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Very many clones above the unary clone

Martin Goldstern, Gábor Sági, and Saharon Shelah

Abstract. Let c := 2ℵ0 . We give a family of pairwise incomparable clones on N with
2c members, all with the same unary fragment, namely the set of all unary operations.

We also give, for each n, a family of 2c clones all with the same n-ary fragment,
and all containing the set of all unary operations.

1. Introduction

In this paper, X will always be a countably infinite set. For a fixed base

set X, an operation on X is a function f : Xn → X for some positive natural

number n. A clone on X is a set of operations that contains all projection

functions and is closed under composition. The set of all clones on X ordered

by inclusion forms a complete lattice. (The survey paper [3] gives some back-

ground about clones, and in particular collects many recent results concerning

clones on infinite sets.)

We write O(n) for the set XXn

of all n-ary operations. For a clone C,

call C(n) := C ∩ O(n) the n-ary fragment of C. The unary fragment C(1)

is a submonoid of the monoid XX of all unary operations. For any monoid

M ⊆ XX , the set of all clones C with C(1) = M is called the monoidal interval

of M ; it has a least element, the clone generated by M , and a largest element

Pol(M), the set of all operations f satisfying f(m1, . . . , mk) ∈ M whenever

m1, . . . , mk ∈ M . (Here, f(m1, . . . , mk) is the unary operation mapping x to

f(m1(x), . . . , mk(x)).)

In [2], we showed that on X = N there are uncountably many clones con-

taining all unary operations (but only two coatoms, see [1], [4]); in other words,

the monoidal interval of XX is uncountable. Pinsker in [6] has constructed (on

arbitrary infinite base sets X) different monoids whose monoidal intervals have

various sizes, among them also one whose monoidal interval has size 22|X|

.

We will show here that (for |X| = ℵ0) the interval associated with the

monoid XX has the largest possible size: 2c. We will also construct, for any
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natural number n ≥ 1, many clones which share their n-ary fragment with 2c

other clones.

The rest of this paper is organized as follows. In Subsection 1.1, we an-

nounce the main results of the paper in a more precise way. Before doing so,

we need further technical preparations. In this subsection, we also present

some preliminary observations which we will use later. Section 2, is devoted

to the proof of Theorem 1.1: if X is a countably infinite set, then there exist

2c clones on X such that each of these clones contain all unary operations

on X. This is the first main result of the paper. Our construction is based

on an Erdős type probabilistic argument. For further motivation and intuitive

explanation about our method, we refer to the beginning of Section 2. Fi-

nally, in Section 3, we prove Theorem 1.3 which we consider the second main

result of the paper (for a detailed formulation of Theorem 1.3, we refer to

Subsection 1.1 below).

1.1. Main results. The first main result of the paper is as follows.

Theorem 1.1. Let X = N be countably infinite. Then there are 2c clones

on X containing the monoid of all unary operations.

To generalize the theorem also to larger arities, we need the following tech-

nical definition:

Definition 1.2. Let α ∈ R. An operation f : Xd → X is defined to be α-

modest iff for all natural numbers N and all Y ⊆ X of cardinality N , the range

of f↾Y d has at most αN elements.

• f is modest iff f is α-modest for some α.

• We call a clone C modest iff all operations in C are modest.

• We write M for the set of all modest operations.

Note that M is a clone (the greatest modest clone) and that all unary

operations are modest; in addition, all operations with finite range are modest,

as well.

Theorem 1.3. Let d ≥ 1 and let C be a modest clone on N containing all

d-ary operations with range {0, 1}. Then there are 2c many clones D with

D ∩ O(d) = C ∩ O(d).

Taking d = 1 and C the clone of all essentially unary operations, we get

Theorem 1.1 as a special case.

Machida [5] has defined a natural metric on clones: The distance between

two clones is 1/n, where n is minimal with C ∩ O(n) &= D ∩ O(n). In this

language, Theorem 1.3 says that certain sets of clones can be arbitrarily small

from the metric/topological point of view—and still large when measured by

cardinality.

Let F be a set of operations. We write 〈F 〉 for the smallest clone contain-

ing F . If C is a clone, then we may write 〈F 〉C instead of 〈F ∪ C〉. Similarly,
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for F = {f, g, . . .}, we write 〈f, g, . . .〉C instead of 〈{f, g, . . .}〉C . Note that

f ∈ 〈F 〉C iff there is a finite subset F0 ⊆ F with f ∈ 〈F0〉C .

Both sections of this paper use the following easy fact:

Lemma 1.4. Let C be a clone, and let (fi : i ∈ I) be a family of operations

which is independent over C (which means that fi /∈ 〈fj : j &= i〉C for all

i ∈ I). For J ⊆ I, let CJ = 〈fi : i ∈ J〉C .

(a) The map J *→ CJ is a 1-1 order-preserving map from P(I), the power set

of I, into the interval [C, 〈fi : i ∈ I〉C ] in the clone lattice (both ordered

by inclusion).

(b) If I has cardinality κ, then {CJ : J ⊆ I} contains 2κ many elements and

it is order-isomorphic with P(I).

(c) Assume moreover that {fi : i ∈ I} ⊆ Pol(C ∩O(d)). (Here, Pol(C ∩O(d))

is the set of all operations f with f(c1, . . . , cm) ∈ C ∩ O(d) whenever

c1, . . . , cm ∈ C ∩ O(d).) Then CJ ∩ O(d) = C ∩ O(d) for all J ⊆ I.

Proof. (a) and (b) are clear. The assumption of (c) implies

C ⊆ 〈fi : i ∈ I〉C ⊆ Pol(C ∩ O
(d)),

and by definition, the clones C and Pol(C ∩ O(d)) have the same d-ary frag-

ment D. Consequently, the d-ary fragment of CJ is D, as well. �

2. Sparse graphs and modest operations

Definition 2.1. Let (V,E) be a graph (i.e., E ⊆ [V ]2, where [V ]2 is the set of

2-element subsets of V ). We say that (V,E) is (k, l)-sparse iff for every U ⊆ V

of size at most k, the induced subgraph on U has at most l edges.

We note that there is an ambiguity in the literature about the notion of

sparse graphs. Some authors use this name for graphs with low maximum

average degree, some others define a graph to be (k, l)-sparse iff no subset of n

vertices spans more than kn − l edges. Our notion is slightly different from

all of these. We also note that by the size of a graph we mean the cardinality

of the set of its vertices (and not, as sometimes done in graph theory, the

cardinality of the set of its edges).

In order to help the reader, in this paragraph we are providing a brief and

informal explanation for the technical details of the rest of this section. In

Lemma 2.3 below, we will show that for all M , for all large enough N , and for

all 0 < ε < 1
2 , there exist graphs G on N vertices whose M -sized subgraphs

are (k, l)-sparse for certain k and l (where M is small relative to N); while

at the same time, these G have “many” edges: the number of their edges is

at least N1+ε. Using this lemma, we will be able to construct functions on

finite domains having large range, but the range of their restrictions to small

sets remains small; for the details see Lemma 2.6. Carefully “gluing together”

an infinite sequence of such operations we obtain a set S of operations on N
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such that S is independent (over O(1), see Lemma 1.4) and has cardinality c.

Combining this with Lemma 1.4, the proof of Theorem 1.1 will follow quickly.

Definition 2.2. Let M , N be natural numbers, and 0 < ε < 1
2 . We write

M ≪ε N iff M · N2ε−1 < 1/10.

Lemma 2.3. Let 0 < ε < 1/2 and let 1 ≤ M ≪ε N . Then there is a graph

G = (V,E) with N vertices and more than N1+ε edges that is (k, 2k)-sparse

for all k " M .

Proof. We will use an Erdős type probability argument: we will define a suit-

able probability measure on all graphs on N vertices and then show that the

set of graphs not satisfying the conclusion has small measure.

We note that a somewhat stronger form of the lemma follows quickly from

the Central Limit Theorem. For completeness, we present an elementary proof.

Let p := 4N−1+ε and let µ be the probability measure on {0, 1} with

µ({1}) = p. Fix a set V of N vertices; there are N(N−1)
2 potential edges.

Via characteristic functions, we identify the set of all graphs on V with the

product space {0, 1}
N(N−1)

2 , equipped with the product probability structure.

In order to keep notation simple, the product measure will also be called µ.

In other words, for each potential edge e we flip a weighted coin (indepen-

dent of all other coin flips) and with probability p we decide to add e to our

graph. The expected number of edges is N(N−1)
2 · p ≈ 2N1+ε, with variance

N(N−1)
2 p(1 − p) ≈ 2N1+ε. By Chebyshev’s inequality, most graphs will have

more than N1+ε edges. More precisely, the measure of the set of graphs with

fewer than N1+ε edges is smaller than

N(N−1)
2 p(1 − p)

(N(N−1)
2 · p − N1+ε)2

≈
2N1+ε

(N1+ε)2
= 2N−1−ε < 1/2,

because, by the assumptions of the lemma, we have 4 ≤ N .

We now estimate the measure of the set G of all graphs on V which are not

(k, 2k)-sparse for some k " M .

For any set E′ ⊆ [V ]2, we let GE′ be the set of all graphs whose edges

include the set E′. Clearly, µ(GE′) = (4N−1+ε)|E
′|.

For each graph (V,E) which is not (k, 2k)-sparse, there exists a set V ′

of k vertices and a set E′ ⊆ [V ′]2 with 2k elements such that E ⊇ E′, i.e.,

(V,E) ∈ GE′ . So the measure of all those graphs is bounded above by
∑

V ′⊆V
|V ′|=k

∑

E′⊆[V ′]2

|E′|=2k

µ(GE′).

The crucial component in this sum is the summation over all subsets of size k;

this will be estimated by a factor Nk; the other summations will be replaced

by factors that depend on k only. Altogether, we get an upper bound

Nk(k2)2k(4N−1+ε)2k = (2k)4kNkN−2k(1−ε) = (2k)4kNk(2ε−1) ≈ Nk(2ε−1).
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Now summing over all k " M yields

M
∑

k=1

Nk(2ε−1) " M · N2ε−1 < 1/10,

as M ≪ε N . Hence, the set of graphs satisfying the conclusion has mea-

sure > 0, so it is nonempty. �

Lemma 2.4. Let 0 < ε < 1
2 . There is an increasing sequence 〈Nℓ : ℓ ∈ N〉

of natural numbers and a sequence 〈(Vℓ, Eℓ) : ℓ ∈ N〉 of graphs such that the

following hold:

(1) max{N2
ℓ−1 + 1, 23Nℓ−1 , 1 + |Eℓ−1|} < Nℓ.

(2) Vℓ = [Nℓ−1, Nℓ).

(3) |Eℓ| ≥ N1+ε
ℓ .

(4) For all k " 2ℓ+1Nℓ−1, the graph (Vℓ, Eℓ) is (k, 2k)-sparse.

Proof. We can choose Nℓ by recursion; given Nℓ−1, Lemma 2.3 tells us how

large Nℓ has to be. In more detail, let ε′ be such that ε < ε′ < 1
2 . Then

by Lemma 2.3, there exist N ′
ℓ and a graph G with N ′

ℓ vertices and more than

(N ′
ℓ)

1+ε′

edges which is (k, 2k)-sparse for all k ≤ 2ℓ+1Nℓ−1. Enlarging N ′
ℓ if

necessary, we may assume that

• (1) holds (more precisely, N ′
ℓ is larger than the left hand side of (1)), and

• (1 + ε) ln(2) < (ε′ − ε) ln(N ′
ℓ) and 2Nℓ−1 ≤ N ′

ℓ.

Take Nℓ := Nℓ−1+N ′
ℓ. Let Gℓ be an isomorphic copy of G with Vℓ = [Nℓ−1, Nℓ).

Now (2) and (4) of the statement clearly hold for Gℓ. To check (3), it is enough

to show that N1+ε
ℓ ≤ (N ′

ℓ)
1+ε′

, that is,

ln(N1+ε
ℓ ) ≤ ln((N ′

ℓ)
1+ε′

). (∗)

The following calculation proves (∗):

ln(N1+ε
ℓ ) = (1 + ε) ln(Nℓ−1 + N ′

ℓ) ≤ (1 + ε) ln(2N ′
ℓ)

= (1 + ε) ln(N ′
ℓ) + (1 + ε) ln(2) ≤ (1 + ε) ln(N ′

ℓ) + (ε′ − ε) ln(N ′
ℓ)

= (1 + ε′) ln(N ′
ℓ) = ln((N ′

ℓ)
1+ε). �

So our graphs (Vℓ, Eℓ) have “many edges” on a large scale (i.e., looking

at the whole graph), but only “few edges” on a small scale (looking at small

induced subgraphs).

Definition 2.5. A d-ary (partial) function f : V d → N is defined to be (k, l)-

modest iff for any U0, . . . , Ud−1 ⊆ V of size at most k, f↾(U0 × · · ·×Ud−1) has

at most l values.

Lemma 2.6. Let (V,E) be a graph which is (k, 2k)-sparse for all k " M . Let

f : V × V → N be a symmetric function which takes different values on all

edges in E and is constantly zero outside E. Then f has at least |E| values

but is (k, 5k)-modest for all k " M/2.
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Proof. For each U1, U2 ⊆ V of size k " M/2, E ∩ (U1 ∪U2)
2 has at most 2 · 2k

edges, so f can take at most 4k + 1 values on U1 × U2 ⊆ (U1 ∪ U2)
2. �

Corollary 2.7. There is an increasing sequence 〈Nℓ : ℓ ∈ N〉 of natural num-

bers and a sequence 〈sℓ : ℓ ∈ N〉 of operations sℓ : [Nℓ−1, Nℓ)
2 → N satisfying

the following:

(1) max{N2
ℓ + 1, 23Nℓ , 1 + |Eℓ|} < Nℓ+1.

(2) Each sℓ is (k, 5k)-modest for all k " 2ℓNℓ−1.

(3) Each sℓ is (k, 5k)-modest for all k ≥ Nℓ+1.

(4) For all ℓ, the range of sℓ has more than N
4/3
ℓ elements.

Proof. Let ε = 1
3 and let 〈Nℓ : ℓ ∈ N〉 and 〈(Vℓ, Eℓ) : ℓ ∈ N〉 be the sequences

obtained from Lemma 2.4. In addition, for every ℓ ∈ N, let sℓ be the operation

obtained from (Vℓ, Eℓ) by Lemma 2.6. We claim that this choice satisfies the

statement.

(1) follows from Lemma 2.4(1). Combining Lemma 2.4(4) with Lemma 2.6,

one obtains (2). By Lemma 2.6, the range of sℓ has cardinality at most

|Eℓ| + 1 < Nℓ+1. Hence, (3) holds trivially because of Lemma 2.4(1). Fi-

nally, (4) follows from Lemma 2.4(3) (combined with the choice of ε and with

Lemma 2.6). �

From now on we fix sequences 〈Nℓ : ℓ ∈ N〉 and 〈sℓ : ℓ ∈ N〉 as above.

Definition 2.8. For every A ⊆ N, let sA : N × N → N be defined from sℓ as

follows: sA is
⋃

ℓ∈A sℓ, extended by the value 0 wherever it is undefined (i.e.,

sA↾[Nℓ−1, Nℓ) × [Ni−1, Ni) is constantly zero for ℓ &= i).

Lemma 2.9.

(1) If ℓ < i, then si is (k, 5k)-modest for all k " 2ℓNℓ.

(2) If ℓ /∈ A, then sA is (k, 12k)-modest for all k in [Nℓ, 2
ℓNℓ].

Proof. First we prove (1). By Lemma 2.7(2), si is (k, 5k)-modest for all k "

2iNi−1, so certainly also for all k " 2ℓNℓ.

Now we prove (2). Let X, Y be sets of size k, with k in [Nℓ, 2
ℓNℓ]. Let

X− = X ∩ Nℓ, X+ = X \ X−, and define Y−, Y+ similarly. We have

sA[X × Y ] ⊆ sA[X− × Y−] ∪ sA[X+ × Y+] ∪ {0}.

Because ℓ &∈ A, sA is constantly 0 on (X− × Y−) \ (Nℓ−1 × Nℓ−1). Hence, the

first set has size at most N2
ℓ−1 " Nℓ − 1 " k − 1.

To estimate the size of sA[X+×Y+]∪{0}, we partition X+ as X+ =
⋃

i>ℓ Xi

with Xi := X+ ∩ [Ni, Ni+1), similarly for Y+.

We can find sets X ′
i, Y

′
i ⊆ [Ni, Ni+1), both of size qi := max(|Xi|, |Yi|), with

Xi ⊆ X ′
i and Yi ⊆ Y ′i . Note that qi " |Xi| + |Yi|, so

∑

i qi " 2k.

We have sA[X+ × Y+] ∪ {0} ⊆ {0} ∪
⋃

i>ℓ si[X
′
i × Y ′i ]. By (1), the function

si is (qi, 5qi)-modest, so the sets si[X
′
i × Y ′i ] are at most of size 5qi. Hence,

sA[X+ × Y +] has size at most 11k. So sA[X × Y ] has size at most 12k. �
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Definition 2.10. Let A1, . . . , An ⊆ N. A (binary) term in the operations

sA1 , . . . , sAn
is a formal expression involving (some of) the variables x, y, (some

of) the operations sA1
, . . . , sAn

, as well as any unary operations. (We trust

the reader to supply a formal definition by induction.)

The depth of a term τ is defined inductively as follows:

• x and y have depth 0.

• For any unary operation u, the depth of u(τ) is 1 more that the depth

of τ .

• Let m be the maximum of the depths of τ1 and τ2. Then the depth

of sAi
(τ1, τ2) is m + 1.

Every term naturally induces a binary operation on N. (Note that the

same operation may be represented by different terms, even terms of different

depths.)

Lemma 2.11. Let τ be a term in the operations sA1
, . . . , sAn

of depth d. Let

ℓ > d log2(12) and assume ℓ /∈ A1 ∪ · · · ∪ An. Then we have:

(1) The operation represented by τ is (Nℓ, 12dNℓ)-modest.

(2) In particular, τ cannot represent the operation sℓ, or sB for any B con-

taining ℓ.

Proof. We start to show (1) by induction on d (or more precisely, on τ).

If τ is x or y, then this is trivial.

If τ = u(τ1), then again the range of u(τ1) is not larger than the range of τ1.

Assume τ = sAi
(τ1, τ2), where the depths of τ1 and τ2 are at most d.

Observe the following:

• Both τ1 and τ2 are (Nℓ, 12dNℓ)-modest by the inductive assumption.

• By Lemma 2.9(2), sAi
is (12dNℓ, 12 ·12dNℓ)-modest. (Recall that we have

d log2(12) " ℓ, so 12dNℓ " 2ℓNℓ.)

Now let U1, U2 ⊆ N be two sets, both of size at most Nℓ. Then, according

to the previous observation, the ranges of τ1↾U1 and τ2↾U2 have size at most

12dNℓ. Hence, again by the previous observation, the cardinality of the range

of τ↾U1 × U2 is at most 12 · 12dNℓ = 12d+1Nℓ, as desired.

Now we turn to prove (2). By assumption, 12d " 2ℓ " 2Nℓ−1 . By (1) of

Corollary 2.7, we have 2Nℓ−1 < N
1
3

ℓ , so 12dNℓ " 2Nℓ ·Nℓ < N
4
3

ℓ . Hence, by (1)

of the present lemma, |range(τ↾Nℓ × Nℓ)| ≤ 12dNℓ < N
4/3
ℓ , while, according

to Corollary 2.7 (4), we have |range(sB↾Nℓ)| > N
4/3
ℓ . �

Corollary 2.12. Let B, A1, . . . , An be pairwise distinct subsets of N such that

B \ (A1 ∪ · · · ∪ An) is infinite. Then sB /∈ 〈sA1
, . . . , sAn

〉O(1) .

Proof. Assume, seeking a contradiction, that sB ∈ 〈sA1
, . . . , sAn

〉O(1) . Then

there exists a term τ in A1, . . . An representing sB . Let d be the depth of τ .

Then there exists ℓ ∈ B \ (A1 ∪ · · · ∪ An) with ℓ > d log2(12). Then by

Lemma 2.11(2), τ does not represent sB . This contradiction completes the

proof. �
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Fact 2.13. There exists an independent family (Ar : r ∈ R) of c subsets of N.

That is, for all disjoint finite subsets I+, I− ⊆ R, the set
⋂

r∈I+

Ai ∩
⋂

r∈I−

(N \ Ai)

is nonempty and even infinite.

Proof. This is well known. For example, replacing the base set N by Q[x], the

set of all polynomials with rational coefficients, we can take Ar := {p(x) ∈

Q[x] : p(r) > 0}. �

Proof of Theorem 1.1. Choose an independent family (Ar : r ∈ R) of subsets

of N. Then for all finite S ⊆ R and all r ∈ R\S, the set Ar\
⋃

s∈S As is infinite.

By Corollary 2.12, {sAr
: r ∈ R} is a family of operations independent over

O(1): for any r ∈ R, we have sAr
&∈ 〈sAp

: p ∈ R \ {r}〉M∩O(d) . By Lemma 1.4,

we are done. �

3. Higher arities

According to Definition 1.2, we say that an operation f : Xd → X is modest

iff there is some k such that for all N > 1, f is (N, kN)-modest, i.e., the set

f [X1 × · · · × Xd] has at most kN elements whenever each set Xi ⊆ X has at

most N elements. We call a clone C modest if all operations in C are modest.

As we already observed in Subsection 1.1, the set of all modest operations

is a clone (the greatest modest clone) and all unary operations are modest, as

are all operations with finite range.

This section is devoted to the second main result of the paper, which is

Theorem 1.3. We postpone the proof of this theorem to the end of this section.

The number d will be fixed throughout this section.

In the previous section, we defined the notion of (binary) terms. For tech-

nical reasons, in the present section we need a more precise, and somewhat

more general definition of terms. Throughout the present section, we use the

word term in the sense of the following definition.

Definition 3.1.

• We fix a language with object variables xi for i ∈ N and formal operation

variables fi
j for i, j ∈ N, where the superscript i denotes the formal arity

of fi
j . Terms are defined as usual: each object variable is a term, and

whenever t1, . . . , ti are terms and j ∈ N, then f
i
j(t1, . . . , ti) is a term, as

well.

• The set of all terms can be enumerated as {τ1, τ2, . . .} such that τm con-

tains at most m occurrences of operation symbols, and each operation

symbol occurring in τm is at most m-ary.

• Let τ be a term. We say that a family of functions ḡ = (gi
j : (i, j) ∈ S) is

suitable for τ iff each gi
j has arity i and (i, j) ∈ S whenever the variable

f
i
j appears in τ .
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• Let τ be a term and suppose ḡ = (gi
j : (i, j) ∈ S) is a family of operations

on X which is suitable for τ . Then plugging in the gi
j for the f

i
j will yield

an operation on X which we denote by τ [ḡ].

Definition 3.2. Let d ≥ 2. For any set V , we let [V ]d be the set of d-element

subsets of V . The structure (V,E) is defined to be a d-uniform hypergraph iff

E ⊆ [V ]d. The elements of E are called the hyperedges of (V,E).

Every V ′ ⊆ V naturally induces a hypergraph (V ′, E ∩ [V ′]d), which we

may also denote by (V ′, E↾V ′).

We say that (V,E) is (k, l)-sparse iff for every Z ⊆ V of size at most k, the

hypergraph (Z, E↾Z) has at most l hyperedges.

Definition 3.3. The support of a partial function f is the set of elements in

the domain of f where the value of f is not equal to 0.

Lemma 3.4. Fix d, k, ε. Let V be a set of cardinality N and let (V,E) be

a (d + 1)-uniform hypergraph with at least Nd+ε hyperedges. If N is large

enough, then there is an operation s : V d+1 → V whose support is contained

in E and whose values are in {0, 1} such that for any set W with V ⊆ W and

|W | ≤ kN , the following holds: whenever τ ∈ {τ1, . . . , τk}, and ¯̄g = (gi
j)i,j is

a suitable sequence of operations for τ on W with each gi
j being

• either of arity at most d

• or of arity d + 1 with support of size at most 3N log2 N ,

then τ [ḡ] does not represent s. In particular, there exists e ∈ E such that s

and τ [ḡ] have different values on e.

If N satisfies the above conditions, then we will say that N is k-large.

Proof. Let W be a set containing V with |W | = kN . Clearly, it is enough to

show that there exists an operation s : V d+1 → V satisfying the statement for

this particular W . There are only (kN)(kN)d

d-ary operations on W , and only

k terms to be considered. A support is a subset of [W ]d+1; there are fewer

than
(

(kN)d+1

3N log2 N

)

" (kN)3N log2(N)(d+1) possible supports of size 3N log2 N . For

any fixed support of size 3N log2 N , there are at most (kN)3N log2 N possible

operations that have this support. By the enumeration fixed in Definition 3.1,

each term τi (i ≤ k) contains at most k many operation variables. Counting

the possibilities of choosing k many d-ary operations and k many (d + 1)-ary

operations with support of size at most 3N log2 N , one can see that altogether

there are fewer than

t := (kN)(kN)d·k · k · (kN)3N log2(N)(d+1)k · (kN)3N log2(N)k

operations represented by such terms. We may assume k " log2 N . Estimating

k by N or by log2 N , one obtains

t ≤ (log2 N) · (N · log2 N)log2 N ·(N log2 N)d

· N6N(d+1) log2
2 N · N6N log2

2 N .

Recall that for any δ > 0 and d ∈ N and for large enough N , one has logd
2 N ≤

N δ. Let 0 < δ < ε. Then for large enough N , each of the four factors of t
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can be estimated by N
1
4 ·N

d+δ

. Consequently, for large enough N , we have

t < NNd+δ

= 2Nd+δ·log2 N . This number (for large enough N), is certainly less

than 2Nd+ε

.

But there are at least 2Nd+ε

possible operations on E with values in {0, 1}.

So not all of them are representable. �

Lemma 3.5. Let 0 < ε < 1/2. Then there are sequences N̄ = 〈Nℓ : ℓ < N〉,

Ē = 〈Eℓ : ℓ < N〉 with the following properties:

(1) N̄ is strictly increasing and in fact Nd+1
ℓ−1 < Nℓ, 2ℓ ≤ Nℓ, and Nℓ is ℓ-large

for all ℓ. We will write Vℓ for the interval [Nℓ−1, Nℓ).

(2) (Vℓ, Eℓ) is a (d+1)-uniform hypergraph with more than Nd+ε
ℓ hyperedges.

(3) For every k " N2
ℓ−1, (Vℓ, Eℓ) is (k, 2k)-sparse.

Proof. This proof is only a slight variation of the proof of Lemma 2.7, so we

will be brief.

Assume Nℓ−1 has already been defined. We will choose Nℓ after a certain

amount of extra work such that Nℓ ≫ Nℓ−1. Assume, for a moment, that Nℓ

is already defined. Let Vℓ := [Nℓ−1, Nℓ). Let J be the cardinality of the set

[Vℓ]
d+1 of all potential hyperedges: J =

(

Nℓ−Nℓ−1

d+1

)

.

On the set of all (d + 1)-uniform hypergraphs (which we may identify

with 2J), we define a product measure by declaring the probability of each

potential hyperedge to be p := 2(d + 1)! · Nε−1.

So the expected number of hyperedges of a random hypergraph is pJ =

2(d+1)!·Nε−1
ℓ ·

(

Nℓ−Nℓ−1

d+1

)

≈ 2Nε−1
ℓ ·Nd+1

ℓ = 2Nd+ε
ℓ . Again using Chebyshev’s

inequality, we see that with high probability a random hypergraph will have

more than Nd+ε
ℓ hyperedges.

Now we estimate the probability that there is a sub-hypergraph with k "

N2
ℓ−1 vertices which has more than 2k hyperedges, and we will show that it is

very low.

For each potential k, there are at most
(

Nℓ

k

)

" Nk
ℓ subsets; for each such

subset S, the probability that a given set H of hyperedges with j := |H| ≥ 2k

appears as a subset of E↾S is " pj " p2k. There are
(

kd

j

)

" 2kd

possibilities

for H. So the probability that such a bad subgraph of size k exists is bounded

from above by Nk
ℓ · p2k · 2kd

. There are N2
ℓ−1 possibilities for k, so we have to

choose Nℓ such that

N2
ℓ−1

∑

k=1

Nk
ℓ · p2k2kd

≤
1

2
. (∗∗)

But Nk
ℓ · p2k ≈ Nk

ℓ N
(ε−1)2k
ℓ = N

k(2ε−1)
ℓ which converges to 0 if Nℓ converges

to infinity. Hence, one may choose Nℓ so large, that

Nk
ℓ · p2k <

1

N2
ℓ−1 · 2

(N2
ℓ−1)

d
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and Nℓ > max{2ℓ, Nd+1
ℓ−1 } hold. Further increasing Nℓ if necessary, we may

choose it to be ℓ-large, as well. Estimating 2kd

by 2(N2
ℓ−1)

d

in the left hand

side of (∗∗), it follows that the inequality in (∗∗) holds.

So the set of hypergraphs on Vℓ which are not (k, 2k)-sparse for some k ≤

N2
ℓ−1 has measure at most 1

2 , while almost all hypergraphs on Vℓ have Nd+ε
ℓ

hyperedges. It follows that there exist Nℓ and Eℓ satisfying the requirements

of the lemma, and thus, the sequences in the statement can be constructed

recursively. �

Definition 3.6. Let N̄ and Ē be as in Lemma 3.5. For each Vℓ = [Nℓ−1, Nℓ),

let sℓ be a (d+1)-ary operation with support Eℓ which differs on Eℓ from each

τi[g] (i " ℓ, ḡ as in Lemma 3.4).

For each infinite A ⊆ N, let sA :=
⋃

ℓ∈A sℓ (where we replace all undefined

values of sA with 0).

Lemma 3.7. Let B ⊆ N be infinite and assume ℓ ∈ N \ B. Let W ⊆ N be

such that |W | ≤ ℓ · Nℓ. Then the cardinality of the support of sB↾W d+1 is at

most Nℓ(1 + 2 log2 Nℓ).

Proof. Throughout this proof, we write supp(f) for the support of a function f .

Let W1 = W ∩ [0, Nℓ−1), W2 = W ∩ [Nℓ−1, Nℓ), and W3 = W \ (W1 ∪W2). By

construction,

supp(sB↾W d+1) ⊆ supp(sB↾W d+1
1 ) ∪ supp(sB↾W d+1

2 ) ∪ supp(sB↾W d+1
3 ).

Clearly, | supp(sB↾W d+1
1 )| ≤ Nd+1

ℓ−1 and Nd+1
ℓ−1 ≤ Nℓ by Lemma 3.5(1). In

addition, supp(sB↾W d+1
2 ) is empty because ℓ &∈ B. Clearly,

|W3| ≤ |W | ≤ ℓ · Nℓ ≤ log2(Nℓ)Nℓ

(in the last estimation, we used Lemma 3.5 (1): ℓ ≤ log2 Nℓ). In addition, by

Lemma 3.5 (3), for any j > ℓ, (Vj , Ej) is (Nℓ log2 Nℓ, 2Nℓ log2 Nℓ)-sparse. It

follows that | supp(sB↾W d+1
3 )| ≤ 2Nℓ log2 Nℓ. Combining these observations,

the statement follows. �

Lemma 3.8. If f1, . . . , fm are (k, k′)-modest d-ary operations and g is a

(k′, k′′)-modest m-ary operation, then g(f1, . . . , fm) is (k, k′′)-modest.

Proof. The proof is easy. �

Lemma 3.9. Let M be the clone of all modest operations. Let A\(B1∪· · ·Br)

be infinite. Then sA /∈ 〈sB1
, . . . , sBr

〉M∩O(d) .

Proof. For any term τ and any suitable sequence ḡ (consisting only of oper-

ations in 〈(M ∩ O(d)) ∪ {sB1 , . . . , sBr
}〉), we will find ℓ ∈ A such that τ [g]

disagrees with sℓ (hence also with sA) on Eℓ.

So fix a term τ = τi and ḡ. Let ν be the number of subterms of τ and let k

witness that all operations in ḡ are modest. Let ℓ > ν ·ki be in A\(B1∪· · ·Br).

We claim that for each subterm σ of τ (of depth s), the range of σ[ḡ] over the

domain V d+1
ℓ has cardinality at most Nℓ · k

s.
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This can be proved by induction on the depth of σ using Lemma 3.8 com-

bined with the fact that the operations sBj
take only 2 values, and that all

other operations in ḡ are modest, witnessed by k.

Recall that according to the enumeration fixed in Definition 3.1, the depth

of τ = τi is at most i. So the set of all intermediate values in the computation

of τ [g] on Eℓ has size at most ν · kiNℓ < ℓNℓ. Let W ⊇ Vℓ be a set of size

at most ℓNℓ containing {0, 1} and all these intermediate values. The term τ

induces a partial function τ [ḡ]↾Eℓ. By replacing all values of the operations

in ḡ by 0 if they are outside W , we get a sequence ḡ′ of operations with the

following properties:

• τ [ḡ′] is a total function from W d+1 to W .

• τ [ḡ′] agrees with τ [ḡ] on Eℓ.

• All operations in ḡ′ are either some sBj
or an operation of arity at most d.

By Lemma 3.7, the support of each sBj
↾W d+1 is at most Nℓ(1+2 log2 Nℓ) ≤

3Nℓ log2 Nℓ. So by the construction of sℓ, and by Lemma 3.4, sℓ disagrees with

τ [ḡ′] somewhere on Eℓ; so sℓ also disagrees with τ [ḡ]. �

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Similarly to the proof of Theorem 1.1, choose an inde-

pendent family (Ar : r ∈ R) of subsets of N. Then for all finite S ⊆ R and

all r ∈ R \ S, the set Ar \
⋃

s∈S As is infinite. By Lemma 3.9, {sAr
: r ∈ R}

is a family of operations independent over M ∩ O(d): for any r ∈ R, we have

sAr
&∈ 〈sAp

: p ∈ R \ {r}〉O(1) . By Lemma 1.4, we are done. �

Corollary 3.10. There exists a clone C on N such that for any d ∈ N, there

are 2c clones D with C ∩ O(d) = D ∩ O(d).

Proof. Let C be the clone generated by all operations whose ranges are a

subset of {0, 1}. To check that this C satisfies the statement of the corollary,

let d ∈ N and let C ′ be the clone generated by all at most d-ary operations

whose ranges are contained in {0, 1}. Then C ∩ O(d) = C ′ ∩ O(d) and C ′

is modest. Therefore, by Theorem 1.3, there exist 2c many clones D with

D ∩ O(d) = C ′ ∩ O(d) = C ∩ O(d). �
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Academy of Sciences, Reáltanoda u. 13-15, 1053 Budapest, Hungary
e-mail : sagi@renyi.hu

Saharon Shelah

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew
University of Jerusalem, Jerusalem, 91904, Israel, and Department of Mathematics,
Rutgers University, New Brunswick, NJ 08854, USA
e-mail : shelah@math.huji.ac.il

URL: http://shelah.logic.at/


