:[

wik

(
wi
wj

)]
1≤i,j≤d

,

[√
wi
wj
k

(
wi
wj

)]
1≤i,j≤d

. (2.5)

Proof. Let W be the diagonal matrix with entries wiδij . Then the matrices above correspond
to W ∗AW and (W ∗)1/2AW 1/2, respectively. QED

2.4 Background and motivation

For each k ∈ K, the map Ωk
D can be used to define a quadratic form

ΓkD(X,Y ) ≡ 〈X,Ωk
D(Y )〉HS = TrX∗Ωk

D(Y ) (2.6)

which can be interpreted as a metric on the Riemannian manifold Dd ≡ {D ∈ Pd : TrD = 1}
of invertible density matrices in Md. Here, the matrices in Hd with trace zero form the
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tangent space, denoted by H0
d, of Dd at each foot point D. This metric is monotone in the

sense that for any completely positive and trace-preserving map Φ : Md →Mm (d,m ∈ N),

ΓkΦ(D)

(
Φ(X),Φ(Y )

)
≤ ΓkD(X,Y ), D ∈ Dd, X, Y ∈ H0

d. (2.7)

The theory of monotone Riemannian metrics was largely developed by Petz [45] after Moro-
zova and Chentsov [38] introduced the concept. It was shown in [45] that each k ∈ K defines
a family of monotone metrics of the form (2.6) with D ∈ Dd for all d ∈ N, and that any
Riemannian metric on Dd, d ∈ N, which satisfies the contraction condition (2.7) must be of
the form (2.6) for some k ∈ K. (See also [32].)

In [45], the operator JfD defined in (2.3) was used to define monotone metrics in the
equivalent form as

ΓkD(X,Y ) = 〈X, (JfD)−1(Y )〉HS = TrX∗(JfD)−1(Y ).

It might seem more natural to work with JfD which is a non-commutative version of multi-
plication by D rather than using its inverse Ωk

D (introduced in [33]). However, in this paper

we use Ωk
D instead of JfD since it avoids the need to take inverses to define our target maps.

In [54], monotone metrics of the form ΓkQ(P−Q,P−Q) with P,Q ∈ Dd played an important
role in the study of mixing times of Markov processes. It was observed in [54, Section III.B]
and [33, Section IV.C] that when both Ωk

D and its inverse (Ωk
D)−1 are positivity-preserving,

one can obtain a useful upper bound on the contraction of Riemannian metrics, which is
described in more detail in Appendix B. In [54] this bound was used in the case k(x) = x−1/2

for which both Ωk
D(A) = D−1/2AD−1/2 and the inverse D1/2AD1/2 clearly map Pd into

itself. (In fact, for every D ∈ Pd they are bijections on Pd.) Theorem 3.5 below implies that
k(x) = x−1/2 is the only function in K with this property.

The study of quasi-entropies was also initiated by Petz in [43, 44, 41], which can be defined
from any operator convex function g on (0,∞) with g(1) = 0 as

Hg(A,B,K) ≡ 〈K, g
(
LAR

−1
B

)
RBK〉HS = Tr

√
BK∗g

(
LAR

−1
B

)
(K
√
B) (2.8)

for A,B ∈ Pd,K ∈Md. It was later observed in [46, 48] that for any D ∈ Dd the Hessian

− ∂2

∂a∂b
Hg(D + aX,D + bY, I)

∣∣∣
a=b=0

, X, Y ∈ H0
d,

can be associated with a monotone Riemannian metric in some important examples. This
was proved for more general g in [33, Theorem II.8], where it was also noticed that g(x) =
(1− x)2k(x) with k ∈ K is an operator convex function on (0,∞) with g(1) = 0. Moreover,
the symmetry condition xk(x) = k

(
x−1

)
implies that xg

(
x−1

)
= g(x) and the quasi-entropy

with K = I has the symmetry property

Hg(A,B, I) = Hg(B,A, I). (2.9)

and that every quasi-entropy with this symmetry property comes from a k ∈ K. The quantity
Hg(A,B, I) is often called an f -divergence. See [21] for a thorough discussion of f -divergences
(without the additional symmetry condition).
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When k(x) = 4/(1 +
√
x)2 so that g(x) = 4(1 −

√
x)2, the function Hg(A,A,K) is the

Wigner-Yanase skew information [56], which Dyson suggested extending to the case including
the parameter p ∈ (0, 1), that is equivalent to using g(x) = 4(1 − xp)(1 − x1−p). This led
to Lieb’s seminal work on concave trace functions [34], in which he showed that (A,B) 7→
TrK∗ApKB1−p is jointly concave in A,B ∈ Pd when p ∈ (0, 1). It is implicit1 in Ando’s paper
[3] that the quasi-entropy Hg(A,B,K) can be extended to g(x) = (1−xp)(1−x1−p)/p(1−p)
with p ∈ [−1, 2]. Hasegawa [17] seems to have been the first to use well-known properties of
monotone and convex operator functions to explicitly recognize that replacing 4 by 1/p(1−p)
allows one to extend the quasi-entropy2 for the WYD skew information and the associated
Riemannian metric to the maximal range p ∈ [−1, 2] (with p = 0, 1 defined as limits3). See
also [23] where equality conditions were given for the convexity of Hg(A,B,K) and some
other inequalities for the extended WYD family.

In this paper, we make use of tools developed by Hiai and Kosaki [19, 20] in study of
means of operators.4 Motivated by this work, whenever k ∈ K, we define

Mk(x, y) ≡ y

k(x/y)
, x, y > 0, (2.10)

Mk(A,B) ≡ RB
(
k
(
LAR

−1
B

))−1
, A,B ∈ Pd. (2.11)

From (2.1) and (2.3) we have in particular

Mk(D,D) =
(
Ωk
D

)−1
= Ωk̂

D−1 = JfD. (2.12)

The function Mk(x, y) is called a symmetric homogeneous mean for positive scalars, i.e.,
M = Mk : (0,∞)× (0,∞)→ (0,∞) is a continuous function such that

(1) M(x, y) = M(y, x),

(2) M(tx, ty) = tM(x, y) for t > 0,

(3) M(x, y) is non-decreasing in x, y,

(4) min{x, y} ≤M(x, y) ≤ max{x, y}.

With f = 1/k̂, definition (2.10) is equivalent toMk(x, y) = y f(x/y) which was used in [19, 20]
under the weaker condition that f is non-decreasing in the numerical sense. It follows from
Proposition 2.5 that as k runs through K both conventions generate the same set of operators
of the form (2.11).

1Ando found an alternate proof of Lieb’s concavity results and also showed convexity for p ∈ (1, 2). Both
Lieb and Ando ignored the linear term TrK∗AK in the skew information, since it was irrelevant to convexity.

2Hasegawa actually used the asymmetric g(x) = (1 − xp)/p(1 − p). However, it follows from Eq. (37) in
[33] that this yields the same k(x) given by (4.6) as the symmetric version above.

3Lindblad [35] was the first to observe that one could recover joint convexity of the usual relative entropy
by taking limp→1 in Lieb’s result.

4This work was motivated by inequalities for unitarily invariant norms. The term mean used there does
not, in general, yield the mean of a pair of operators in the sense of Kubo and Ando [31].
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2.5 The convex sets K and K+

Recall that K denotes the set of functions k : (0,∞)→ (0,∞) satisfying any of the equivalent
conditions of Theorem 2.4 and k(1) = 1. With k̂(x) = 1/k

(
x−1

)
given in Proposition 2.5,

k 7→ k̂ is a bijective transformation on K.

For ν ∈ [0, 1] let us set

kext
ν ≡ (1 + ν)2

2
· 1 + x

(x+ ν)(1 + νx)
=

(1 + ν)

2

(
1

x+ ν
+

1

1 + xν

)
. (2.13)

For any fixed x ∈ (0,∞), by computing the derivative of kν(x) in ν one can easily verify that
kν(x) is non-increasing in ν ∈ [0, 1] so that

kext
1 (x) =

2

1 + x
≤ kext

ν (x) ≤ 1 + x

2x
= kext

0 (x), ν ∈ (0, 1). (2.14)

Since Theorem 2.3 can be rewritten as

k(x) =

∫
[0,1]

kext
ν (x) dm(ν) (2.15)

with m a probability measure, one moreover has

2

1 + x
≤ k(x) ≤ 1 + x

2x
, k ∈ K. (2.16)

Thus, K has the smallest element kext
1 (x) = 2/(1 + x) and the largest element kext

0 (x) =
(1 + x)/2x in the pointwise order.

Now we may consider K as a subset of the locally convex topological vector space consisting
of real functions on (0,∞) with the pointwise convergence topology. Then it is obvious from
(2.16) that K is a convex and compact subset. The uniqueness of the representing measure m
in Theorem 2.3 implies that K is a Choquet simplex with the extreme points kext

ν for ν ∈ [0, 1]
(that is the reason for the notation kext

ν ). Furthermore, since ν 7→ kext
ν is a homeomorphism

from the interval [0, 1] into K, one sees that K is a so-called Bauer simplex (as in [16]).

Motivated by the work on contraction bounds in [33, 54] which is described in Appendix B,
we define two subsets K+ and K− of K as

K+ ≡ {k ∈ K : Ωk
D is CP for every D ∈ Pd, d ∈ N},

K− ≡ {k ∈ K : (Ωk
D)−1 is CP for every D ∈ Pd, d ∈ N}.

It follows from (2.3) that

k ∈ K+ ⇐⇒ k̂ ∈ K− where k̂(x) = 1/k
(
x−1

)
. (2.17)

It follows from from Theorem 2.6 that K+ and K− are closed under pointwise convergence.
Although K+ is convex, K− is not convex (as shown in Example 4.4 below). Since K+ is a
compact convex subset of K, it is the closed convex hull of its extreme points by the Krein-
Milman theorem. However, determining all the extreme points of K+ seems quite challenging.
Some non-trivial ones are described in Example 4.3.
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In this paper, we have chosen to formulate most of our results in terms of functions k ∈ K.
As is clear from Theorem 2.4 we can also define the convex set of functions F with f = 1/k
which satisfy property (c) or (d). Although our choice is partly a matter of taste, in some
situations, one may be more convenient than the other. We find it useful here to let

F± ≡ {f ∈ F : (Ω
1/f
D )±1 is CP for every D ∈ Pd, d ∈ N},

so that K± corresponds to F± by k ↔ f = 1/k. Since 1/k(x) = k̂(x−1) = x k̂(x), it is obvious
by (2.17) that

F = {xk(x) : k ∈ K}, F+ = {xk(x) : k ∈ K−}, F− = {xk(x) : k ∈ K+}.

Hence k ↔ xk(x) gives an affine correspondence between K and F , by which K+ is isomorphic
to F−. Therefore, F− is also convex and the extreme points of F are

f ext
ν (x) = x kext

ν (x) =
(1 + ν)2

2
· x (1 + x)

(x+ ν)(1 + νx)
. (2.18)

3 Positive kernels and induced order

3.1 Basic definitions

In principle, the condition of Theorem 2.6 (c) gives a simple criterion for complete positivity.
But in practice, it is not easy to verify that either the matrix A in (2.4) or one of those
in (2.5) is positive semi-definite. Only a few examples can be resolved using this criterion.
However, there is another equivalent condition based on the theory of functions which define
positive kernels.

Definition 3.1. A continuous function h : R 7→ C is called positive definite if h(x − y)
is a positive semi-definite kernel, i.e.,

[
h(ti − tj)

]
1≤i,j≤d is positive semi-definite for any

t1, . . . , td ∈ R with any d ∈M, or equivalently,∫∫
ϕ(s)h(s− t)ϕ(t) ds dt ≥ 0, ϕ ∈ C∞0 (R),

where C∞0 (R) denotes the smooth compactly supported functions on R. Functions satisfying
this condition are sometimes called “functions of positive type” [50, Section IX.2] or “positive
in the sense of Bochner”.

Moreover, h is called infinitely divisible if h(t)r is positive definite for every r > 0, or
equivalently, h(t)1/n is positive definite for every n ∈ N.

For convenience, some basic properties of positive definite functions stated here:

(a) A positive definite function h is uniformly bounded on R as |f(t)| ≤ f(0).

(b) Bochner’s theorem (see [50, Theorem IX.9], [1, Section 60]) says that h is positive
definite if and only if it is the Fourier transform of a finite positive measure on R.
Thus, positive definiteness of h can be checked, in principle, by testing positivity of its
Fourier transform.
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(c) The product of positive definite functions is positive definite. This immediately follows
from the well-known fact that the Fourier transform of the convolution of two finite
measures is the product of their Fourier transforms, or from the Schur product theorem
for positive semi-definite matrices.

In this paper we only consider positive definite functions on R so that we shall omit “on
R” in the rest. Positive definite functions played an important role in the work [19, 20] on
means of operators, where a partial order was introduced. The following definition is its
adaptation to functions in K:

Definition 3.2. For k1, k2 ∈ K we write k1 4 k2 if either of the following equivalent condi-
tions holds :

(a) the function k1(et)/k2(et) is positive definite on R ;

(b) the matrix [
k1(wi/wj)

k2(wi/wj)

]
1≤i,j≤d

is positive semi-definite for every w1, . . . , wd > 0 with any d ∈ N.

It is easily verified as in [19, 20] that 4 is really a partial order in K, and k1 4 k2 implies
k1(x) ≤ k2(x) on (0,∞), i.e., k1 ≤ k2 pointwise.

The stronger condition that k1(et)/k2(et) is infinitely divisible (following Definition 3.1),
was studied in [8]. Results given there sometimes play a role in showing that the one-
parameter families studied in Section 4.2 are monotonic in the 4 order. Moreover, infinite
divisibility is important in the discussion of geometric bridges in Sections 4.3 and 6.3. Some
examples considered here require new results for specific functions which are obtained in
Sections 5.3 and 5.4.

The next useful lemma on positive definite functions will often be used in this paper. See
[25, Appendix B] and [9, Theorem 3.2] for the proof of (1). On the other hand, (2) was first
proved in [9, Theorem 5.1] while the “if part” was pointed out earlier in [57].

Lemma 3.3.

(1) The function sinhαt/ sinh t is positive definite for α ∈ (0, 1).

(2) For β > −1, the function (cosh t+ β)−1 is positive definite if and only if β ≤ 1.

3.2 Basic applications

The next theorem gives a basic characterization of the class K+. The equivalence of (a)–(c)
follows immediately from Theorem 2.6 with A replaced by the second matrix in (2.5). The
equivalence of (b) and (d) is an adaptation of [19, Theorem 1.1] via (2.12) in the present
situation.

Theorem 3.4. The following conditions for k ∈ K are equivalent:
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(a) k ∈ K+, i.e., Ωk
D is CP for every D ∈ Pd with any d ∈ N;

(b) k 4 x−1/2;

(c) et/2k(et) is positive definite;

(d) there exists a symmetric probability measure ν on R such that

Ωk
D(X) =

∫ ∞
−∞

D−
1
2 +itXD−

1
2−it dν(t) (3.1)

for all D ∈ Pd and X ∈Md with any d ∈ N.

It is a well-known consequence of the Stinespring representation theorem that a CP map
Φ on the matrix algebra Md can be represented in the form Φ(A) =

∑
j FjAF

∗
j with at

most d2 matrices Fj ∈ Md (see, e.g., [30, 10], [42, Proposition 4.7] or [24, Appendix A]).
Thus, for any fixed D ∈ Pd, when Ωk

D is CP, one can find matrices Fj in Md such that
Ωk
D(X) =

∑m
j=1 FjXF

∗
j with m ≤ d2. But, for fixed k ∈ K, the representation will change

with D (hence with d). (Even for fixed D the Fj in the representation are only determined up
to a unitary transformation Fj 7→

∑
i uijFi with uij entries of a unitary matrix.) However,

when we are allowed to use integral representation, Theorem 3.4 says that we have the
standard representation given in (3.1), from which the CP of the map Ωk

D is directly seen.
Moreover, one sometimes has different integral expressions of Ωk

D or (Ωk
D)−1; a typical example

is (1.1) for Ωk
D in case of k(x) = log x/(x− 1) (see Appendix C.2).

It follows immediately from (2.17) and Theorem 3.4 that k ∈ K− if and only if k < x−1/2.
Consequently, x−1/2 is the largest element of K+ and the smallest of K−. Moreover, since 4
is a partial order on K, we conclude

Theorem 3.5. The only function in K for which both ΩD and Ω−1
D are CP for every D ∈ Pd,

d ∈ N, is x−1/2.

It follows from Theorem 3.4 that the problem of determining whether or not k ∈ K belongs
to K+ can be reduced to the computation of the Fourier transform of the function et/2k(et).
However, this is often a hard task as will be seen in Section 5.

In contrast to K, it does not seem easy to find extreme points of K+ other than x−1/2

and 2/(1 + x) which are the largest and the smallest elements of K+, respectively, in the
order 4 as well as the pointwise order. However, some new extreme points will be described
in Example 4.3 and Theorem 6.2. In addition, a natural boundary point will be found in
Example 4.8 which is conjectured to be an extreme point.

By comparing part (b) of the next result to (2.14), one immediately sees that 4 is stronger
than the pointwise order.

Proposition 3.6. The following relations hold.

(a) kext
1 (x) =

2

1 + x
4 kext

ν and k̂ext
ν 4

1 + x

2x
= kext

0 (x) for all ν ∈ [0, 1].

(b) kext
ν 64 1 + x

2x
= kext

0 (x) and kext
1 (x) =

2

1 + x
64 k̂ext

ν for all ν ∈ (0, 1).
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(c) 2/(1 + x) 4 x−1/2 4 (1 + x)/2x.

Proof. A straightforward computation gives

kext
1 (et)

kext
ν (et)

=
k̂ext
ν (e−t)

kext
0 (e−t)

=
4

(1 + ν)2
· (et + ν)(1 + νet)

(1 + et)2

=
4

(1 + ν)2
· ν(et + e−t + 2) + (1− ν)2

et + e−t + 2

=
4ν

(1 + ν)2
+

2(1− ν)2

(1 + ν)2
· 1

cosh t+ 1

from which (a) follows by using β = 1 in Lemma 3.3 (2). Similarly

kext
ν (et)

kext
0 (et)

=
kext

1 (e−t)

k̂ext
ν (e−t)

= (1 + ν)2 et

(et + ν)(1 + νet)

= (1 + ν)2 1

ν(et + e−t) + 1 + ν2

=
(1 + ν)2

2ν
· 1

cosh t+ 1+ν2

2ν

.

Since (1 + ν2)/2ν > 1 for ν ∈ (0, 1), this proves (b) by Lemma 3.3 (2) again. Finally (c)
follows easily from

et/2kext
1 (et) =

e−t/2

kext
0 (et)

=
2et/2

et + 1
=

1

cosh(t/2)
.

QED

Proposition 2.2 implies that for every k ∈ K, xk(x) is bounded on (0, b) and k(x) is
bounded on (a,∞) for any a, b > 0. Theorem 3.4 implies that a necessary condition for
k ∈ K+ is the stronger property that x1/2k(x) is bounded on (0,∞). However, this is not a
sufficient condition. Indeed, it holds for all kext

ν (x) with ν ∈ (0, 1]. Yet, as will be seen in
Example 4.1 kext

ν (x) ∈ K+ only for ν = 1. The following result will be used in Example 4.4
to analyze convex combinations of x−1/2 and kext

ν .

Proposition 3.7. Assume that k ∈ K \ K+ and limx→∞ x
1/2k(x) = 0. Then for every

λ ∈ (0, 1],
λk(x) + (1− λ)x−1/2 /∈ K+.

Proof. Assume that k ∈ K satisfies limx→∞ x
1/2k(x) = 0 and λk(x)+(1−λ)x−1/2 ∈ K+ with

some λ ∈ (0, 1]. Then, thanks to Theorem 3.4 and Bochner’s theorem there is a probability
measure µ on R satisfying

λet/2k(et) + (1− λ) = µ̂(t) ≡
∫ ∞
−∞

eits dµ(s), t ∈ R.
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However, the symmetry condition xk(x) = k
(
x−1

)
implies et/2k(et) = e−t/2k(e−t), t ∈ R,

and hence lim|t|→∞ e
t/2k(et) = 0. Therefore, we have

µ({0}) = lim
|t|→∞

µ̂(t) = 1− λ

(see [20, Corollary A.8]). This means et/2k(et) = µ̂0(t), t ∈ R, with the probability measure
µ0 = λ−1(µ− µ({0})δ0), implying the contradiction k ∈ K+. QED

4 Examples

In this section we list known families of functions in K and investigate which functions in
those families belong to K+ (or K−). In this way we will see that K+ indeed contains a
variety of functions even though it occupies only a small part of K.

4.1 Extreme points and simple averages

Example 4.1. (Extreme points of K) The extreme points of K are kext
ν , ν ∈ [0, 1], given in

(2.13). These are not in K+ unless ν = 1 for which we have kext
1 (x) = 2/(1 + x). Indeed, for

ν ∈ (0, 1] we find

et/2kext
ν (et) =

(1 + ν)2

2ν
· cosh(t/2)

cosh t+ 1+ν2

2ν

.

If et/2kext
ν (et) is positive definite, then so is its product with the positive definite 1/ cosh(t/2).

But this yields (up to a constant) a function of the form in Lemma 3.3 (2), which is not positive
definite for β = (1 + ν2)/2ν > 1 when ν ∈ (0, 1).

It was shown in [6, Example 9] that kext
ν (x) ≤ x−1/2 (in the pointwise order) for all x > 0

if and only if 3 − 2
√

2 ≤ ν ≤ 1. This example provides another demonstration that the 4
order is stronger and 4 x−1/2 is the key to determining whether or not a function k ∈ K+.

Example 4.2. (Convex combinations involving kext
0 ) Consider the convex combinations

a1,0,λ(x) ≡ λkext
0 (x) + (1− λ)kext

1 (x) = λ
1 + x

2x
+ (1− λ)

2

1 + x
, λ ∈ [0, 1],

of the smallest element of K+ and the largest element of K. Since

et/2a1,0,λ(et) =
1− λ

cosh(t/2)
+ λ cosh(t/2)

is unbounded for any λ ∈ (0, 1], it cannot be positive definite and hence combining an
arbitrarily small amount of kext

0 (the largest element of K−) with the smallest element of K+

moves out of K+.

A similar argument can be used to show that any k ∈ K for which the measure m in (2.15)
has the property that m({0}) > 0 cannot be in K+.
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Example 4.3. (Convex combinations of kext
1 and kext

ν ) Replacing kext
0 in the previous ex-

ample with another kext
ν does sometimes yield convex combination in K+. To be precise,

let

a1,ν,λ(x) ≡ λkext
ν (x) + (1− λ)

2

1 + x
, λ ∈ [0, 1], (4.1)

be a convex combination of the smallest kext
1 (x) = 2/(1 + x) of K+ and other extreme points

kext
ν of K, ν ∈ (0, 1). We are interested in the problem to determine ν, λ for which a1,ν,λ

belongs to K+. Our result is that for every ν ∈ [0, 1), a1,ν,λ is in K+ if and only if

0 ≤ λ ≤ 2
√
ν

(1 +
√
ν)2

=
2(

ν1/4 + ν−1/4
)2 . (4.2)

Moreover, a1,ν,λ is an extreme point of K+ if and only if equality holds in (4.2).

Since the proofs require some technical results from Section 5, they are postponed to
Section 6.2. Note that the right-hand side of (4.2) is < 1

2 but a1,1,λ(x) = 2/(1 + x) ∈ K+ for
λ ∈ [0, 1]. Thus, this example exhibits some discontinuous behavior at ν = 1.

It is straightforward (see the last paragraph of Section 2) to extend these results to show
that the function

a1,ν,λ(x−1) = λf ext
ν (x) + (1− λ)

2x

1 + x
, λ ∈ [0, 1),

is in F− if and only if the inequality holds in (4.2) and that it is an extreme point of F− if
and only if equality holds.

Example 4.4. (Extended Heron means) Consider the convex combinations of x−1/2 and
extreme points of K, i.e.,

λkext
ν (x) + (1− λ)x−1/2 (4.3)

which are sometimes known as Heron means when ν = 1, in which case (4.3) is obviously in
K+ for all λ ∈ [0, 1]. However, for ν = 0 the function (4.3) is in K+ only for λ = 0 since
x1/2kext

0 (x) is unbounded. Furthermore, it follows from Proposition 3.7 that for ν ∈ (0, 1)
and λ 6= 0 the function in (4.3) is never in K+ because kext

ν 6∈ K+ and x1/2kext
ν (x) → 0 as

x→∞.

Next, consider (4.3) with ν = 0 as the convex combination of the largest and the smallest
elements of K− for λ ∈

(
0, 1

2

)
. Since

e−t
(
λ

1 + e2t

2e2t
+ (1− λ)e−t

)−1

=
1

λ
· 1

cosh t+ 1−λ
λ

with (1−λ)/λ > 1 is not positive definite by Lemma 3.3 (2), we have λk̂ext
1 (x)+(1−λ)x−1/2 6∈

K−, showing that K− is not convex. However, the dual set F− is convex and f 7→ k = 1/f
transforms F− to K−. Thus, although K− is not convex, harmonic means of functions in K−
are in K−.
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4.2 Families of classic functions in K

Examples given so far suggest us that K+ is a rather thin subset of K. Therefore, it is a
bit surprising that we find a number of one-parameter families in K+ in the examples below.
Each of these families shows some type of symmetry and monotonicity in the 4 order on
maximally suitable intervals. In all these cases, the symmetry condition xk(x) = k

(
x−1

)
can

be easily checked and it is rather straightforward to use the Pick mapping property to verify
that they are in K. Although the most intriguing family is associated with the WYD skew
information, it is also rather complex.

Example 4.5. (Heinz type means) The family of functions

kH
α (x) ≡ 2

xα + x1−α , α ∈ [0, 1], (4.4)

has the dual family

k̂H
α (x) ≡ 1

kH
α

(
x−1

) =
x−α + x−1+α

2
, 0 ≤ α ≤ 1.

which were used in [54]. One easily recovers the Heinz type means via (2.10) since

y

kH
α (x/y)

=
xαy1−α + x1−αyα

2
, α ∈ [0, 1].

In addition to kH
1/2(x) = x−1/2 = k̂H

1/2(x), important special cases are

kH
0 (x) = kH

1 (x) =
2

1 + x
= kext

1 (x), k̂H
0 (x) = k̂H

1 (x) =
1 + x

2x
= kext

0 (x)

reflecting the obvious symmetry around x = 1
2 .

Since et/2kH
α (et) = 1/ cosh

((
α − 1

2

)
t
)

is positive definite, kH
α ∈ K+ for any α ∈ [0, 1] and

k̂H
α ∈ K− for any α ∈ [0, 1]. A different proof of the former was in [6, Example 3].

If 0 ≤ α ≤ β ≤ 1
2 , then kH

α 4 kH
β (see [19, Section 2]) so that the pair of functions kH

α for

α ∈
[
0, 1

2

]
and k̂H

α for α ∈
[

1
2 , 1
]

can be regarded as a single family which increases in the 4
order from the smallest to the largest element of K.

Moreover, whenever 0 ≤ α ≤ β ≤ 1
2 ,

kH
α (et)

kH
β (et)

=
cosh

((
1
2 − β

)
t
)

cosh
((

1
2 − α

)
t
)

is infinitely divisible by [8, Theorem 1].

Example 4.6. (Binomial means or power means) The functions

kB
α (x) ≡

(
2

xα + 1

)1/α

, α ∈ [−1, 1],
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are easily verified to be in K as observed in [39, Theorem 3 (i)] and correspond to the binomial
(or power) means

y

kB
α (x/y)

=

(
xα + yα

2

)1/α

, α ∈ [−1, 1].

Interesting special cases are

kB
−1(x) =

1 + x

2x
= kext

0 (x), kB
−1/2(x) =

(1 +
√
x)2

4x
= k̂WYD

1/2 (x),

kB
0 (x) = lim

α→0
kB
α (x) = x−1/2, kB

1/2(x) =
4

(1 +
√
x)2

= kWYD
1/2 (x),

kB
1 (x) =

2

1 + x
= kext

1 (x),

where kWYD
p is given in Example 4.8. Moreover, kB

α (x) = k̂B
−α(x) which implies that for this

family
(Ωα

D)−1 = Ω−α
D−1 , α ∈ [−1, 1],

with the obvious abuse of notation. It follows from [27, Theorem 9] that if −1 ≤ β ≤ α ≤ 1
then kB

α 4 kB
β , so that we have a decreasing family in the 4 order. Since kB

0 (x) = x−1/2, we
conclude

• kB
α ∈ K+ if and only if α ∈ [0, 1],

• kB
α ∈ K− if and only if α ∈ [−1, 0].

Moreover, kB
α (et)/kB

β (et) is infinitely divisible whenever β ≤ α [27, Theorem 9].

Example 4.7. (Power difference means) The family of functions

kPD
α (x) ≡ α

α− 1
· x

α−1 − 1

xα − 1
, α ∈ [−1, 2],

gives the family of power difference means considered in [19, 20]. In fact,

y

kPD
α (x/y)

= Mα(x, y) ≡ α− 1

α
· xα − yα

xα−1 − yα−1
, (4.5)

whose family is also called the A-L-G interpolation means since it interpolates the arithmetic,
the logarithmic and the geometric means by allowing us to recover all of these as special cases

kPD
−1 (x) =

1 + x

2x
, kPD

0 (x) = lim
α→0

kPD
α (x) =

x− 1

x log x
,

kPD
1/2(x) = x−1/2, kPD

1 (x) = lim
α→1

kPD
α (x) =

log x

x− 1
,

kPD
2 (x) =

2

1 + x
.

It is known [19, Proposition 4.2] that kPD
α ∈ K for all α ∈ [−1, 2]. Moreover, we have

kPD
α = k̂PD

1−α, which implies that for this family

(Ωα
D)−1 = Ω1−α

D−1 , α ∈ [−1, 2],

with the obvious abuse of notation. If −1 ≤ β ≤ α ≤ 2 then kPD
α 4 kPD

β (see [19, Theorem

2.1]), so that we have another increasing family. Thus, since kPD
1/2(x) = x−1/2, we can conclude
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• kPD
α ∈ K+ if and only if α ∈

[
1
2 , 2
]
,

• kPD
α ∈ K− if and only if α ∈

[
−1, 1

2

]
.

Moreover, the monotonicity can be strengthened to the infinite divisibility of kPD
α (et)/kPD

β (et)
for β ≤ α by [27, Theorem 5].

Example 4.8. (WYD family) One of the best known families in K is an outgrowth of the
Wigner-Yanase-Dyson skew information discussed in Section 2.4 which leads to the functions

kWYD
p (x) ≡ 1

p(1− p)
· (1− xp)(1− x1−p)

(1− x)2
, p ∈ [−1, 2]. (4.6)

This family is symmetric around p = 1
2 , and the special cases p = 0, 1 should be understood

by continuity, i.e.,

kWYD
1 (x) = kWYD

0 (x) = lim
p→1

kWYD
p (x) =

log x

x− 1
.

Other important special cases are

kWYD
1/2 (x) =

4

(1 +
√
x)2

, kWYD
−1/2 (x) = kWYD

3/2 (x) =
4

3
· 1 +

√
x+ x√

x(1 +
√
x)2

,

kWYD
−1 (x) = kWYD

2 (x) =
1 + x

2x
= kext

0 (x).

We can summarize the CP situation for this family as follows:

(a) kWYD
p ∈ K+ if and only if p ∈ [0, 1],

(b) kWYD
p ∈ K− if and only if p ∈

[
− 1,−1

2

]
∪
[

3
2 , 2
]
.

For p ∈
[

1
2 , 2
]

the functions kWYD
p increase monotonically with respect to the 4 order.

Set r ≡ p+ q − 1, α ≡ p/r, β ≡ q/r so that r > 0 and 0 < α < β. We note

kWYD
p (x)

kWYD
q (x)

=
q(1− q)
p(1− p)

· (1− xp)(1− x1−p)

(1− xq)(1− x1−q)

=
β(α− 1)

α(β − 1)
· (1− xrα)(1− xr(β−1))

(1− xrβ)(1− xr(α−1))
=
Mα(xr, 1)

Mβ(xr, 1)
,

where Mα(x, y) is the power difference mean defined by (4.5) (for any real parameter α).
Therefore, when 1

2 ≤ p ≤ q ≤ 2, kWYD
p (et)/kWYD

q (et) is infinitely divisible by [27, Theorem

5] and in particular kWYD
p 4 kWYD

q .

Thus, the functions kWYD
p form a smooth family which are in K+ up to p = 1 when p

increases from 1
2 . Therefore, kWYD

1 lies on the boundary of K+, and we conjecture that it is
an extreme point of K+.

The operator Ωk
D for k = kWYD

1 is given by (1.1), which implies that kWYD
p ∈ K+ for

p = 0, 1. In the proof of [6, Theorem 2], explicit (double) integral representations were
obtained for Ωk

D when k = kWYD
p for p ∈ (0, 1) in such a way that the CP of Ωk

D immediately
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follows and hence kWYD
p ∈ K+ for p ∈ (0, 1). This gives the “if” part of (a). An alternate

proof of this, as well as details for the remaining claim above are given in Section 6.1. This
requires results from Section 5.1 which are of independent interest.

Unlike other families we consider, the functions k̂WYD
p (x) = 1/kWYD

p

(
x−1

)
do not belong

to the WYD family. Despite the extensive study of WYD metrics, there seems to have been
little attention given to this dual family

k̂WYD
p (x) ≡ p(1− p) (1− x)2

(x− x1−p)(x− xp)
, p ∈ [−1, 2].

This is symmetric around p = 1
2 and special cases are

k̂WYD
1/2 (x) =

(1 +
√
x)2

4x
, k̂WYD

1 (x) =
x− 1

x log x
, k̂WYD

2 (x) =
2

1 + x
= kext

1 (x).

By (2.17) and (b) above the functions k̂WYD
p are in K+ for p ∈

[
3
2 , 2
]

and in K− for p ∈ [0, 1].

Example 4.9. (Stolarsky means) As in the WYD example above, the dual of the Stolarsky
family gives a different family. In this case, we introduce both

kSt
α (x) ≡

(
xα − 1

α(x− 1)

) 1
1−α

, k̂St
α (x) ≡

(
x1−α − x
α(1− x)

) 1
α−1

, α ∈ [−2, 2].

It is known [39, Theorem 3 (iii)] (also [6, Theorem 3]) that kSt
α ∈ K for α ∈ [−2, 2] and this

range for α such that kSt
α ∈ K is optimal. The functions kSt

α (x) correspond to the familiar
family of Stolarsky means as

y

kSt
α (x/y)

= y k̂St
α (y/x) = Sα(x, y) ≡

(
xα − yα

α(x− y)

) 1
α−1

. (4.7)

The mean S1(x, y) = e−1(xx/yy)1/(x−y) for α = 1 is called the identric mean.

The functions kSt
α include more familiar special cases than k̂St

α as follows:

kSt
2 (x) =

2

1 + x
, kSt

1 (x) = lim
α→1

kSt
α (x) = e x

x
1−x , kSt

1/2(x) =
4

(1 +
√
x)2

,

kSt
0 (x) = lim

α→0
kSt
α (x) =

log x

x− 1
, kSt

−1(x) = x−1/2, kSt
−2(x) =

(
1 + x

2x2

)1/3

,

which provide an interesting comparison with the other families, as shown in Table 1.

When

Sα,β(x, y) ≡
(
β(xα − yα)

α(xβ − yβ)

) 1
α−β

,

it was proved in [27, Theorem 12] that Sα,β(ex, 1)/Sα′,β′(e
x, 1) is infinitely divisible as long

as α ≤ α′ and β ≤ β′. Since in particular Sα,1(x, y) = Sα(x, y), it follows from (4.7) that this

implies that when α ≤ β the dual family k̂St
α 4 k̂St

β increases and kSt
β 4 kSt

α decreases. We
can then conclude that
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• kSt
α ∈ K+ and k̂St

α ∈ K− if and only if α ∈ [−1, 2],

• kSt
α ∈ K− and k̂St

α ∈ K+ if and only if α ∈ [−2,−1].

As remarked above, the dual functions form a different family with special cases

k̂St
−2(x) =

(
2

x(1 + x)

)1/3

, k̂St
−1(x) = x−1/2, k̂St

0 (x) = lim
α→0

k̂St
α (x) =

x− 1

x log x
,

k̂St
1/2(x) =

(1 +
√
x)2

4x
, k̂St

1 (x) = lim
α→1

k̂St
α (x) = e−1 x

1
x−1 , k̂St

2 (x) =
1 + x

2x
= k̂ext

0 (x).

The pair kSt
1−α for −1 ≤ α ≤ 2 and k̂St

α for −1 ≤ α ≤ 2 can be regarded as a single family

which increases in the 4 order from kext
0 to kext

1 . The functions kSt
1 and k̂St

−2 give new members

of K+ which do not not appear in any of the other families. Moreover, k̂St
−2 must lie on the

boundary of both K+ and K, which implies that K+ touches the boundary of K at the interior
of a face. It seems reasonable to conjecture that k̂St

−2 is an extreme point of K+.

It is interesting to compare the behavior of these examples as the parameters α and p
change, as summarized in Table 1 and Figure 1.

4.6 kB
α 4.7 kPD

α 4.8 kWYD
p 4.9 kSt

α
2

1+x 1 2 2

exx/(1−x) 1
4

(1+
√
x)2

1
2

1
2

1
2

log x
x−1 1 0 0

x−1/2 0 1
2 −1

Table 1: Summary of common crossing points

The Stolarsky family is the only one which goes through all of the indicated points. The
WYD family is the only one which does not begin and end at the smallest and largest
elements, and moves outside of both K+ and K− for some parameter range.

4.3 Geometric bridges

In Examples 4.2 and 4.3 of Section 4.1 we considered arithmetic weighted averages of 2/(1+x)
(the smallest of K+) or x−1/2 (the largest of K+) with extreme points of K, and noticed that
such averages can be in K+ in rather limited cases. In this section we consider a different type
of averages, often called a geometric bridge, which is defined as weighted geometric means
[k1(x)]1−λ[k2(x)]λ, 0 ≤ λ ≤ 1, of k1, k2 ∈ K. We first show that K and K± are all closed
under geometric bridge interpolations as far as some infinite divisibility condition is satisfied
for K±. The equivalence of (ii) and (iii) in the next theorem implies that a similar result
holds for F and F±.
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Figure 1: Schematic diagram of families in K parameterized so that they increase in the 4
order. The lower ball corresponds to K+ and the upper ball to K−. The three curves inside
K+ ∪ K− beginning at the smallest member 2/(1 + x) are described from right to left. The
rightmost curve (red) describes the Heinz family kH

α (0 ≤ α ≤ 1/2) and k̂H
α (1/2 ≤ α ≤ 1);

the next (blue) curve the binomial family kB
−α (−1 ≤ α ≤ 1); the next (green) curve the

power difference family kPD
−α (−2 ≤ α ≤ 1). The brown curve on the left the WYD family

kWYD
p in the range p ∈ [1

2 , 2] and the dotted brown curve on the right the dual WYD family.
The crossings at 4/(1 +

√
x)2 and log x/(x − 1) can easily be seen. The complex Stolarsky

family, which is the only one which starts at the smallest 2/(1 +x) and goes through both of
these crossings while remaining in K+ before reaching x−1/2, is not shown.

Proposition 4.10. If k1, k2 ∈ K, then for every λ ∈ [0, 1] the function [k1(x)]1−λ[k2(x)]λ

is also in K. Moreover, if k1, k2 ∈ K+ (resp., K−) and one of the following conditions is
satisfied, then for every λ ∈ [0, 1] the function [k1(x)]1−λ[k2(x)]λ is also in K+ (resp., K−) :

(i) both et/2k1(et) and et/2k2(et) are infinitely divisible,

(ii) k2(et)/k1(et) is infinitely divisible,

(iii) k1(et)/k2(et) is infinitely divisible.

Proof. To prove the first assertion, let k1, k2 ∈ K; then by Theorem 2.4 they have the Pick
mapping property, from which it follows that [k1(x)]1−λ[k2(x)]λ also has this property and
hence is operator monotone decreasing. Since the symmetry condition in Theorem 2.4 is
obvious, we conclude that k1−λ

1 kλ2 ∈ K.

To prove the second assertion, let k1, k2 ∈ K+ and 0 < λ < 1. When (i) is sat-
isfied, [et/2k1(et)]1−λ and [et/2k2(et)]λ are positive definite and hence so is the product
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et/2[k1(et)]1−λ[k2(et)]λ. We note

et/2[k1(et)]1−λ[k2(et)]λ = et/2k1(et)

(
k2(et)

k1(et)

)λ
= et/2k2(et)

(
k1(et)

k2(et)

)1−λ

so that we get the desired positive definiteness from either (ii) or (iii).

Finally, the assertion for K− is easily verified by taking k̂j(x) ≡ 1/kj
(
x−1

)
and using

(2.17). QED

Recall that all the one-parameter families in K+ given in Examples 4.5–4.9 satisfy the
property of infinite divisibility (an order stronger than 4). Therefore, the above proposition
implies that geometric bridges joining k1, k2 in each of these family sits inside K+.

Example 4.11. Consider the bridge

kα(x) ≡ [kSt
α (x)]1−α[x−1/2]α =

xα/2 − x−α/2

α(x− 1)
.

By Proposition 4.10 this is in K+ for α ∈ [0, 1]. In fact, kα ∈ K in the larger range α ∈ [0, 2].
One way to see this is to observe that gβ(x) = x−β(1− x) = x−β − x1−β is operator convex
for β ∈ [0, 1]. Then it follows from [33, Theorem II.13] that

gβ(x) + xgβ(x−1)

(x− 1)2
=
xβ − x−β

x− 1
= 2β k2β(x)

is a multiple of a function in K for β ∈ [0, 1].

Since

etkα(e2t) =
1

α
· sinh(αt)

sinh t
,

it is easy to see by Lemma 3.3 (1) that kα ∈ K+ if and only if α ∈ [0, 1] while kα ∈ K− if
and only if α ∈ [1, 2]. It is also known [8, Theorem 2] that kα(et)/kβ(et) is infinitely divisible
whenever α ≤ β. Given the special cases

k0(x) = lim
α→0

kα(x) =
log x

x− 1
, k1/2(x) =

2

x1/4 + x3/4
= kH

1/4(x),

k1(x) = x−1/2, k2(x) =
1 + x

2x
= kext

0 (x),

it follows that kα(x) is a family which increases on [0, 2] in the 4 order from log x/(x− 1) to
(1 + x)/2x.

The connection between gβ and k2β is interesting because, as mentioned in Section 2.4,
g(x) = (x−1)2k(x) is always an operator convex function with the properties needed to define
a symmetric quasi-entropy. Although one can begin with a function g(x) which does not
satisfy g(x) = xg(x−1) and generate a function k ∈ K, it is not at all obvious how to reverse
the process without obtaining a symmetric g. In this case, we have found an asymmetric g,
in particular g1/2(x) = x−1/2 − x1/2, which generates the key function k(x) = x−1/2 ∈ K.
The associated quasi-entropies do not seem to have been studied previously, but appeared
recently in [52].
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The remaining examples are concerned with geometric bridges joining kext
1 and other

extreme points of K which require a more difficult analysis.

Example 4.12. For µ, ν, λ ∈ [0, 1] we define

gµ,ν,λ(x) ≡ kext
µ (x)1−λkext

ν (x)λ = kext
µ (x)

(
kext
ν (x)

kext
µ (x)

)λ
with kext

ν given by (2.13). This is in K by Proposition 4.10. A special case

g1,0,λ(x) = kext
1 (x)

(
kext

0 (x)

kext
1 (x)

)λ
= x−λ

(
2

1 + x

)1−2λ

, 0 ≤ λ ≤ 1,

was treated in [6, Example 5]. We have

et/2g1,0,λ(et) =

(
1

cosh(t/2)

)1−2λ

,

which is positive definite exactly when 0 ≤ λ ≤ 1
2 since 1/ cosh t is infinitely divisible (see [8,

Theorem 1] for instance). Therefore, g1,0,λ is in K+ if and only if 0 ≤ λ ≤ 1
2 .

Example 4.13. For the more general case

g1,ν,λ(x) = kext
1 (x)

(
kext
ν (x)

kext
1 (x)

)λ
=

(
2

1 + x

)1−2λ( (1 + ν)2

(x+ ν)(1 + νx)

)λ
, (4.8)

which increase pointwise with λ ∈ [0, 1] from kext
1 to kext

ν . Its behavior (in the present context)
when ν ∈ (0, 1) seems much more mysterious. Our results here are:

(i) the pointwise order of g1,ν,λ in λ can be also strengthened to the 4 order, and conse-
quently the set {λ ∈ [0, 1] : g1,ν,λ ∈ K+} is a subinterval [0, λc(ν)],

(ii) for each ν ∈ (0, 1) the critical value λc(ν) satisfies

1

4
≤ λc(ν) ≤ 1

3
. (4.9)

The proof requires some lengthy computations of Fourier transforms, which will be presented
in Section 6.3. Unfortunately, we do not have any information about the form of λc(ν).

Example 4.14. It is worth noting that a family of modified bridges

g1,1−λ,λ(x) =

(
2

1 + x

)1−2λ( (2− λ)2

(1 + x− λ)(1 + (1− λ)x)

)λ
, 0 ≤ λ ≤ 1, (4.10)

joining kext
1 and kext

0 was constructed in [15] for the explicit purpose of finding a one-parameter
family which increases from kext

1 and kext
0 in the pointwise order and all of whose elements

except for λ = 1 are regular (here k ∈ K is regular if limx↘0 k(x) < +∞). Without the
regularity requirement, the families in Examples 4.5–4.7 and 4.9 have this property in the
stronger 4 order.
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From the same computation as in Lemma 6.4 (Section 6.3) we observe that the set Λ ≡
{λ ∈ [0, 1] : g1,1−λ,λ ∈ K+} includes

[
0, 1

4

]
. Koenraad Audenaert did some numerical work

suggesting that g1,1−λ,λ is not in K+ for λ ≥ 0.3 giving a CP crossing at a point slightly
smaller than 0.3 which would be consistent with (4.9). However, we do not know strong
monotonicity in the 4 order for the family (4.10). To conclude that Λ is of the form [0, a] we
would need a stronger result, e.g., that λc(ν) is monotone in ν.

5 Positive definite functions

In this section, we present results on positive definiteness and infinite divisibility of certain
functions involving hyperbolic functions, which are needed in our proofs. The study here is
considered as a continuation of [26, 28, 27], which are of independent interest.

5.1 Positive definiteness of sinh ratios

We investigate positive definiteness of the function

f(t) ≡ sinh(at) sinh(bt)

sinh2 t

with a, b > 0. If a, b ≤ 1, then f(t) is a positive definite function as the product of two such
functions (see Lemma 3.3 (1)). It is actually infinitely divisible as is explained in [8, 26] for
instance. We will show that the converse also holds true.

Theorem 5.1. The function f(t) is positive definite if and only if a, b ≤ 1.

When a + b > 2, we have limt→±∞ f(t) = ∞ so that f(t) cannot be positive definite.
When a+ b = 2 and a 6= b, the obvious estimate

f(0) = ab <

(
a+ b

2

)2

= 1 = lim
t→±∞

f(t)

also shows failure of positive definiteness.

We will assume a+ b < 2, and we must show that f(t) is not positive definite as long as
a > 1 (and hence 0 < b < 1). For this purpose it suffices to deal with a, b rational. Indeed, if
f(t) were positive definite for such a, b (and the result is known for such rational parameters),
then with a′, b′ rational satisfying 1 < a′ ≤ a and 0 < b′ ≤ b the product

f(t)
sinh(a′t) sinh(b′t)

sinh(at) sinh(bt)
=

sinh(a′t) sinh(b′t)

sinh2 t

would be positive definite, a contradiction.

Hence, we will assume that a, b are rational in the rest. Obviously we can further assume

a = m
n > 1, b = k

n > 0, a+ b < 2 with n,m, k ∈ N even. (5.1)

The most delicate part in our proof for Theorem 5.1 is covered in the next lemma, and the
rest of the subsection will be devoted to its proof.
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Lemma 5.2. The function f(t) cannot be positive definite for a, b rational described by (5.1).

For a fixed s ∈ R we set

F (z) ≡ f(z) eisz

(
=

sinh(az) sinh(bz)

sinh2 z
eisz =

sinh
(
m
n z
)

sinh
(
k
n z
)

sinh2 z
eisz

)
with a, b given by (5.1), and compute its integral along the following rectangle Γ:

Γ1 z = t, t : −R→ R,
Γ2 z = R+ is, s : 0→ nπ,
Γ3 z = t+ inπ, t : R→ −R,
Γ4 z = −R+ is, s : nπ → 0.

We observe

sinh(t+ inπ) = sinh t,

sinh
(
m
n (t+ inπ)

)
= sinh

(
m
n t+ imπ

)
= sinh

(
m
n t
)
,

sinh
(
k
n (t+ inπ)

)
= sinh

(
k
n t+ ikπ

)
= sinh

(
k
n t
)

(since n,m, k are even) so that we have F (t+ inπ) = f(t) eis(t+inπ) and∫
Γ1∪Γ3

F (z) dz =

∫ R

−R
f(t) eistdt+

∫ −R
R

f(t) eiste−nπsdt

=
(
1− e−nπs

) ∫ R

−R
f(t) eistdt

= 2e−nπs/2 sinh(nπs/2)

∫ R

−R
f(t) eistdt. (5.2)

Since a + b < 2, we have f(z) → 0 uniformly on the strip {z ∈ C; 0 ≤ Im z ≤ nπ} as
Re z → ±∞ and hence

lim
R→∞

∫
Γ2∪Γ4

F (z) dz = 0. (5.3)

Therefore, the Fourier transform of f(t) can be computed from
∫

Γ F (z) dz. If the Fourier
transform fails to be positive, then Lemma 5.2 follows from Bochner’s theorem.

Note that z = 0, inπ are zeros of sinh2 z of order 2. However, these two points are also
zeros for sinh

(
m
n z
)
, sinh

(
k
n z
)

so that z = 0, inπ are removable singularities for F (z). The
poles (inside of Γ) closest to Γ are

z1 = iπ and zn−1 = i(n− 1)π.

Note that z1, zn−1 are zeros for sinh2 z (appearing in the denominator) of order 2 and that
they are not zeros for sinh

(
m
n z
)

and sinh
(
k
n z
)

(due to 1 < a = m
n < 2 and 0 < b = k

n < 1).
Thus, we conclude that z = z1, zn−1 are double poles for F (z).

We begin with computation of the residue Res(F (z); z1) at z = z1. Thanks to sinh z =
− sinh(z− iπ) (or by direct computation) the power series expansion of sinh z around z1 = iπ
is given by

sinh z = −
(
(z − z1) + (z − z1)3/3! + (z − z1)5/5! + · · ·

)
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= −(z − z1)
(
1 + (z − z1)2/3! + (z − z1)4/5! + · · ·

)
.

We thus get the following Laurent series expansion:

1

sinh2 z
=

1

(z − z1)2
· 1(

1 + (z − z1)2/3! + (z − z1)4/5! + · · ·
)2

=
1

(z − z1)2
· 1

1 + (z − z1)2/3 + higher even powers

=
1

(z − z1)2

(
1− (z − z1)2/3 + higher even powers

)
. (5.4)

Since
d`

dz`
eisz
∣∣∣
z=z1

= (is)`eisz
∣∣
z=z1

= (is)`e−πs,

we have
eisz = e−πs

(
1 + is(z − z1)− s2(z − z1)2/2 + · · ·

)
. (5.5)

Computations

sinh
(
m
n z1

)
= i sin

(
m
n π
) (

= i sin(at)
)
,

d

dz
sinh

(
m
n z
) ∣∣∣
z=z1

= m
n cosh

(
m
n z
) ∣∣
z=z1

= m
n cos

(
m
n π
) (

= a cos(at)
)

give rise to
sinh

(
m
n z
)

= i sin(aπ) + a cos(aπ)(z − z1) + · · · , (5.6)

and similarly
sinh

(
k
n z
)

= i sin(bπ) + b cos(bπ)(z − z1) + · · · . (5.7)

From (5.4)–(5.7) the Laurent series expansion of F (z) around z = z1 is given by

e−πs

(z − z1)2

(
1− (z − z1)2/3 + higher even powers

) (
1 + is(z − z1) + · · ·

)
×
(
i sin(aπ) + a cos(aπ)(z − z1) + · · ·

)(
i sin(bπ) + b cos(bπ)(z − z1) + · · ·

)
. (5.8)

The residue Res(F (z); z1) is nothing but the coefficient of (z−z1)−1 here, i.e., that of (z−z1)
in the product of the above four brackets (multiplied by e−πs). Since the starting term is 1
and a (z − z1)-term is absent in the first bracket, what we have to compute is the coefficient
of (z − z1) in the product of the last three brackets. In this way we arrive at

Res(F (z); z1) = e−πs
(
i sin(aπ) · b cos(bπ) + a cos(aπ) · i sin(bπ)

+ is · i sin(aπ) · i sin(bπ))

= ie−πs
(
a cos(aπ) sin(bπ) + b cos(bπ) sin(aπ)− s sin(aπ) sin(bπ)

)
.

We next move to computation of the residue Res(F (z); zn−1) at z = zn−1

(
= i(n− 1)π

)
.

Because of sinh z = − sinh(z − (n− 1)πi)
(
= − sinh(z + πi)

)
with n even we have

sinh z = −
(
(z − zn−1) + (z − zn−1)3/3! + (z − zn−1)5/5! + · · ·

)
= −(z − zn−1)

(
1 + (z − zn−1)2/3! + (z − zn−1)4/5! + · · ·

)
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(with the identical coefficients as in the power expansion around z = z1), and hence we have

1

sinh2 z
=

1

(z − zn−1)2

(
1− (z − zn−1)2/3 + higher even powers

)
again (see (5.4)). Also, since d`

dz`
eisz
∣∣
z=zn−1

= (is)`eisz
∣∣
z=zn−1

= (is)`e−(n−1)πs, (5.5) has to

be replaced by

eisz = e−(n−1)πs
(
1 + is(z − zn−1)− s2(z − zn−1)2/2 + · · ·

)
.

So far we have not seen changes of coefficients except the obvious modification that the factor
e−πs in (5.5) was replaced by e−(n−1)πs. On the other hand, since

sinh
(
m
n zn−1

)
= i sin

(
m
n (n− 1)π

)
= i sin

(
mπ − m

n π
)

= −i sin
(
m
n π
) (

= −i sin(at)
)
,

d

dz
sinh

(
m
n z
) ∣∣
z=zn−1

= m
n cosh

(
m
n z
) ∣∣
z=zn−1

= m
n cos

(
m
n (n− 1)π

)
= m

n cos
(
mπ − m

n π
)

= m
n cos

(
m
n π
) (

= a cos(at)
)
,

the power series expansions (5.6) and (5.7) are replaced by

sinh
(
m
n z
)

= −i sin(aπ) + a cos(aπ)(z − zn−1) + · · · ,
sinh

(
k
n z
)

= −i sin(bπ) + b cos(bπ)(z − zn−1) + · · ·

with constant terms of the opposite sign. The four relevant expansions are now at our
disposal, and the same reasoning as before (see the product (5.8)) gives us the following
conclusion:

Res(F (z); zn−1) = e−(n−1)πs
(
−i sin(aπ) · b cos(bπ)− a cos(aπ) · i sin(bπ)

+ is (−i sin(aπ))(−i sin(bπ))
)

= ie−(n−1)πs
(
−a cos(aπ) sin(bπ)− b cos(bπ) sin(aπ)

− s sin(aπ) sin(bπ)
)
.

The sum (multiplied by 2πi) of the two residues we have computed so far can be rearranged
in the following way:

2πi
(
Res(F (z); z1) + Res(F (z); zn−1)

)
= 2π

[
e−πs

(
−a cos(aπ) sin(bπ)− b cos(bπ) sin(aπ) + s sin(aπ) sin(bπ)

)
+ e−(n−1)πs

(
a cos(aπ) sin(bπ) + b cos(bπ) sin(aπ) + s sin(aπ) sin(bπ)

)]
= 2πe−nπs/2

[
e(n/2−1)πs

(
−a cos(aπ) sin(bπ)− b cos(bπ) sin(aπ) + s sin(aπ) sin(bπ)

)
+ e−(n/2−1)πs

(
a cos(aπ) sin(bπ) + b cos(bπ) sin(aπ) + s sin(aπ) sin(bπ)

)]
= 4πe−nπs/2

[
−
(
a cos(aπ) sin(bπ) + b cos(bπ) sin(aπ)

)
sinh ((n/2− 1)πs)

+ s sin(aπ) sin(bπ) cosh ((n/2− 1)πs)
]
.

Therefore, by recalling (5.2) and (5.3) we conclude

1

2π

∫ ∞
−∞

f(t) eist dt
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=
1

sinh(nπs/2)

[
sin(aπ) sin(bπ) · s cosh ((n/2− 1)πs)

−
(
a cos(aπ) sin(bπ) + b cos(bπ) sin(aπ)

)
sinh ((n/2− 1)πs)

+ lower order terms
]
. (5.9)

A few remarks concerning “lower order terms” are in order. Other candidates for poles (inside
of Γ) of F (z) are

z` = i`π (for ` = 2, 3, . . . , n− 2),

where nature of singularities at these points (i.e., removable singularities or poles of order
at most 2) is determined according to values of sinh

(
m
n z`

)
, sinh

(
k
n z`
)

appearing in the
numerator. Anyway, residues arising from them give us linear combinations of factors of the
forms

sinh
((
n/2− `′

)
πs
)
, cosh

((
n/2− `′

)
πs
)

with `′ = 2, 3, . . . , n/2

in the above big bracket (5.9) (possibly with the linear factor s for double poles). Indeed,
the only source for exponential factors is the power series expansions of eisz around z = z`
(see (5.5)), which actually gives rise to

eisz` = e−`πs = e−nπs/2e(n/2−`)πs (` = 2, 3, . . . , n− 2).

Thus, by recalling the factor e−nπs/2 appearing in (5.2), we get the assertion.

The dominant term (as s→ ±∞) in the numerator of the Fourier transform is

sin(aπ) sin(bπ) · s cosh ((n/2− 1)πs) ,

and we observe
sin(aπ) sin(bπ) < 0

thanks to 1 < a < 2 and 0 < b < 1 (see (5.1)). Consequently, the Fourier transform takes
negative values for |s| large (i.e., failure of positive definiteness for f(s)), and Lemma 5.2 has
been proved.

5.2 Fourier transform of ((cosh(t/2) + α)(cosh t+ β))−1

Detailed information on positive definiteness for
(
coshk(t/2)(cosh t+ β)m

)−1
will be needed

to prove results on geometric bridges in Example 4.13. However, a direct computation for
its Fourier transform based on residue calculus seems hopeless due to the fact that poles
of higher orders have to be considered. Instead, in this subsection we compute the Fourier
transform in the special case k = m = 1 with the additional parameter α as in the theorem
below (and then in Section 5.4 we will check higher order partial derivatives relative to α and
β to achieve our goal).

Theorem 5.3. For α ∈ (−1, 1) and β > 1 we have

1

4π

∫ ∞
−∞

eist dt(
cosh(t/2) + α

)(
cosh t+ β

)
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=
1

sinh(2πs)

[
sinh(2θs)√

1− α2
(
2α2 − 1 + β

)
−

√
β−1

2 cos(λs) sinh(πs)− α sin(λs) cosh(πs)√
β2 − 1

(β−1
2 + α2

) ]
, (5.10)

where θ = cos−1 α ∈ (0, π) and λ = log
(
β +

√
β2 − 1

)
, i.e., λ > 0 is a solution of coshλ = β.

Proof. For a fixed s ∈ R we set

F (z) ≡ eisz(
cosh(z/2) + α

)(
cosh z + β

)
and compute its integral along the following rectangle Γ:

Γ1 z = t, t : −R→ R,
Γ2 z = R+ is, s : 0→ 4π,
Γ3 z = t+ 4πi, t : R→ −R,
Γ4 z = −R+ is, s : 4π → 0.

Due to cosh((t+ 4πi)/2) = cosh(t/2), cosh(t+ 4πi) = cosh t and

lim
R→∞

∫
Γ2∪Γ4

f(z) dz = 0

we have

lim
R→∞

∫
Γ
f(z) dz = lim

R→∞

∫
Γ1∪Γ3

f(z) dz

= lim
R→∞

(1− e−4πs)

∫ R

−R

eistds(
cosh(t/2) + α

)(
cosh t+ β

)
= 2e−2πs sinh(2πs)

∫ ∞
−∞

eistds(
cosh(t/2) + α

)(
cosh t+ β

) ,
and we will compute

∫
Γ f(z) dz by residue calculus.

It is easy to see that we have the following six simple poles inside of Γ:

z0 = 2i(π − θ), z1 = 2i(π + θ), ξ±0 = iπ ± λ, ξ±1 = 3iπ ± λ.

When α = 1 (i.e., θ = 0), 2πi is a double pole. However, we assumed α ∈ (−1, 1) to avoid
this complication. Note that the Fourier transform formula (5.10) itself remains valid for
α = 1 by the obvious limiting argument with the understanding

sinh(2θs)√
1− α2

∣∣∣∣
α=1

= lim
α↗1

sinh(2θs)√
1− α2

= 2s

(see (5.17) below). We note

Res(zj , F (z)) =
eiszj

1
2 sinh(zj/2)

(
cosh zj + β

) , j = 0, 1,
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and observe

eisz0 = e−2(π−θ)s, eisz1 = e−2(π+θ)s,

sinh(z0/2) = i sin(π − θ) = i sin θ = i
√

1− α2,

sinh(z1/2) = i sin(π + θ) = −i sin θ = −i
√

1− α2,

cosh(z0) = cos(2(π − θ)) = cos(2θ) = 2 cos2 θ − 1 = 2α2 − 1,

cosh(z1) = cos(2(π + θ)) = cos(2θ) = 2α2 − 1.

Thus, we compute

Res(z0;F (z)) =
e−2(π−θ)s

i
2

√
1− α2

(
2α2 − 1 + β

) = − 2ie−2(π−θ)s
√

1− α2
(
2α2 − 1 + β

) ,
Res(z1;F (z)) =

e−2(π+θ)s

− i
2

√
1− α2

(
2α2 − 1 + β

) =
2ie−2(π+θ)s

√
1− α2

(
2α2 − 1 + β

) ,
and consequently we have

Res(z0;F (z)) + Res(z1;F (z)) = −
2ie−2πs

(
e2θs − e−2θs

)
√

1− α2
(
2α2 − 1 + β

)
= − 4ie−2πs sinh(2θs)√

1− α2
(
2α2 − 1 + β

) . (5.11)

We note

Res(ξ±j ;F (z)) =
eisξ

±
j(

cosh(ξ±j /2) + α
)

sinh ξ±j
, j = 0, 1.

We observe

eisξ
±
0 = e−πs±iλs, eisξ

±
1 = e−3πs±iλs,

cosh(ξ±0 /2) = cosh((iπ ± λ)/2) = ±i sinh(λ/2) = ±i
√

coshλ− 1

2
= ±i

√
β − 1

2
,

cosh(ξ±1 /2) = cosh((3iπ ± λ)/2) = ∓i sinh(λ/2) = ∓i
√
β − 1

2
,

sinh(ξ±0 ) = sinh(iπ ± λ) = ∓ sinhλ = ∓
√
β2 − 1,

sinh(ξ±1 ) = sinh(3iπ ± λ) = ∓
√
β2 − 1,

and hence

Res(ξ±0 ;F (z)) =
e−πs±iλs(

±i
√

β−1
2 + α

)(
∓
√
β2 − 1

) =
ie−πs±iλs√

β2 − 1
(√

β−1
2 ∓ iα

)
=
ie−πs±iλs

(√
β−1

2 ± iα
)

√
β2 − 1

(β−1
2 + α2

) ,
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Res(ξ±1 ;F (z)) =
e−3πs±iλs(

∓i
√

β−1
2 + α

)(
∓
√
β2 − 1

) = − ie−3πs±iλs√
β2 − 1

(√
β−1

2 ± iα
)

= −
ie−3πs±iλs

(√
β−1

2 ∓ iα
)

√
β2 − 1

(β−1
2 + α2

) .

We compute

Res(ξ+
0 ;F (z)) + Res(ξ−0 ;F (z)) =

ie−πs
[
eiλs

(√
β−1

2 + iα
)

+ e−iλs
(√

β−1
2 − iα

)]
√
β2 − 1

(β−1
2 + α2

)
=

2ie−πs
[√

β−1
2 cos(λs)− α sin(λs)

]
√
β2 − 1

(β−1
2 + α2

) ,

Res(ξ+
1 ;F (z)) + Res(ξ−1 ;F (z)) = −

ie−3πs

[
eiλs

(√
β−1

2 − iα
)

+ e−iλs
(√

β−1
2 + iα

)]
√
β2 − 1

(β−1
2 + α2

)
= −

2ie−3πs

[√
β−1

2 cos(λs) + α sin(λs)

]
√
β2 − 1

(β−1
2 + α2

) .

Both the quantities have sin, cos, and we conclude

Res(ξ+
0 ;F (z)) + Res(ξ−0 ;F (z)) + Res(ξ+

1 ;F (z)) + Res(ξ−1 ;F (z))

=

2i

[√
β−1

2 cos(λs)
(
e−πs − e−3πs

)
− α sin(λs)

(
e−πs + e−3πs

)]
√
β2 − 1

(
β−1

2 + α2
)

=

4ie−2πs

[√
β−1

2 cos(λs) sinh(πs)− α sin(λs) cosh(πs)

]
√
β2 − 1

(
β−1

2 + α2
) . (5.12)

The desired Fourier transform formula (5.10) is obtained as the sum of (5.11) and (5.12)
(multiplied by 2πi). QED

5.3 Analysis of ((cosh(t/2) + α)(cosh t+ β))−1

Here, we recall the Kolmogorov theorem (a version of Lévy-Khintchine formula): A function
f(t) on R is the characteristic function of an infinitely divisible probability measure with
finite second moment if and only if there exist a finite positive measure ν and a γ ∈ R such
that

log f(t) = iγt+

∫ ∞
−∞

(
eits − 1− its

s2

)
dν(s).
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Detailed accounts can be found in [37, 14] for instance. We note that functions f(t) we are
dealing with here are all smooth and hence the “finite second moment” condition is automatic
(see [37, Section 2.3] for instance).

In the following lemma we state two explicit examples of the Kolmogorov theorem obtained
in [27, Lemma 2 (ii) and Lemma 16] for later use and for the convenience of the reader:

Lemma 5.4.

(i) For a > 0 and θ ∈ [0, π),

log

(
1 + cos θ

cosh(at) + cos θ

)
=

∫ ∞
−∞

(
eits − 1− ist

) cosh(θs/a)

s sinh(πs/a)
ds.

(ii) For a > 0 and λ ≥ 0,

log

(
1 + coshλ

cosh(at) + coshλ

)
=

∫ ∞
−∞

(
eits − 1− ist

) cos(λs/a)

s sinh(πs/a)
ds.

When α = 0 (i.e., θ = π/2), (5.10) reduces to

∫ ∞
−∞

eist dt

cosh(t/2) (cosh t+ β)
= 2π

1−
√

2
β+1 cos(λs)

(β − 1) cosh(πs)
(≥ 0), (5.13)

which corresponds to the special case α = 0 in the next result ([11, Theorem 4.13] and see
also [27, Section 7]).

Corollary 5.5. We set

G(t) ≡ 1(
cosh(t/2) + α

)(
cosh t+ β

)
with α, β > −1.

(i) When β > 1, G(t) is positive definite if and only if α ∈ (−1, 0].

(ii) When −1 < β ≤ 1, G(t) is infinitely divisible for each α ∈ (−1,∞).

Proof. Assume β > 1. Due to (5.13) G(t) is positive definite for α = 0 and remains so for
α ∈ (−1, 0] as well thanks to positive definiteness of

cosh(t/2)

cosh(t/2) + α
= 1 +

−α
cosh(t/2) + α

(see Lemma 3.3 (2)). When α ∈ (0, 1), we have θ = cos−1 α ∈ (0, π/2) in (5.10). Thus,
the dominant terms in the big bracket in the right side of (5.10) are cos(λs) sinh(πs) and
sin(λs) cosh(πs) so that the quantity in the big bracket takes both positive and negative
values for |s| large. To prove (i), it remains to show failure of positive definiteness for α ≥ 1.
However this follows from positive definiteness of

cosh(t/2) + α

cosh(t/2) + 1
2

= 1 +
α− 1

2

cosh(t/2) + 1
2
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for instance (and the already known failure of positive definiteness for α = 1
2).

Next, assume −1 < β ≤ 1. The statement (ii) is obvious for α ∈ (−1, 1], G(t) being the
product of two infinitely divisible functions under these circumstances. On the other hand,
when α > 1, we have

log
(
(1 + α)(1 + β)G(t)

)
=

∫ ∞
−∞

(
eist − 1− ist

)( cos(2θs)

s sinh(2πs)
+

cosh(λs)

s sinh(πs)

)
ds

with θ = log
(
α+
√
α2 − 1

)
and λ = cos−1 β (by Lemma 5.4). The density here can be

written as
cos(2θs) + 2 cosh(πs) cosh(λs)

s sinh(2πs)
, (5.14)

which is certainly positive. QED

5.4 Analysis of
(
coshk(t/2)(cosh t+ β)m

)−1

In this subsection we obtain a result which will be used in Theorem 6.6 of Section 6.3 to
obtain a bound for the interval in which g1,ν,λ is in K+.

We assume β > 1 and α ∈ (−1, 0] as in Corollary 5.5 (i). Under these circumstances the
density (5.14) is switched to

log
(
(1 + α)(1 + β)G(t)

)
=

∫ ∞
−∞

(
eits − 1− ist

) cosh(2θs) + 2 cos(λs) cosh(πs)

s sinh(2πs)
ds

with θ = cos−1 α ∈ [π/2, π) and λ = log
(
β +

√
β2 − 1

)
. Thus, the positive definite function

G(t) (Corollary 5.5 (i)) is infinitely divisible if and only if

cosh(2θs) + 2 cos(λs) cosh(πs) ≥ 0, s ∈ R.

This is quite a delicate condition, but for the extreme value α = 0 (i.e., θ = π/2) the condition
simply means

(1 + 2 cos(λs)) cosh(πs) ≥ 0,

and it is never fulfilled for any β > 1 (which is exactly [27, Theorem 15]).

We take higher order partial derivatives ∂m−1
β ∂k−1

α from the Fourier transform formula
(5.10) (with the variable s fixed). It is obvious that from the left side we get a scalar multiple
of ∫ ∞

−∞

eist ds(
cosh(t/2) + α

)k(
cosh t+ β

)m ,
and for the special value α = 0 the above integral reduces to∫ ∞

−∞

eist ds

coshk(t/2)
(
cosh t+ β

)m . (5.15)

Therefore, behavior on the Fourier transform (5.15) can be seen by computing ∂m−1
β ∂k−1

α of
the right side of (5.10) at first and then by substituting α = 0.

34



The right side R(α, β) of the formula (5.10) consists of the three terms:

R(α, β) = F0(α, β)
sinh(2θs)

sinh(2πs)
− Fc(α, β) cos(λs)

sinh(πs)

sinh(2πs)
+ Fs(α, β) sin(λs)

cosh(πs)

sinh(2πs)

= F0(α, β)
sinh(2θs)

sinh(2πs)
− Fc(α, β)

cos(λs)

2 cosh(πs)
+ Fs(α, β)

sin(λs)

2 sinh(πs)
(5.16)

with

F0(α, β) =
1√

1− α2
(
2α2 − 1 + β

) ,
Fc(α, β) =

√
β−1

2√
β2 − 1

(β−1
2 + α2

) ,
Fs(α, β) =

α√
β2 − 1

(β−1
2 + α2

) .
We note

dθ

dα
= − 1

sin θ
= − 1√

1− α2
,

dλ

dβ
=

1√
β2 − 1

, (5.17)

and consequently

∂α sinh(2θs) = − 2s cosh(2θs)√
1− α2

, ∂α cosh(2θs) = − 2s sinh(2θs)√
1− α2

,

∂β sin(λs) =
s cos(λs)√
β2 − 1

, ∂β cos(λs) = − s sin(λs)√
β2 − 1

.

We begin with the first term in (5.16). Since sinh(2θs) and cosh(2θs) behave like constants
against ∂β, ∂m−1

β ∂k−1
α of the first term is a polynomial of s of degree at most k − 1 with

coefficients sinh(2θs), cosh(2θs), 1/ sinh(2πs) and so on. Therefore, the substitution α = 0
(i.e., θ = π/2) gives rise to a polynomial of s of degree at most k − 1 with coefficients
containing

sinh(2θs)

sinh(2πs)

∣∣∣∣
θ=π/2

=
1

2 cosh(πs)
,

cosh(2θs)

sinh(2πs)

∣∣∣∣
θ=π/2

=
1

2 sinh(πs)
.

The same procedure for the second and third terms in (5.16) obviously gives rise to a
polynomial of s of degree at most m − 1. It is important to make sure that the order is
exactly m − 1, and we will closely check the coefficient of sm−1. For this purpose we begin
with the third term in (5.16) and we note

Fs(α, β) =
1

2
√
β2 − 1

 1

α+ i
√

β−1
2

+
1

α− i
√

β−1
2

 ,

∂k−1
α Fs(α, β) =

(−1)k−1(k − 1)!

2
√
β2 − 1

 1(
α+ i

√
β−1

2

)k +
1(

α− i
√

β−1
2

)k
 ,
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∂k−1
α

(
Fs(α, β) · sin(λs)

2 sinh(πs)

)
= ∂k−1

α Fs(α, β)
sin(λs)

2 sinh(πs)
.

So far no s-terms show up because λ just depends on β. We then take derivatives relative to
β. It is plain to see that the highest sm−1-term arises from

∂k−1
α Fs(α, β) ∂m−1

β

(
sin(λs)

2 sinh(πs)

)
= ∂k−1

α Fs(α, β)
∂m−1
β sin(λs)

2 sinh(πs)
.

From (5.17) we also easily observe

∂m−1
β sin(λs) =


± sm−1

(β2 − 1)(m−1)/2
sin(λs) + lower s-terms (for m odd),

± sm−1

(β2 − 1)(m−1)/2
cos(λs) + lower s-terms (for m even).

(5.18)

By substituting α = 0, we observe

∂k−1
α Fs(α, β)

∣∣∣
α=0

=
(−1)k−1(k − 1)!

2
√
β2 − 1

 1(
i
√

β−1
2

)k +
1(

−i
√

β−1
2

)k
 6= 0

as long as k is even. From the discussion so far, for k even the highest sm−1-term arising
from

∂m−1
β ∂k−1

α

(
Fs(α, β) · sin(λs)

2 sinh(πs)

) ∣∣∣∣
α=0

is a non-zero scalar (of course depending upon β) multiple of

sm−1 sin(λs)

sinh(πs)
(for m odd) or

sm−1 cos(λs)

sinh(πs)
(for m even)

depending upon the parity of m.

We next move to the second term in (5.16). We note

Fc(α, β) =
1

2i
√
β2 − 1

 1

α+ i
√

β−1
2

− 1

α− i
√

β−1
2

 ,

∂k−1
α Fc(α, β) =

(−1)k−1(k − 1)!

2i
√
β2 − 1

 1(
α+ i

√
β−1

2

)k − 1(
α− i

√
β−1

2

)k
 .

The presence of the minus sign this time in the big bracket enables us to conclude

∂k−1
α Fc(α, β)

∣∣∣
α=0
6= 0
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for k odd. Since the formula akin to (5.18) is available to cos(λs), for k odd the highest
sm−1-term arising from

∂m−1
β ∂k−1

α

(
Fc(α, β)

cos(λs)

2 cosh(πs)

) ∣∣∣∣
α=0

is a non-zero scalar multiple of

sm−1 cos(λs)

cosh(πs)
(for m odd) or

sm−1 sin(λs)

cosh(πs)
(for m even)

this time.

Summing up the discussions so far, we conclude: For s large the leading terms of
∂m−1
β ∂k−1

α R(α, β) (which arise form the first term and the last two terms in (5.16) respec-
tively) are non-zero scalar multiples of

sk−1

eπs
and

sm−1 sin(λs+ δ)

eπs

regardless of the parity of k.

We are now ready to prove the following result:

Theorem 5.6. We assume β > 1 and set

H(t) ≡ 1

coshk(t/2)
(
cosh t+ β

)m
for positive integers k,m.

(i) H(t) is positive definite if and only if k ≥ m.

(ii) H(t) is infinitely divisible if and only if k ≥ 2m.

Proof. We set λ = log
(
β +

√
β2 − 1

)
> 0 as in Theorem 5.3.

(i) Firstly we assume k ≥ m. Since

1

coshk(t/2)
(
cosh t+ β

)m =
1

coshk−m(t/2)

(
1

cosh(t/2)
(
cosh t+ β

))m ,
positive definiteness of H(t) follows from Corollary 5.5 (i) (or rather the paragraph before the
corollary). On the other hand, when k < m, for s large the dominant term in (5.15) (i.e., the
Fourier transform of H(t)) is

sm−1 sin(λs+ δ)

eπs

as was mentioned in the paragraph right before the theorem. Thus, the Fourier transform
admits both positive and negative values and hence H(t) cannot be positive definite.

(ii) By Lemma 5.4 we have

log
(
(1 + β)mH(t)

)
=

∫ ∞
−∞

(
eist − 1− ist

)
F (s) ds
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with

F (s) =
k

2s sinh(πs)
+
m cos(λs)

s sinh(πs)
=
k + 2m cos(λs)

2s sinh(πs)
.

Thus, H(t) is infinitely divisible if and only if k + 2m cos(λs) ≥ 0, i.e., k ≥ 2m. QED

Note that the optimal case in (ii) (i.e., case k = 2m) corresponds to infinite divisibility

of
(
(cosh t + 1)(cosh t + β)

)−1
(see [27, §7.1]) because of cosh2(t/2) = (cosh t + 1)/2. The

function 1/ cosh(t/2) is positive definite (and indeed infinitely divisible) while 1/(cosh t+ β)
(with β > 1) is not (see Lemma 3.3 (2)). Thus, intuition might suggest that as far as the
function H(t) is concerned one has higher (resp., lower) chance for positive definiteness and/or
infinite divisibility as k (resp., m) increases. The theorem completely clarifies where proper
balance is taken.

6 Proofs of results in Section 4

6.1 Results on WYD family

For the functions kWYD
p , p ∈ [−1, 2], defined by (4.6), we will prove the next results stated in

Example 4.8.

Theorem 6.1.

(a) The function kWYD
p belongs to K+ if and only if p ∈ [0, 1],

(b) The function kWYD
p belongs to K− if and only if p ∈

[
− 1,−1

2

]
∪
[

3
2 , 2
]
.

Proof. We may and do assume p ∈
[

1
2 , 2
]

in view of the symmetry kWYD
p = kWYD

1−p , and set

fp(t) ≡ etkWYD
p (e2t) =

1

p(1− p)
· sinh(pt) sinh((1− p)t)

sinh2 t
,

gp(t) ≡ et/kWYD
p (e−2t) = p(1− p) · sinh2 t

sinh(pt) sinh((1− p)t)

for convenience. Theorem 3.4 says that we have to determine when fp(t) and gp(t) are positive
definite.

Positive definiteness for fp(t) with p ∈
[

1
2 , 1
]

is well-known (where f1(t) is understood as
t/ sinh t). When p ∈ (1, 2], we have

fp(t) =
1

p(p− 1)
· sinh(pt) sinh((p− 1)t)

sinh2 t
,

which fails to be positive definite thanks to Theorem 5.1 (due to the presence of sinh(pt) with
p > 1 in the numerator). Thus, we have shown that fp(t) is positive definite if and only if
p ∈

[
1
2 , 1
]
, that is, (a) is proved.

To prove (b), we next check positive definiteness for gp(t). When p ∈
[

1
2 , 1
]
, we have

lim
t→±∞

gp(t) = +∞
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(where g1(t) is understood as sinh t/t) so that gp(t) cannot be positive definite. We now move
to the case p ∈ (1, 2] so that we use the expression

gp(t) = p(p− 1)
sinh2 t

sinh(pt) sinh((p− 1)t)
.

When 2 > p + (p − 1) (i.e., p < 3
2), gp(t) once again diverges as t → ±∞ and fails to be

positive definite. Thus, it remains to show positive definiteness for p ≥ 3
2 . For the extreme

value p = 3
2 we compute

g3/2(t) =
3

4
· sinh2 t

sinh(3t/2) sinh(t/2)
=

3

4
· sinh2 t

sinh2(t/2)
(
4 cosh2(t/2)− 1

)
=

3 cosh2(t/2)

4 cosh2(t/2)− 1
=

3 (cosh t+ 1) /2

2 (cosh t+ 1)− 1
=

3

4

(
1 +

1
2

cosh t+ 1
2

)
.

Since 1/
(
cosh t+ 1

2

)
is positive definite (see Lemma 3.3 (2)), so is g3/2(t). Finally, the obvious

identity
sinh2 t

sinh(pt) sinh((p− 1)t)
=

sinh2 t

sinh(3t/2) sin(t/2)
· sinh(3t/2) sin(t/2)

sinh(pt) sin((p− 1)t)

takes care of the remaining case (i.e., p ∈
(

3
2 , 2
]
). QED

6.2 Proofs for Example 4.3

We now prove the claims in Example 4.3.

Theorem 6.2. We assume ν ∈ (0, 1) and λ ∈ [0, 1]. Then, the function a1,ν,λ defined in
(4.1) belongs to K+ if and only if

λ ≤ 2
√
ν

(1 +
√
ν)

2 =
2(

ν1/4 + ν−1/4
)2 . (6.1)

Moreover, a1,ν,λ is an extreme point in K+ if and only if equality holds in (6.1).

Proof. With β = (1 + ν2)/2ν (> 1) we compute

et/2a1,ν,λ(et) = λ(β + 1)
cosh(t/2)

cosh t+ β
+ (1− λ)

1

cosh(t/2)

=
λ(β + 1) (cosh t+ 1) /2 + (1− λ) (cosh t+ β)

cosh(t/2) (cosh t+ β)

=

(
λ(β − 1)/2 + 1

)
(cosh t+ β)− λ(β2 − 1)/2

cosh(t/2) (cosh t+ β)

=
λ(β − 1)/2 + 1

cosh(t/2)
− λ(β2 − 1)/2

cosh(t/2) (cosh t+ β)
.
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Let us recall (5.13) (where the symbol λ for cosh−1 β there is changed to α to avoid the
obvious confusion) and ∫ ∞

−∞

eist dt

cosh(t/2)
=

2π

cosh(πs)
.

The Fourier transform is thus given by

1

π

∫ ∞
−∞

et/2a1,ν,λ(et) eist dt =
λ(β − 1) + 2

cosh(πs)
−
λ(β + 1)

(
1−

√
2

β+1 cos(αs)
)

cosh(πs)

=
N(s)

cosh(πs)

with the numerator

N(s) ≡ 2(1− λ) + λ
√

2 (β + 1) cos(αs).

This computation says that et/2a1,ν,λ(et) is positive definite (i.e., a1,ν,λ ∈ K+) if and only if

λ
√

2 (β + 1) ≤ 2(1− λ).

It is obviously satisfied for λ = 0 (which corresponds to the obvious positive definiteness of
et/2kext

1 (et)) while for λ > 0 the requirement is the same as√
1 + β

2
≤ 1− λ

λ
⇐⇒ λ ≤

(√
1 + β

2
+ 1

)−1

.

Finally, we compute √
1 + β

2
+ 1 =

√
(1 + ν)2

4ν
+ 1 =

(1 +
√
ν)

2

2
√
ν

,

which proves the first part.

Now, we set λ(ν) ≡ 2
√
ν/(1 +

√
ν)2 and prove the second part. It is obvious that a1,ν,λ is

not an extreme point of K+ if λ < λ(ν). To prove the converse we assume that a1,ν,λ(ν)(x) =
λk1(x) + (1− λ)k2(x) with some λ ∈ (0, 1), k1, k2 ∈ K+ and hence

ki(x) =

∫
[0,1]

kextν (x) dmi(ν), i = 1, 2,

with representing probability measures mi on [0, 1]. From the uniqueness of a representing
measure we have

λm1 + (1− λ)m2 = (1− λ(ν))δ1 + λ(ν)δν .

In particular, we have {
λm1({1}) + (1− λ)m2({1}) = 1− λ(ν),
λm1({ν}) + (1− λ)m2({ν}) = λ(ν),

(6.2)

and they sum up to

λ
(
m1({1}) +m1({ν}

)
+ (1− λ)

(
m2({1}) +m2({ν})

)
= 1. (6.3)
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On the other hand, we have mi({1}) + mi({ν}) ≤ 1 (i = 1, 2) because mi’s are probability
measures. Therefore, (6.3) guarantees mi({1}) + mi({ν}) = 1 (i = 1, 2). Hence, both of
m1,m2 are supported on the two-point set {ν, 1}, that is, of the form

mi = (1− ai)δ1 + aiδν (i = 1, 2)

with ai = mi({ν}) ∈ [0, 1]. Since ki ∈ K+ (i = 1, 2), the first part of the theorem implies ai ≤
λ(ν) and hence the second equation of (6.2) forces a1 = a2 = λ(ν), i.e., k1 = k2 = a1,ν,λ(ν).
QED

Since 2
√
ν/ (1 +

√
ν)

2
< 1

2 (with ν 6= 1), we have a1,ν,λ 6∈ K+ as long as λ ≥ 1
2 (and

ν ∈ [0, 1)). Choose the extreme value λ = λ(ν) =
(√

(β + 1)/2 + 1
)−1

with β = (1+ν2)/2ν.

Then, it is straightforward to compute

et/2a1,ν,λ0(et) =

√
β + 1

2
·

cosh t+
√

2(β + 1)− 1

cosh(t/2) (cosh t+ β)
.

It is not clear if this positive definite function is infinitely divisible.

6.3 Results on geometric bridges

We consider the geometric bridges g1,ν,λ(x), 0 ≤ λ ≤ 1, between kext
1 and kext

ν with ν ∈ [0, 1)
given by (4.8) and described in Example 4.13. Since the case ν = 0 was settled in Example
4.12:, we assume ν ∈ (0, 1). Our main result is

Theorem 6.3. For each fixed ν ∈ (0, 1), there is a critical λc (dependent on ν) such that the
function g1,ν,λ is in K+ for λ ∈

[
0, λc

]
. Moreover,

1

4
≤ λc(ν) ≤ 1

3
for each ν ∈ (0, 1). (6.4)

This will follow from a series of lemmas and theorems below, which are of independent
interest. First, observe that one can rewrite (4.8) as

g1,ν,λ(x) = x−1/2

(
2

x1/2 + x−1/2

)1−2λ
 (1 + ν)2

2ν
(
x+x−1

2 + 1+ν2

2ν

)
λ

.

and define for β = 1+ν2

2ν > 1,

fν,λ(t) ≡ et/2g1,ν,λ(et) =
1

cosh1−2λ(t/2)

(
1 + β

cosh t+ β

)λ
.

Recall that Theorem 3.4 implies that g1,ν,λ ∈ K+ if and only if fν,λ(t) is positive definite.

Lemma 6.4. The function fν,λ(t) is infinitely divisible if and only if 0 ≤ λ ≤ 1
4 .
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Proof. With α = log
(
β +

√
β2 − 1

)
> 0 by Lemma 5.4 we have

log fν,λ(t) = λ log

(
1 + β

cosh t+ β

)
+ (1− 2λ) log

(
1

cosh(t/2)

)
=

∫ ∞
−∞

(
eist − 1− ist

)
F (s) ds

with

F (s) = λ
cos(αs)

s sinh(πs)
+ (1− 2λ)

1

2s sinh(πs)
=

2λ
(
cos(αs)− 1

)
+ 1

2s sinh(πs)
.

The minimum of cos(αs) − 1 is −2 so that the above density F (s) is non-negative exactly
when −4λ+ 1 ≥ 0. QED

We prove that for fixed ν the functions g1,ν,λ increase monotonically with λ in the 4 order.

Lemma 6.5. If λ′ ≤ λ, then g1,ν,λ′ 4 g1,ν,λ

Proof. It suffices to show positive definiteness of

fν,λ′(t)

fν,λ(t)
=
g1,ν,λ′(e

t)

g1,ν,λ(et)
(6.5)

for λ′ ≤ λ. However, this ratio is equal to

1

cosh2(λ−λ′)(t/2)

(
cosh t+ β

1 + β

)λ−λ′
=

(
1

cosh2(t/2)
· cosh t+ β

1 + β

)λ−λ′
=

(
2

1 + β
· cosh t+ β

cosh t+ 1

)λ−λ′
.

On the other hand, by Lemma 5.4 (ii) we have

log

(
2

1 + β
· cosh t+ β

cosh t+ 1

)
=

∫ ∞
−∞

(
eist − 1− ist

) 1− cos(αs)

s sinh(πs)
ds

with α = log
(
β +

√
β2 − 1

)
> 0. The density (1 − cos(αs))/s sinh(πs) here is positive so

that (cosh t+ β)/(cosh t+ 1) is infinitely divisible and hence the ratio (6.5) (with λ′ ≤ λ) is
positive definite. QED

The monotonicity shown above implies that for each fixed ν, the set{
λ ∈ [0, 1] : g1,ν,λ ∈ K+

}
is a subinterval [0, λc], for which we prove that the critical value λc = λc(ν) satisfies (6.4)
above. The lower bound 1

4 follows immediately from Lemma 6.4. The upper bound follows
immediately from Theorem 6.6 below.

Theorem 6.6. When λ > 1
3 , the function g1,ν,λ does not belong to K+ for any ν ∈ (0, 1).
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Proof. By Theorem 3.4, this is equivalent to showing that fν,λ(t) is not positive definite when
λ > 1

3 , for which we will prove by contradiction. We choose a rational m
n with

1

3
<
m

n
≤ λ. (6.6)

Then by Lemma 6.5, positive definiteness of fν,λ(t) implies that so is fν,m
n

(t). Since fν,m
n

(t)
is equal to

1

cosh1− 2m
n (t/2)

(
cosh t+ β

)m
n

up to a positive constant, its nth power

1

coshk(t/2)
(
cosh t+ β

)m
with k = n − 2m would be also positive definite. However, this contradicts Theorem 5.6 (i)
because of (6.6), i.e., k < m. QED

How the critical value λc(ν) depends on ν ∈ (0, 1) seems to be an interesting problem. We
note that fν,1/3(t) is equal to

1

cosh1/3(t/2)
(

cosh t+ 1+ν2

2ν

)1/3

up to a positive scalar. Although the function
(
cosh(t/2)(cosh t+ (1 + ν2)/2ν)

)−1
is known

not to be infinitely divisible ([27, Theorem 15] and see also Theorem 5.6 (ii)), its cubic root
might be positive definite for some values of ν). However, the authors are unable to handle
this delicate phenomenon.
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A Proofs from Section 2

A.1 Proof of Proposition 2.2

The following is from the proof of [22, Corollary 2.2]. Since k is an operator convex function on
(0,∞), the function g(x) = k(1+x) is operator convex on (−1, 1). By Kraus’ theorem [29] (see
[2, Lemma III.1] or [7, Theorem V.3.10]) the divided difference function h(x) ≡ (g(x)−g(0))/x
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is operator monotone on (−1, 1). Then by Löwner’s integral representation (see [2, Theorem
II.1] or [7, Corollary V.4.5]) there exists a (unique) finite measure µ on [−1, 1] such that

h(x) = a+

∫
[−1,1]

x

1− λx
dµ(λ)

with a = h(0) = k′(1). Thus

(1 + x)k(1 + x) = (1 + x)(ax+ b) + (1 + x)

∫
[−1,1]

x2

1− λx
dµ(λ)

= (1 + x)(ax+ b) + µ({−1}) + x2

∫
(−1,1]

1 + x

1− λx
dµ(λ)

with b = k(1). Since (x+ 1)(1− λx) ≤ 1 whenever x ∈ (−1, 1) and λ ∈ (−1, 1], the Lebesgue
dominated convergence theorem implies that

lim
x↘−1

∫
(−1,1]

1 + x

1− λx
dµ(λ) = 0

so that
lim
x↘0

x k(x) = lim
x↘−1

(1 + x) k(1 + x) = µ({−1}).

A.2 Proof of Theorem 2.3

Since the divided difference function h(x) ≡ (k(x) − k(1))/(x − 1) is operator monotone on
(0,∞) as in Section A.1, it is known (see, e.g., [13, Theorem 1.9]) that there exist a (unique)
γ ≥ 0 and a (unique) positive measure µ on [0,∞) with

∫
[0,∞)(1 + λ)−1 dµ(λ) < +∞ such

that

h(x) = h(1) + γ(x− 1) +

∫
[0,∞)

x− 1

x+ λ
dµ(λ), x ∈ (0,∞).

Therefore,

k(x) = k(1) + k′(1)(x− 1) + γ(x− 1)2 +

∫
[0,∞)

(x− 1)2

x+ λ
dµ(λ), x ∈ (0,∞). (A.1)

From the symmetry property xk(x) = k
(
x−1

)
we notice that

lim
x→∞

k(x)

x
= lim

x→∞
x−2k

(
x−1

)
= lim

x↘0
x2k(x) = lim

x↘0

∫
[0,∞)

x2

x+ λ
dµ(λ) = 0

by the Lebesgue convergence theorem. On the other hand, since (x − 1)2/x(x + λ) ↗ 1 as
x↗∞, we have

lim
x→∞

1

x

∫
[0,∞)

(x− 1)2

x+ λ
dµ(λ) =

∫
[0,∞)

dµ(λ)

by the monotone convergence theorem, and hence

lim
x→∞

k(x)

x
= k′(1) + γ · (+∞) +

∫
[0,∞)

dµ(λ).
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Therefore, γ = 0, µ is a finite measure, and k′(1) +
∫

[0,∞) dµ(λ) = 0. From

(x− 1)2

x+ λ
= x− 1− (x− 1)(1 + λ)

x+ λ

it follows that

k(x) = k(1)−
∫

[0,∞)

(x− 1)(1 + λ)

x+ λ
dµ(λ)

= k(1) +

∫
[0,∞)

(
1 + λ

x+ λ
− 1

)
(1 + λ) dµ(λ),

which is operator monotone decreasing since so is (1 + λ)/(x + λ). Moreover, since (x −
1)(1 + λ)/(x + λ) ↗ 1 + λ as x ↗ ∞, we have 0 ≤ k(1) −

∫
[0,∞)(1 + λ) dµ(λ) so that∫

[0,∞)(1 + λ) dµ(λ) ≤ k(1) < +∞. Now, defining a finite positive measure ν on [0,∞] by

dν(λ) ≡ (1 + λ) dµ(λ) on [0,∞), ν({∞}) ≡ k(1)−
∫

[0,∞)
(1 + λ) dµ(λ),

we write

k(x) =

∫
[0,∞]

1 + λ

x+ λ
dν(λ), x ∈ (0,∞), (A.2)

where (1 + λ)/(x+ λ) ≡ 1 for λ =∞. Letting dν̃(λ) ≡ dν(λ−1) on [0,∞] we also write

k(x) =

∫
[0,∞]

1 + λ−1

x+ λ−1
dν̃(λ) =

∫
[0,∞]

1 + λ

1 + λx
dν̃(λ)

so that

k
(
x−1

)
=

∫
[0,∞]

x(1 + λ)

x+ λ
dν̃(λ).

This is the familiar integral expression of the operator monotone function k
(
x−1

)
with a

unique representing measure ν̃. Hence the measure ν satisfying (A.2) is unique (this fact
itself is also well-known). Since

k(x) = x−1k
(
x−1

)
=

∫
[0,∞]

1 + λ

1 + λx
dν(λ) =

∫
[0,∞]

1 + λ

x+ λ
ν̃(λ),

it follows that ν = ν̃. Define

dm(λ) ≡ 2dν(λ) on [0, 1), m({1}) ≡ ν({1}),

to obtain

k(x) =

∫
[0,1)

(
1 + λ

x+ λ
+

1 + λ−1

x+ λ−1

)
dν(λ) +

2

1 + x
ν({1})

=

∫
[0,1]

1 + x

(x+ λ)(1 + λx)
· (1 + λ)2

2
dm(λ).
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Finally, note that the uniqueness of m is immediate from that of ν in (A.2).

The integral expression (A.1) was also given in [33], which was considerably extended
in [13, Theorem 5.1]. There is another route to prove the two theorems in Section 2.1. It
was proved in [4, Theorem 3.1] that a function k : (0,∞) → (0,∞) is operator monotone
decreasing if and only if it is operator convex and non-increasing in the numerical sense.
It is easy to see that if an operator convex function k satisfies the symmetry condition
xk(x) = k

(
x−1

)
, then it is non-increasing numerically. Hence we have the implication (a)

⇒ (b) of Theorem 2.4. All other parts of Theorem 2.4 are plain or well-known. Then we
can prove Theorem 2.3 by applying the familiar integral expression to a symmetric operator
monotone function k

(
x−1

)
as above (indeed, this part of the proof is the same as the proof

of [31, Theorem 4.4]).

B Contraction bounds

As stated in (2.7), monotone Riemannian metrics contract under the action of quantum
channels, i.e., CPT (CP and trace-preserving) maps. It is well-known [21, 44, 33, 55] that
the quasi-entropies Hg(A,B) ≡ Hg(A,B, I) given by (2.8) with K = I contract under CPT
maps, i.e.,

Hg

(
Φ(A),Φ(B)

)
≤ Hg(A,B), A,B ∈ Pd,

whenever g is operator convex on (0,∞). In the rest of this subsection let g(x) = (1−x)2k(x)
with k ∈ K as in Section 2.4. In applications, the maximal contraction rate plays an important
role, which motivated in [33] the following definitions of contraction coefficients :

ηRelEnt
k (Φ) ≡ sup

ρ,γ∈Dd, ρ 6=γ

Hg

(
Φ(ρ),Φ(γ)

)
Hg(ρ, γ)

and

ηRiem
k (Φ) ≡ sup

ρ∈Dd
sup

X∈H0
d, X 6=0

ΓkΦ(ρ)

(
(Φ(X),Φ(X)

)
Γkρ(X,X)

.

A contraction coefficient was also defined [51] for the trace norm ‖X‖1 ≡ Tr |X| = Tr (X∗X)1/2

distance which also contracts under CPT maps, i.e.,

ηDob(Φ) ≡ sup
ρ,γ∈Dd, ρ 6=γ

‖Φ(ρ− γ)‖1
‖ρ− γ‖1

,

where the superscript reflects the fact that this is the quantum analogue of the classical
Dobrushin coefficient.

For any CPT map Φ, it was shown in [33, Theorem IV.2] that

ηRiem
k (Φ) ≤ ηRelEnt

k (Φ) ≤ 1 for any k ∈ K,

and in [54, Theorems 13, 14] that

ηRelEnt
x−1/2 (Φ) ≤ ηDob(Φ) ≤

√
ηRiem
k (Φ) (B.1)
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when k(x) is given by (4.4). The upper bound in (B.1), given in [51, Theorem 3] for the
particular case kext

0 (x) = (1 + x)/2x and in [54] for k = k̂H
α in Example 4.5, holds for any

k ∈ K. Our work here was motivated by the lower bound in (B.1) based on the following
observations from [33, 54]. Applying the max-min principle to the eigenvalue problem(

Φ̂ ◦ Ωk
Φ(ρ) ◦ Φ

)
(X) = λΩk

ρ(X) (B.2)

(for which X = I always yields the largest eigenvalue λ1 = 1) implies that

ηRiem
k (Φ) = sup

ρ∈Dd
λk2(Φ, ρ),

where Φ̂ is the adjoint of Φ (with respect to the Hilbert-Schmidt inner product) and λk2(Φ, ρ)
denotes the second largest eigenvalue of (B.2). This is equivalent to the eigenvalue problem

Υk
ρ,Φ(Φ(X)) =

(
Ωk
ρ

)−1 ◦ Φ̂ ◦ Ωk
Φ(ρ)(Φ(X)) = λX

for the trace-preserving map Υk
ρ,Φ ≡

(
Ωk
ρ

)−1 ◦ Φ̂ ◦ Ωk
Φ(ρ) restricted on H0

d. When Υk
ρ,Φ is

positivity-preserving,

λk2(Φ, ρ) = sup
X∈H0

d

‖Υk
ρ(Φ(X))‖1
‖X‖1

≤ sup
X∈H0

d

‖Φ(X)‖1
‖X‖1

= ηDob(Φ).

A sufficient condition for Υk
ρ,Φ to be positivity-preserving is that both

(
Ωk
ρ

)−1
and Ωk

ρ are

CP,5 which we have seen holds if and only if k(x) = x−1/2. There may be particular maps
Φ for which Υk

ρ,Φ is positivity-preserving even when Ωk
ρ and/or its inverse are not. Whether

or not the bound ηRelEnt
x−1/2 (Φ) ≤ ηDob(Φ) holds for other k ∈ K even though Υk

ρ,Φ is not
positivity-preserving is an open question.

C Some pedestrian arguments

In this section we present, for the benefit of non-experts, some very pedestrian ways to see
certain well-known results used in this paper.

C.1 Functional calculus for LD and RD

It is basic that when D has the spectral decomposition D =
∑

j wj |ξj〉〈ξj | (where |ξj〉〈ξj |
is the physicists’s notation for the spectral projection onto the eigenspace of the eigenvector
|ξj〉), ϕ(D) =

∑
j ϕ(wj)|ξj〉〈ξj | for any function ϕ on (0,∞). It then follows that

Lϕ(D)(X) = ϕ(LD)(X) =
∑
j

ϕ(wj)|ξj〉〈ξj |X and

Rψ(D)(X) = ψ(RD)(X) =
∑
j

ψ(wj)X|ξj〉〈ξj |.

5Unfortunately, in [33] it was claimed that Υk
ρ is positivity-preserving for k(x) = log x/(x − 1). Although

Ωkρ given by (1.1) is clearly positivity-preserving, the inverse
(
Ωkρ

)−1
given by (1.2) is not.
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Then the product

(ψ(RD)ϕ(LD))(X) =
∑
i,j

ϕ(wi)ψ(wj) |ξi〉〈ξj | 〈ξi, Xξj〉.

Since LD and RD commute, it follows that for an arbitrary function φ(x, y)

φ(LD, RD)(X) =
∑
i,j

φ(wi, wj) |ξi〉〈ξj | 〈ξi, Aξj〉

which is exactly the Hadamard product of A ◦X when aij = φ(wi, wj) and X is represented
in the basis |ξj〉.

C.2 Integral representation and inversion of BKM operator

Although it is well-known that Ωk
D and its inverse for k(x) = log x/(x− 1) are given by (1.1)

and (1.2), most proofs rely on an explicit expansion in eigenvalues as in [34]. Using LD and
RD allows one to see this more directly in terms of integrals and anti-derivatives starting
from the elementary formula

log x =

∫ ∞
0

(
1

1 + u
− 1

x+ u

)
du

to write (
logLDR

−1
D

)
(X) =

(
logLD − logRD

)
(X) =

(
LlogD −RlogD

)
(X)

=

∫ ∞
0

(
X

1

D + tI
− 1

D + tI
X

)
dt

=

∫ ∞
0

1

D + tI
(DX −XD)

1

D + tI
dt

=

∫ ∞
0

1

D + tI
(LD −RD)(X)

1

D + tI
dt

from which it follows that

Ωk
D(X) =

logLD − logRD
LD −RD

(X) =

∫ ∞
0

1

D + tI
X

1

D + tI
dt.

Now, observe that∫ 1

0
Dt
[
(logD)X −X logD

]
D1−t dt =

∫ 1

0

d

dt
DtXD1−t dt

= DX −XD = (LD −RD)(X)

so that
∫ 1

0 D
t Ωk

D(X)D1−t dt = X, which implies (1.2), i.e.,

(
Ωk
D

)−1
(Y ) =

∫ 1

0
Dt Y D1−t dt.
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