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Abstract

Monoacylglycerol lipase (MGL) is a multifunctional serine hydrolase, which terminates anti-nociceptive endocannabinoid signaling
and promotes pro-nociceptive prostaglandin signaling. Accordingly, both acute nociception and its sensitization in chronic pain
models are prevented by systemic or focal spinal inhibition of MGL activity. Despite its analgesic potential, the neurobiological
substrates of beneficial MGL blockade have remained unexplored. Therefore, we examined the regional, cellular and subcellular
distribution of MGL in spinal circuits involved in nociceptive processing. All immunohistochemical findings obtained with light, con-
focal or electron microscopy were validated in MGL-knockout mice. Immunoperoxidase staining revealed a highly concentrated
accumulation of MGL in the dorsal horn, especially in superficial layers. Further electron microscopic analysis uncovered that the
majority of MGL-immunolabeling is found in axon terminals forming either asymmetric glutamatergic or symmetric c-aminobutyric
acid/glycinergic synapses in laminae I/IIo. In line with this presynaptic localization, analysis of double-immunofluorescence stain-
ing by confocal microscopy showed that MGL colocalizes with neurochemical markers of peptidergic and non-peptidergic nocicep-
tive terminals, and also with markers of local excitatory or inhibitory interneurons. Interestingly, the ratio of MGL-immunolabeling
was highest in calcitonin gene-related peptide-positive peptidergic primary afferents, and the staining intensity of nociceptive ter-
minals was significantly reduced in MGL-knockout mice. These observations highlight the spinal nociceptor synapse as a potential
anatomical site for the analgesic effects of MGL blockade. Moreover, the presence of MGL in additional terminal types raises the
possibility that MGL may play distinct regulatory roles in synaptic endocannabinoid or prostaglandin signaling according to its dif-
ferent cellular locations in the dorsal horn pain circuitry.

Introduction

To detect and minimize tissue damage, numerous signaling mecha-
nisms operate together in the peripheral, spinal and supraspinal pain
circuits (Basbaum et al., 2009). Persistent noxious stimuli evoke
various forms of molecular and cellular adaptations in these signal-
ing processes (Sandk€uhler, 2009). Some may last beyond the resolu-
tion of tissue injury leading to chronic pain syndromes; a major
conceptual and practical challenge for modern medicine, which
requires a detailed understanding of how dynamic molecular
changes are integrated into the cellular context of nociceptive pro-
cessing in spinal and brain circuits (Kuner, 2010). However, the

tremendous cellular complexity of the neuronal pain-processing cir-
cuitry (Todd, 2010) renders this task very difficult.
A promising development is the recent delineation of two inter-

related signaling pathways with robust, but generally opposite,
effects on nociception. Anti-nociceptive endocannabinoid signaling
and pro-nociceptive prostaglandin signaling both regulate nocicep-
tive transmission and its plasticity at specific anatomical locations
(Reinold et al., 2005; Agarwal et al., 2007; Monory et al., 2007;
Vardeh et al., 2009). Moreover, molecular components of these
pathways exhibit region- and cell-type-specific quantitative changes
in chronic pain models (Samad et al., 2001; Zeilhofer, 2007; Sagar
et al., 2012; Simonetti et al., 2013). Promoting endocannabinoid
signaling or attenuating prostaglandin signaling are approaches gen-
erally considered to have analgesic potential (Zeilhofer & Brune,
2006; Jhaveri et al., 2007). In fact, medical preparations from the
cannabis plant stimulating cannabinoid (CB) receptors, and those
from willow bark inhibiting prostaglandin-endoperoxidase synthases
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(cyclooxygenases; COXs), are among the most ancient analgesic
drugs used since antiquity.
An unexpected recent observation indicates that these two signaling

pathways may be functionally linked by coordinated metabolism in
the nervous system (Nomura et al., 2008). Monoacylglycerol lipase
(MGL) was first identified as a serine hydrolase inactivating the
endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain (Karls-
son et al., 1997; Dinh et al., 2002; Blankman et al., 2007). However,
the resultant arachidonic acid pool can be further utilized by COXs to
produce pro-nociceptive prostaglandins (Nomura et al., 2011). Thus,
MGL inhibition may have immense analgesic potential by facilitating
anti-nociceptive 2-AG signaling and/or suppressing pro-nociceptive
prostaglandin synthesis (Mulvihill & Nomura, 2013). Indeed, sys-
temic administration of the selective MGL inhibitor 4-nitrophenyl-
4-[bis(1,3-benzodioxol-5-yl)(hydroxy)methyl]piperidine-1-carboxylate
(JZL184) suppresses thermal, visceral and noxious chemical pain
(Long et al., 2009; Schlosburg et al., 2010; Busquets-Garcia et al.,
2011), and reduces mechanical and cold allodynia in neuropathic and
inflammatory chronic pain (Kinsey et al., 2009, 2010; Schlosburg
et al., 2010; Ghosh et al., 2013). This anti-nociceptive effect may
involve the regulation of endocannabinoid and/or prostaglandin sig-
naling in the spinal nociceptive circuitry, because neuropathic pain
increases spinal 2-AG levels and MGL expression (Wilkerson et al.,
2012; Guindon et al., 2013). Moreover, direct spinal administration
of JZL184 also efficiently reduces mechanically evoked or inflamma-
tion-induced nociceptive responses (Woodhams et al., 2012).
Despite its apparent physiological and pathophysiological signifi-

cance, direct evidence for the presence of MGL in neuronal compo-
nents of the pain transmission pathway is lacking. Therefore, we
aimed to investigate its regional and cellular distribution as well as
its subcellular localization at different synapse types in the spinal
nociceptive circuitry.

Materials and methods

Animals

Animal experiments were approved by the Hungarian Committee of
the Scientific Ethics of Animal Research (license number: XIV-1-
001/2332-4/2012), and were carried out according to the Hungarian
Act of Animal Care and Experimentation (1998, XXVIII, Section
243/1998), which are in accordance with the European Communities
Council Directive of 24 November 1986 (86⁄609⁄EEC; Section 243/
1998). Littermate wild-type C57BL/6N mice (MGL+/+) and mice
deficient in MGL (MGL�/�) (n = 17 and 18, respectively, 30–
33 days old) were used in this study. The mgll gene was inactivated
by deleting exon 3 containing the Ser-122 residue, a component of
the catalytic triad for hydrolytic activity. Generation, breeding and
genotyping of this line has been described in detail previously
(Uchigashima et al., 2011).

Perfusion and preparation of tissue sections

Mice were deeply anesthetized with a mixture of ketamine–xylazine
(25 mg/mL ketamine, 5 mg/mL xylazine and 0.1 w/w% prometh-
azine in H2O; 1 mL per 100 g, i.p.). Animals were transcardially
perfused with 0.9% saline for 2 min, followed by 100 mL of a fixa-
tive containing 4% paraformaldehyde (PFA) in 0.1 M phosphate buf-
fer (PB; pH 7.4) for 20 min. After perfusion, the spinal cord was
removed from the spinal column and post-fixed for 2 h in 4% PFA,
then washed in 0.1 M PB. Fifty-micrometer transverse sections of
the lumbar spinal cord were cut with a Leica VTS-1000 vibratome

(Leica Microsystems, Wetzlar, Germany). All reagents were
purchased either from Sigma-Aldrich Kft, Merck Kft, Roche Kft or
Reanal Kft (all in Budapest, Hungary), unless otherwise stated.

Peroxidase-based immunohistochemistry

After slicing and several washing steps in 0.1 M PB, the spinal cord
sections for peroxidase-based immunohistochemistry were incubated
in 30% sucrose overnight, followed by freeze–thawing over liquid
nitrogen four times to facilitate permeability within the tissue. Sec-
tions were washed extensively in 0.1 M PB to remove residual
sucrose, and incubated for 10 min in 1% H2O2 in 0.1 M PB to block
endogenous peroxidase activity. After washing in 0.1 M PB, sections
were processed for immunoperoxidase reaction utilizing a standard
protocol. All further washing steps and dilutions of the antibodies
were performed in 0.05 M Tris-buffered saline (TBS; pH 7.4). Fol-
lowing extensive washing in TBS, sections were blocked in 1%
human serum albumin (Sigma-Aldrich) for 2 h, then incubated with
a polyclonal affinity-purified rabbit anti-MGL primary antibody
(1 : 500; approximately 0.5 lg/mL) raised against the N-terminal 35
residues of the mouse MGL protein (Uchigashima et al., 2011).
Incubation was performed overnight at room temperature, then for a
further 24 h at 4 °C. Specificity of the anti-MGL antibody was con-
firmed by the lack of immunostaining in spinal cord sections derived
from MGL�/� mice, which were co-incubated within the same
reaction wells throughout the entire process. After primary antibody
incubation, the sections were washed in TBS three times and then
incubated in biotinylated goat anti-rabbit IgG (1 : 400; Vector Labo-
ratories, Burlingame, CA, USA) for 4 h. After washing, sections
were kept in TBS at 4 °C overnight followed by an incubation with
avidin-biotinylated horseradish peroxidase complex (1 : 500; Elite-
ABC, Vector) for 3 h. After washing in TBS and then in Tris buffer
(TB; 0.05 M, pH 7.6) twice, sections were incubated in the chromo-
gen 3,3′-diaminobenzidine (DAB; 0.05% dissolved in TB) for 15
min in the dark. The immunoperoxidase reaction was initiated by
addition of 0.01% H2O2 to the solution, and was terminated after
approximately 15 min by changing the chromogen solution to TB.
Sections were washed first in TB, and then extensively in PB, and
finally stored in PB to await further processing.

Light microscopic analysis

For light microscopy, sections were briefly immersed in chromium
gelatine [0.5% chromium (III) potassium sulfate dodecahydrate;
Sigma-Aldrich] and mounted onto slides. After complete drying
(approximately 60 min), slides were sequentially washed in Xylol I
and II for 10 min each, covered with DePeX (Serva Electrophoresis
GmbH, Heidelberg, Germany) and coverslipped. MGL-immunostain-
ing was analysed with a Nikon Eclipse 80i microscope equipped
with a Nikon DS-U2 digital camera using NIS-Elements Br software
(Nikon Instruments). Digital images were processed with Adobe
Photoshop CS5 software (Adobe Systems, San Jose, CA, USA).
Images of sections from MGL+/+ and MGL�/� spinal cords incu-
bated within the same well and mounted onto the same slide were
merged into a single file. All post hoc image processing was per-
formed simultaneously and identically for MGL+/+ and MGL�/�
images, and no part of an image was modified separately.

Electron microscopic analysis

For electron microscopy, after development of the immunoperoxi-
dase reaction, sections were first treated with 1% OsO4 in 0.1 M PB
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for 10 min in the dark, on ice, and then dehydrated in an ascending
series of ethanol solutions, followed by acetonitrile. An additional
treatment with uranyl acetate (1% in 70% ethanol for 10 min in the
dark, on ice) was included during the dehydration process. Sections
were embedded in Durcupan (ACM, Fluka, Buchs, Switzerland).
Areas of interest containing the dorsolateral fasciculus (Lissauer’s
tract) and the superficial laminae were cut from the dorsal horn of
lumbar segments of both MGL+/+ and MGL�/� spinal cords, and
re-sectioned to produce ultrathin 50-nm thin sections with a Leica
EM UC6 Ultramicrotome (Leica Microsystems). These sections
were collected on a Formvar-coated single-slot copper grid, con-
trasted with lead citrate (Ultrostain2; Leica), and examined with a
Hitachi 7100 electron microscope (Hitachi High-Technologies,
Tokyo, Japan). Electron micrographs at 40 000 9 magnification
were acquired with a Veleta CCD camera (Olympus Soft Imaging
Solutions, Munster, Germany).

Double-immunofluorescence staining

To exclude a vague reported possibility of cross-reaction of the anti-
MGL primary antibody with other primary antibodies when used in
multiple immunofluorescence incubations, we followed a sequential
immunostaining protocol as described earlier (Uchigashima et al.,
2011). All washing steps and antibody dilutions were performed in
0.05 M TBS (pH 7.4). After slicing and extensive washing, spinal
cord sections containing the lumbar segments of MGL+/+ and
MGL�/� mice were treated with a blocking solution containing 1%
human serum albumin and 0.01% Triton X-100 in TBS (0.05 M,
pH 7.4) for 2 h. Sections were then incubated with rabbit anti-MGL
antibody (1 : 500) overnight at room temperature, followed by 24 h
at 4 °C. Bound primary antibody was then detected by incubation
with an Alexa Fluor 488-conjugated anti-rabbit secondary antibody
(1 : 400; Jackson ImmunoResearch Europe, Suffolk, UK) for 5 h at
room temperature. After several washing steps, a second blocking
period was included with 10% normal rabbit serum (Vector) for
2 h. Subsequently, sections were incubated with one of the follow-
ing antibodies as neurochemical markers of different axon terminal
types: vesicular glutamate transporter 2 (vGluT2; polyclonal affinity-
purified antibody raised in goat, 1 : 500, 0.4 lg/mL; Frontier
Science, Hokkaido, Japan); vesicular inhibitory amino acid trans-
porter (VIAAT; monoclonal affinity-purified antibody raised in
mouse, 1 : 500, 2 lg/mL; Synaptic Systems, Goettingen, Germany);
calcitonin gene-related peptide (CGRP; polyclonal antibody raised in
sheep, 1 : 1000; Enzo Life Sciences, Farmingdale, NY, USA); or
with the biotin-conjugated glycoprotein isolectin B4 (IB4) from
Bandeiraea simplicifolia (L2140, 1 : 1000; Sigma). Primary anti-
body incubations were performed overnight at room temperature,
followed by 24 h at 4 °C. After washing steps, immunostaining was
visualized by using Alexa Fluor 594-conjugated species-specific sec-
ondary antibody treatment for 5 h at a dilution of 1 : 400, or with
Alexa Fluor 594-conjugated streptavidin at a dilution of 1 : 200 for
IB4 (all Jackson ImmunoResearch). Sections were then washed
and stored in 0.1 M PB overnight, before mounting in Vectashield
(Vector).

Antibody specificity

Specificity of the MGL-immunofluorescence staining examined in
sections from MGL+/+ mice was validated by the almost complete
absence of fluorescent signal in MGL�/� spinal cord sections. Very
weak fluorescent puncta were scarcely detected, but this signal was
not different to that seen when the primary anti-MGL antibody was

omitted and MGL+/+ spinal cord sections were incubated with the
fluorescent secondary antibody alone. Finally, further sequential
staining experiments were also conducted in which the second pri-
mary antibody targeted to the given neurochemical marker was
omitted. The absence of immunolabeling in these experiments
excluded the possibility that false positive colocalization resulted
from an interaction between the bound MGL antibody complex and
the second fluorescent antibody, a situation that cannot be ruled out
by using MGL�/� samples.
Full genetic deletion of vGluT2 produces a lethal phenotype

ex utero, due to a lack of respiratory rhythm generation in the brain-
stem (Wall�en-Mackenzie et al., 2006), whilst deletion of VIAAT
produces a lethal phenotype in which embryos die between E18.5
and birth (Wojcik et al., 2006). Thus, unequivocal establishment of
specificity of antibodies used to label vGluT2 or VIAAT is not fea-
sible in the adult mouse spinal cord until cell-type-specific condi-
tional knockout models become available. On the other hand, these
antibodies are widely used to identify specific terminal types in the
spinal cord and were used for this purpose in the present study,
rather than to make specific observations about the respective pro-
teins. Nevertheless, and despite the lack of available knockout con-
trols, additional lines of evidence still suggest good target specificity
of these antibodies. The goat polyclonal antibody directed against
vGluT2 was generated with the same epitope and by using identical
methods to an antibody raised in guinea pig (Miyazaki et al., 2003).
The two antibodies produce a similar characteristic vGluT2 staining
pattern (Miura et al., 2006), which could be entirely blocked by
pre-incubation with the blocking peptide. The monoclonal mouse
anti-VIAAT antibody, clone 117G4, has also been tested in numer-
ous anatomical studies in combination with markers of other termi-
nal types, and results in an entirely non-overlapping pattern to that
seen with glutamatergic markers (Bogen et al., 2006; Tafoya et al.,
2006; Baer et al., 2007; Micheva et al., 2010; Fan et al., 2012;
Hanson et al., 2013). The sheep polyclonal antibody directed against
CGRP produces the lamina I–IIo staining pattern characteristic of
the laminar distribution of this neuropeptide in the rodent superficial
spinal cord (Todd et al., 2003). This staining pattern was entirely
absent when the antiserum was pre-incubated with 10 nmol/mL
CGRP, but not when incubated with the neuropeptides substance P
or galanin. Moreover, this same characteristic CGRP-immunoreac-
tivity in the superficial layers of the spinal cord is absent in CGRP
knockout mice (Zhang et al., 2001). The binding of the glycoprotein
IB4 is generally considered to specifically visualize non-peptidergic
primary afferent fibers in mammals (Silverman & Kruger, 1988;
Snider & McMahon, 1998), and the biotin-conjugated form utilized
here has also been widely used in previous anatomical studies to
identify these neurons (Todd et al., 2003; Zhao et al., 2010; Wrobel
et al., 2011).

Confocal microscopic analysis

Images were obtained from the superficial dorsal horn with a
Nikon A1R confocal laser-scanning system built on a Ti-E inverted
microscope and operated by NIS-Elements AR 3.5 software. MG
Argon Ion Laser (457–514 nm, 40 mW) and MG Yellow DPSS
Laser (561 nm, 20 mW) were used as excitation lasers with appro-
priate filters for Alexa Fluor 488 and Alexa Fluor 594, respec-
tively. Optimal confocal settings (laser power, gain, offset, pixel
dwell, pixel size and confocal aperture) were initially determined
on spinal cord sections derived from MGL+/+ mice, and have
remained identical for all subsequent scans and images under each
staining condition. Images were acquired in a sequential acquisition
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mode, and special care was taken to ensure that no pixels corre-
sponding to any of the target proteins were saturated. Images were
obtained by using a 1.4 NA 60 9 CFI Plan Apochromat VC
(Nikon) oil-immersion objective from a region of interest directly
adjacent to the dorsolateral fasciculus (Lissauer’s tract) in the med-
ial portion of the dorsal horn. This area, corresponding to laminae
I, IIo and a portion of IIi, comprised a 72 9 72 lm region in the
center of the field of view (pixel size, 0.07 lm), and were rotated
to lie parallel with the white matter border. Altogether 15 images
were acquired at a z-separation of 0.15 lm, and starting at a depth
of 4 lm from the upper surface of the section. For restoration of
3D image stacks, the Classical Maximum Likelihood Estimation
algorithm in the Huygens deconvolution software (Scientific Vol-
ume Imaging, Hilversum, the Netherlands) was used. For each
staining condition, fluorescence intensity threshold limits were
then set to exclude background and maximize visibility of the spe-
cific signal. Identical thresholds were applied for each marker
within each staining condition, and for MGL across all staining
conditions.

Colocalization analysis

To ensure specificity and accuracy of colocalization quantification,
all analyses were performed in parallel on both MGL+/+ and
MGL�/� spinal cord sections. To measure the staining within and
between genotypes, overall mean intensity values for the entire
region of interest in the central optical section were determined for
MGL, and for each of the markers, by ImageJ software (Mac Bio-
photonics, NIH, Bethesda, Maryland, USA). In each deconvolved
optical stack, the colocalization ratios between the neuropeptide
CGRP (a marker of peptidergic nociceptive primary afferents), IB4
(a marker of non-peptidergic nociceptive primary afferents), vGluT2
(a vesicular glutamate transporter found primarily in axon terminals
of intrinsic excitatory interneurons) or VIAAT [a vesicular c-amin-
obutyric acid (GABA)/glycine transporter found in axon terminals
of intrinsic inhibitory interneurons] and MGL were assessed in ran-
domly selected terminals. Altogether > 300 terminals of each type
were analysed in three sections per animal, and in three animals per
genotype. Boutons labeled with a terminal type-specific marker
were selected in a single-channel image obtained from the center of
the optical stack (approximately 5 lm from the surface of the sec-
tion), and analysed by Adobe Photoshop CS5. A 6 9 6 grid of
edge length of 12.5 lm was superimposed over each image, and
one terminal was randomly selected within each box to ensure equal
distribution of sampling in case of vGluT2- and VIAAT-immunosta-
inings, which cover the superficial laminae fairly homogenously.
Because CGRP-immunostaining is only present in the upper half of
the region of interest (LI–IIo), two profiles were selected from each
box in the top three rows of the grid. Likewise, because IB4-bind-
ing terminals are only present in the lower half of the region of
interest, the central portion of lamina II, two profiles were selected
from each box in the bottom three rows of the grid. The MGL con-
tent of these randomly selected terminals was subsequently exam-
ined in a dual-color 3D projection throughout the entire optical
stack in NIS-Elements. Assessment of the presence of a punctum
representing MGL-immunolabeling was performed by visually
examining the entire 3D extent of each terminal. Terminals possess-
ing one or more MGL-immunofluorescent puncta falling entirely
within the boundaries of the marker-defined bouton volume were
considered to be MGL-positive. Puncta with any portion appearing
outside the boundaries of the terminal were removed from the
analysis sample, as were those falling within the first and last

optical sections of the stack as deconvolution is not reliable at these
positions. Percentage colocalization values for each marker were
then calculated for each section and each animal, and then aver-
aged. Data are expressed as mean � SEM. The intra-terminal inten-
sity of MGL staining for each of the 244 MGL-positive puncta was
subsequently measured by ImageJ software. Terminals were selected
from the center of unaltered deconvolved optical stacks, and the
optical section in which the MGL-positive puncta were largest and
most intense was identified. A region of interest encompassing the
MGL-positive puncta was then selected. The mean intensity of
staining was measured for each MGL-positive puncta. Data are
expressed as arbitrary units and are the median � interquartile
range (IQR).

Statistical analysis

Potential increases in MGL-immunolabeling in CGRP-containing
boutons vs. IB4-, or vGluT2- or VIAAT-positive axon terminals
were assessed by one-tailed Mann–Whitney U-test followed by Bon-
ferroni-correction, therefore an a-level of P < 0.016 was considered
statistically significant. Potential differences in the intensity of
CGRP-, IB4-, vGluT2- and VIAAT-staining between MGL+/+ and
MGL�/� dorsal horn tissue were determined by the two-tailed
Mann–Whitney U-test. An a-level of P < 0.05 was considered sta-
tistically significant.

Results

Regional distribution of MGL in the mouse spinal cord

To determine the spinal circuits in which MGL may play a regula-
tory role in 2-AG and/or prostaglandin signaling, the regional
distribution pattern of MGL was first investigated by immunoper-
oxidase immunohistochemistry. The localization of MGL in lumbar
spinal cord sections was visualized by a rabbit polyclonal antibody
directed against the N-terminal 35 amino acids of MGL (Uchiga-
shima et al., 2011). The validity of the pattern of MGL-immuno-
reactivity was confirmed by co-incubating spinal cord sections
from wild-type (MGL+/+) and knockout (MGL�/�) mice within
the same reaction well throughout the entire staining process
(Fig. 1A–D).
At the light microscopic level, a striking accumulation of dense

MGL-positive immunostaining was detected in the dorsal horn of
spinal cord sections derived from MGL+/+ mice (Fig. 1A). Con-
versely, MGL-immunoreactive precipitate was not visible in spinal
cord sections derived from MGL�/� mice, confirming the specific-
ity of the staining (Fig. 1B). A prominent and specific gradient in
the intensity of MGL-immunostaining towards the superficial lami-
nae was clearly visible within the dorsal horn. The strongest labeling
was observed in lamina I–II with sparser labeling in deeper laminae
(Fig. 1C–E). The level of MGL-immunostaining did not reach
detection threshold in other regions of the spinal cord, for example
around the central canal or in the ventral horn. Varying antibody
concentrations or incubation times resulted in brown precipitate
throughout the spinal cord; however, a similar staining intensity was
observed in sections derived from MGL+/+ and MGL�/� mice
(data not shown). A more sensitive antibody may reveal low levels
of MGL in other spinal regions in the future, but this characteristic
immunostaining pattern apparently predicts that the majority of the
MGL enzyme is highly concentrated in neuronal and/or glial ele-
ments of the nociceptive circuitry in the superficial laminae of the
dorsal horn.
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Presynaptic localization of MGL in excitatory and inhibitory
axon terminals of the superficial dorsal horn

At higher magnification using light microscopy, the nature of the
immunostaining pattern was also characteristic with high density of

individual MGL-immunoreactive puncta of varying sizes and inten-
sities (Fig. 1E). Larger and more strongly immunostained MGL-
positive profiles were much more frequent in the superficial laminae
especially in laminae I–II (Fig. 1E). This staining pattern was con-
sistent across the medial and lateral aspects of the dorsal horn
(Fig. 1C). These light microscopic observations indicate that the
presence of MGL in cellular elements is highly compartmentalized
within the termination zone of primary afferent neurons, an area in
which expression of both the synthesizing enzyme of 2-AG, diacyl-
glycerol lipase-a (DGL-a), and its major receptor target, the CB1

receptor, are enriched (Nyilas et al., 2009).
To elucidate which subcellular profiles MGL expression was con-

centrated in, spinal cord sections derived from MGL+/+ and
MGL�/� mice with immunoperoxidase staining for MGL were
further processed for analysis via electron microscopy. This high-
resolution approach revealed that the vast majority of MGL-immu-
noreactivity in sections derived from MGL+/+ mice was confined
within axon terminals in the superficial laminae of the dorsal
horn (Figs 2 and 3). Importantly, the immunoreactive material was
completely absent at the ultrastructural level in sections derived
from MGL�/� mice (data not shown). In contrast to the predomi-
nantly presynaptic expression profile, postsynaptic structures like
spine heads, smaller- or larger-sized dendritic shafts and cell bodies
were always MGL-immunonegative (Figs 2 and 3). Consistent
MGL-positive immunolabeling was observed only rarely in small-
diameter structures, which may represent passing fibers or glial pro-
cesses, structures that are not distinguishable at the ultrastructural
level.
Interestingly, intense accumulation of MGL-immunoreactivity

was primarily observed in axon terminals. However, these termi-
nals represented several morphologically different types. The most
prominent labeling was found in boutons forming asymmetrical
synapses with a characteristic postsynaptic density in the postsyn-
aptic profile (Fig. 2). These terminals presumably contain the
excitatory neurotransmitter glutamate. Both large and small gluta-
matergic terminals were frequently found, which targeted larger
dendritic shafts (Fig. 2A1 and A2), but sometimes also smaller
spine-like structures (Fig. 2B1 and B2). On the other hand, despite
a targeted analysis of synaptic glomeruli (n = 43) of both Type I
and II in lamina II/III, none containing DAB precipitate in the
central terminal was identified. Several other terminals that formed
symmetrical, presumed GABA/glycinergic inhibitory synapses also
turned out to be MGL-positive (Fig. 3). These boutons usually tar-
geted larger-diameter dendritic shafts or sometimes formed sym-
metric synapses on the central terminal of a Type II glomerulus,
demonstrating MGL-expression in axo-axonic inhibitory terminals
(Fig. 3C).
Notably, many axon terminals were MGL-immunonegative

(Fig. 3). These terminals were often found adjacent to MGL-immu-
nopositive boutons, and formed both asymmetrical (Fig. 3A1 and
A2) as well as symmetrical synapses (Fig. 3B1 and B2). The absence
of immunolabeling may merely indicate that these terminals express
MGL at levels below our detection threshold. However, the high
density of DAB precipitate within labeled terminals was consis-
tently present throughout several serial sections, whereas nearby
MGL-immunonegative terminals consistently lacked DAB through
all investigated sections. This likely suggests that the unlabeled ter-
minals do not contain this serine hydrolase.
Taken together, these electron microscopic observations revealed

that the majority of MGL is localized presynaptically in a heteroge-
nous population of cellular elements within the spinal nociceptive
circuitry.

A B

C D

E

Fig. 1. Specific monoacylglycerol lipase (MGL)-immunoreactivity accumu-
lates within the mouse lumbar superficial dorsal horn. (A and C) Light
micrographs depict the distribution of the MGL protein, which is visualized
via brown DAB precipitate formation at the site of immunoreaction. The pat-
tern of MGL immunoreactivity was remarkably concentrated in the superfi-
cial laminae of the dorsal horn in an MGL+/+ mouse. Note that the staining
remained below detection threshold in the ventral horn and around the cen-
tral canal. (B and D) Specificity of the immunostaining was confirmed by the
absence of the DAB precipitate in a spinal cord section derived from the
MGL�/� knockout mouse. Importantly, the MGL+/+ and MGL�/� sections
illustrated here were obtained from a littermate pair of animals, and were
processed in parallel throughout the entire immunostaining and post hoc con-
trasting process. (E) A higher magnification light micrograph of the boxed
region in (C) reveals the punctate nature of MGL-immunoreactivity through-
out the superficial laminae, indicating expression in a restricted subset of
subcellular compartments. Puncta of varying sizes and intensities may indi-
cate expression in multiple such compartments. The dorsolateral funiculus
(‘df’) contains very few MGL-positive profiles. In contrast, the majority of
MGL-immunoreactivity is concentrated in lamina I (I) and lamina II (II) of
Rexed, with staining intensity visibly decreasing towards deeper laminae,
e.g. lamina III (III). Scale bars: 200 lm (A and B); 100 lm (C and D);
20 lm (E).
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MGL is localized in CGRP-positive nociceptive primary
afferents

To determine which extrinsic and/or intrinsic afferents of the noci-
ceptive circuitry of the superficial dorsal horn carry presynaptic
MGL, we utilized double-immunofluorescence staining and confocal
microscopy. Given the earlier findings that direct spinal inhibition of
MGL activity attenuates both acute and chronic forms of nociceptive
signaling (Woodhams et al., 2012), and endocannabinoid signaling
mediates long-term depression of excitatory transmission on the
spinal terminals of primary nociceptors (Kato et al., 2012), we first
investigated the presence of MGL at the initial central synapse of
the nociceptive pathway. All primary afferent neurons terminating
within the superficial dorsal horn are glutamatergic, and a significant
proportion of those that carry capsaicin-sensitive nociceptive input
co-express neuropeptides such as CGRP (Rosenfeld et al., 1983;
Wiesenfeld-Hallin et al., 1984; Franco-Cereceda et al., 1987). In
fact, most nociceptive primary afferents in lamina I and IIo in
rodents are thought to contain CGRP (Ju et al., 1987). Thus, having
observed MGL expression within excitatory axon terminals in these
layers, we assessed the percentage of CGRP-positive profiles pos-
sessing MGL puncta within the superficial laminae of the medial
dorsal horn. The region investigated comprised lamina I, IIo and a
mid-portion of II, and thus constitutes the major termination zone of
nociceptive primary afferent neurons (Todd, 2010).

In agreement with numerous previous reports, we observed a
characteristic dense network of CGRP-immunofluorescent fibers
especially in laminae I and IIo (Fig. 4A and B). In line with our
observations utilizing an immunoperoxidase approach, the nature of
MGL-positive fluorescent immunostaining consisted of a dense,
punctate labeling pattern throughout the superficial dorsal horn of
spinal cord sections derived from MGL+/+ mice (Fig. 4A). This
staining pattern was almost entirely absent from MGL�/� sections,
although a scarce residual background stain was still visible. Hence,
colocalization analysis was performed on CGRP-positive terminal
profiles from both MGL+/+ and MGL�/� tissue (n = 312, 3–3 ani-
mals). Numerous MGL-positive puncta of varying size and intensity
were observed in CGRP-positive axon terminals in the superficial
laminae of MGL+/+ spinal cord sections. A total of 127 MGL-
immunofluorescent puncta was detected in a population of 81 of the
assessed profiles, corresponding to an average colocalization ratio of
26 � 4% (Fig. 4D). The majority of co-expressing structures con-
tained a single MGL-immunopositive puncta, although a small pop-
ulation showed multiple intensely fluorescent profiles (Fig. 4C). All
colocalization events were confirmed in all three dimensions to
exclude that adjacent immunolabeling only visible from a single
angle would result in false-positive colocalization values (Fig. 4C).
A visible, but weak fluorescent signal was detectable only in a
negligible minority of the selected terminals from MGL�/�
tissue (3 � 1%), validating the colocalization analysis performed in

A1 A2

B1 B2

Fig. 2. MGL is presynaptically located in excitatory axon terminals in the superficial laminae of the mouse lumbar dorsal horn. (A and B) High-power elec-
tron micrographs demonstrate the presence of MGL in boutons (‘b’) forming asymmetric synapses (arrowheads) in the mouse superficial dorsal horn. MGL-
immunoreactivity is represented by the black, electron-dense, DAB precipitate filling these terminals. The terminals are likely glutamatergic, based on the large
postsynaptic density that is known to contain ionotropic glutamatergic receptors. Note the complete absence of MGL-immunoreactivity in the postsynaptic
structures, which was consistent even when following the same bouton through consecutive sections (A1 and A2, and B1 and B2). Postsynaptic targets of
MGL-positive axon terminals were variable from large-diameter dendritic shafts (A1 and A2) to small-diameter, putative dendritic spine heads (B1 and B2).
Scale bars: 0.2 lm.
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wild-type animals (Fig. 4D). Improved conditions for antibody binding
(higher primary antibody concentration, enhanced tissue permeabiliza-
tion and comparison of multiple blocking agents) were also tested
in an attempt to attenuate the number of potential false-negative
terminals. However, these attempts also reduced labeling specificity
in parallel to increasing signal intensity, as determined in control
knockout samples. Therefore, all reported colocalization ratios in the
present study should be regarded as minimal estimations. Moreover,
these observations highlight the mandatory use of knockout controls
for each specific experiment, and for every subcellular compartment,
if one aims to establish specific colocalization values.

Collectively, these experiments provided direct evidence that a
significant population (at least approximately 23%) of peptidergic
primary afferents contain the MGL enzyme in the superficial lami-
nae of the dorsal horn.

MGL is expressed in a minor subset of IB4-binding,
non-peptidergic primary afferent terminals

To determine whether MGL-immunoreactive profiles seen in lamina
II might also correspond to MGL expression in the non-peptidergic
population of nociceptive primary afferents, we next examined the

A1 A2

B1 B2

C1
C2

C3

Fig. 3. Presynaptic localization of MGL in inhibitory axon terminals forming symmetrical synapses in the superficial laminae of the mouse lumbar dorsal horn.
(A and B) High-power electron micrographs acquired from serial sections revealed high-density MGL-immunoreactivity in boutons (b2 and b4) terminating on
MGL-immunonegative postsynaptic dendrites with symmetric, putative GABA/glycinergic synapses (black arrowhead). (A1 and A2) An MGL-immunonegative
excitatory axon bouton (b1) forming an asymmetric synapse (labeled by asterisk) is also shown, which indicates heterogeneity in the type of excitatory terminals
carrying presynaptic MGL enzyme (see Fig. 2). (B1 and B2) Likewise, an MGL-immunonegative bouton (b3) forming a symmetric synapse (white arrowhead)
next to an MGL-positive bouton (b4) suggests similar variability among inhibitory terminal types in the mouse superficial dorsal horn. (C1) A further terminal
type is illustrated in an electron micrograph depicting a Type II synaptic glomerulus, comprising a large central D-hair, non-nociceptive putative Ad fiber and
its multiple postsynaptic dendritic targets (d1–5, white arrows). Whilst the central glutamatergic terminal is MGL-immunonegative, an adjacent MGL-immuno-
positive bouton (b5) forms a putative GABA/glycinergic axo-axonic synapse (black arrow) onto the central D-hair Ad terminal. (C2 and C3) Consecutive sec-
tions demonstrate the symmetrical nature of the axo-axonic synapse and confirm the dense accumulation of MGL-associated DAB within the bouton (b5). The
presence or absence of MGL-immunolabeling in a given pre- or postsynaptic profile was always consistent across all tested consecutive sections. Scale bars:
0.2 lm.
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colocalization of MGL with IB4. The binding of IB4 is generally
considered to be a specific marker of non-peptidergic primary affer-
ent fibers in mammals, and these neurons project their central termi-
nals to the mid-portion of lamina II (Silverman & Kruger, 1988;
Snider & McMahon, 1998).
Double-immunofluorescence studies revealed a very similar pat-

tern of MGL-immunoreactivity to that observed previously in
MGL+/+ tissue (Figs 4A and 5A). We also observed the characteris-
tic, restricted pattern of IB4 binding largely confined to the mid-por-
tion of lamina II (Fig. 5A). In contrast to the high level of
colocalization seen between MGL and CGRP, far fewer double IB4-
positive and MGL-immunopositive terminals were detected. In a
randomly selected population of 318 IB4-positive profiles within the
mid-portion of lamina II (n = 3 animals), only 28 MGL-immunoflu-
orescent puncta were identified corresponding to an average colocal-
ization ratio of 9 � 1% (Fig. 5D). Only a single IB4-positive
terminal with multiple MGL puncta was observed, and in general
the puncta were of moderate intensity (Fig. 5C). In agreement with
previous observations, only one of 323 terminals selected from
MGL�/� tissue (n = 3 animals) contained a fluorescent signal
(Fig. 5B), highlighting the specificity of immunostaining in these
experiments. These observations demonstrate MGL protein expres-
sion in a small subset of non-peptidergic, primary afferent terminals,
but suggest that the enzyme is much less abundant than in their pep-
tidergic counterparts.

MGL is present in a small population of glutamatergic
terminals derived from local interneurons in the superficial
dorsal horn

Given the frequent occurrence of MGL-positive terminals forming
asymmetrical synapses at the electron microscopic level, we next
investigated the axon terminals of intrinsic glutamatergic interneu-
rons. Spinal cord expression of vGluT2 is restricted to axon termi-
nals, and predominantly to those found in lamina I and II of the
lumbar dorsal horn (Todd et al., 2003). Although not an exclusive
marker for local glutamatergic interneurons, the few primary affer-
ents positive for vGluT2 either contain weaker levels of this neuro-
chemical marker than local excitatory terminals or are likely to be
smaller in number compared with the high density of strong
vGluT2-positive axon terminals (Todd et al., 2003), which are gen-
erally considered to originate from local glutamatergic interneurons
(Polg�ar et al., 2010; Yasaka et al., 2010).
In line with these reports, we observed a vGluT2-immunofluores-

cence labeling pattern consistent with axonal varicosities throughout
the superficial dorsal horn (Fig. 6A and B). The distribution pattern
of MGL-immunoreactivity was indistinguishable to that seen in pre-
vious experiments (Fig. 6A and B), and overall MGL-positive fluo-
rescence intensity did not differ (data not shown). Colocalization
analysis was performed on 319 vGluT2-positive axon terminals from
MGL+/+ spinal cord sections, and on 323 vGluT2-positive boutons

A B

C D

Fig. 4. Monoacylglycerol lipase (MGL) is present in calcitonin gene-related peptide (CGRP)-containing peptidergic primary afferents in the superficial laminae
of the mouse lumbar dorsal horn. (A and B) Deconvolved confocal microscopy images of double-immunofluorescence staining reveal the distribution of MGL
(green) and CGRP (red) in lamina I and II. Images were obtained from the center of 2-lm optical stacks from a region of interest in the medial lumbar dorsal
horn of MGL+/+ (in A) and MGL�/� mice (in B). Note the characteristic lamina I–IIo concentration of CGRP-immunostaining in MGL+/+ mice, which is
somewhat reduced in intensity in spinal cord sections derived from MGL�/� mice. In contrast, the dense MGL-immunostaining visible in the dorsal horn of
MGL+/+ mice almost completely disappears in the MGL�/� spinal cord. (C) Magnified (500%) 3D reconstruction of the white boxed region depicted in (A),
showing multiple profiles double-labeled for MGL and CGRP (arrowheads). Confirmation of colocalization is provided via the complete 3D optical reconstruc-
tions in the panels below and to the right of the main image panel. (D) Quantification of the percentage of CGRP-positive profiles also expressing MGL. Values
obtained from MGL�/� spinal cord sections are also included as an indication of very low background levels of immunostaining. Scale bars: 10 lm (A and
B); 2 lm (C).
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from MGL�/� sections (n = 3–3 animals). Interestingly, MGL-
positive immunofluorescence signal was observed in only a minority
of vGluT2-positive terminals. In total, 37 MGL-positive puncta were
detected across 33 of the 319 terminals analysed, giving an average
colocalization value of 10 � 2% (Fig. 6D). A minor proportion of
the selected terminals from MGL�/� sections displayed weak fluo-
rescence signal (six out of 323 boutons; 2 � 1%), which illustrates
the very low level of background labeling. The intensity of MGL-
immunostaining tended to be weak in vGluT2-containing terminals,
and it was extremely rare to detect more than one punctum in a sin-
gle terminal (Fig. 6C). In contrast, the few colocalizing MGL-posi-
tive terminals contained high levels of vGluT2-immunofluorescent
signal (Fig. 6C). Thus, it appears that MGL is also present in a sub-
set of intrinsic excitatory terminals (approximately 10%) in the
superficial laminae of the dorsal horn.

MGL is expressed within a subset of inhibitory axon terminals
in the superficial dorsal horn

Because terminals forming symmetrical synapses were also strongly
labeled for MGL at the ultrastructural level, we next investigated the
colocalization between MGL and the inhibitory amino acid trans-
porter protein VIAAT. This neurochemical marker is a non-selective
inhibitory amino acid transporter responsible for vesicular loading of
both GABA and glycine in inhibitory axon terminals (Dumoulin
et al., 1999). As such, it can be used to visualize inhibitory axon
terminals within neural tissue, including the spinal cord.

In the superficial dorsal horn, VIAAT-immunoreactivity was con-
sistent with expression in axonal varicosities. In contrast to vGluT2-
immunostaining, which was fairly homogenously distributed, the
density of VIAAT-positive terminals was more prominent in lamina
II than in lamina I (Fig. 7A and B). The distribution of MGL-posi-
tive immunofluorescent labeling was indistinguishable from previous
experiments (Fig. 7A and B). Colocalization was assessed in a total
of 321 and 323 terminals in spinal cord sections derived from
MGL+/+ and MGL�/� mice, respectively (n = 3–3 animals). Alto-
gether 52 MGL-positive fluorescent puncta were observed in 43 of
the 321 terminals analysed, giving an average colocalization ratio of
13 � 2% in GABA/glycinergic boutons. In contrast, only a negligi-
ble number of terminals were labeled in knockout sections (four out
of 323 terminals, 1 � 1%). The apparent heterogeneity in the lami-
nar distribution of descending supraspinal GABAergic afferents,
concentrated around lamina I–IIo (Antal et al., 1996), was not
matched by the homogeneous distribution of MGL-containing VIA-
AT-positive boutons observed here. Given that all primary afferent
terminals are glutamatergic, if these GABAergic MGL-positive ter-
minals are not supraspinal in origin it follows that they must belong
to local inhibitory interneurons. Indeed, the vast majority of inhibi-
tory lamina II interneurons give rise to dense local axon arbors also
in lamina II (Yasaka et al., 2010), and the MGL-positive axo-axonic
terminals (Fig. 3C) are also supposed to derive from local parvalbu-
min-positive GABAergic cells (Hughes et al., 2012). Thus, it seems
likely that a subpopulation (approximately 12%) of local inhibitory
interneurons express presynaptic MGL in their axon terminals.

A B

C D

Fig. 5. Monoacylglycerol lipase (MGL) is present in a minority of isolectin B4 (IB4)-binding, non-peptidergic primary afferents in the superficial laminae of
the mouse lumbar dorsal horn. (A and B) Deconvolved confocal microscopy images from sections double-stained for MGL (green) and IB4 (red), a marker of
non-peptidergic, nociceptive primary afferent neurons, reveal little colocalization in the medial superficial dorsal horn. IB4-positive neurons terminate exclu-
sively in the mid-portion of lamina II, thus labeled profiles seen in more superficial regions likely represent the passing axons of these cells. IB4-labeling is of
notably greater intensity in MGL+/+ tissue (A) compared with MGL�/� tissue (B), although the overall staining pattern is similar. Specificity of MGL-labeling
is indicated by the lack of immunofluorescence in MGL�/� tissue. (C) Enlarged magnification and 3D representation of the white boxed region depicted in
(A), showing few profiles double-labeled for MGL and IB4 (arrowheads). The majority of IB4-positive profiles lack MGL-immunoreactivity. (D) Quantification
of the percentage of IB4-positive profiles also expressing MGL. Values obtained from MGL�/� spinal cord sections are also included as an indication of the
weak background labeling. Scale bars: 10 lm (A and B); 2 lm (C).
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Taken together, the colocalization experiments revealed that MGL
is mainly present in peptidergic primary afferents, but it is also
found in a smaller subset of non-peptidergic primary afferents, as
well as in intrinsic glutamatergic and GABA/glycinergic terminals.

MGL levels vary within different axon terminal populations

The observation that more CGRP-positive terminals contain MGL
than other terminal types raises the possibility that MGL levels also
vary in a synapse type-specific manner. To this end, MGL-immu-
nolabeling in CGRP-positive boutons was compared with the other
three bouton populations. The majority of terminals of all types con-
tained only a single MGL punctum, but a number of both CGRP-
and sometimes VIAAT-positive terminals were observed to have
multiple immunofluorescent signals. This was significantly more fre-
quent in the CGRP-positive population compared with IB4-positive
terminals (one-tailed Mann–Whitney U-test with Bonferroni correc-
tion; **P = 0.002) or in vGluT2-positive terminals (one-tailed
Mann–Whitney test with Bonferroni correction; *P = 0.004), but
not in VIAAT-positive terminals (one-tailed Mann–Whitney U-test
with Bonferroni correction; P = 0.02). The intensity of MGL-immu-
nostaining was highly variable even between terminals of the same
type. Individual intensity values for each MGL-positive puncta were
measured in CGRP-positive terminals [median � IQR: 449 � 322
arbitrary units (AUs)], and revealed a significantly higher MGL-im-
munolabeling intensity compared with those measured within

vGluT2-positive terminals (307 � 367 U; one-tailed Mann–Whitney
U-test with Bonferroni correction; *P = 0.006). In contrast, the
staining intensity of MGL-fluorescent puncta was not higher in the
CGRP-positive terminals than those positive for IB4 (439 � 308;
one-tailed Mann–Whitney U-test with Bonferroni correction;
P = 0.3) or VIAAT (494 � 310; one-tailed Mann–Whitney U-test
with Bonferroni correction; P = 0.2).

Genetic deletion of MGL results in the reduction of both
CGRP-immunofluorescent and IB4-positive labeling intensity in
the superficial dorsal horn

Previous findings suggested that MGL regulates axonal growth dur-
ing neurodevelopment (Keimpema et al., 2010). In addition, chronic
pharmacological and genetic inactivation of MGL induces substan-
tial changes in the efficacy of synaptic endocannabinoid signaling
(Chanda et al., 2010; Tanimura et al., 2012). These observations
raise the possibility that certain molecular or anatomical plasticity
mechanisms shape the nociceptive circuitry in the dorsal horn of the
MGL�/� mice, which would indicate a functional link between
MGL and the activity of a given synapse type. To test this idea,
intensity values for all four neurochemical markers were quantified
from unaltered single images collected from the center of each opti-
cal stack and compared between the two genotypes (Fig. 8). Inter-
estingly, median intensity values for CGRP-immunolabeling were
significantly lower in spinal cord sections derived from MGL�/�

A B

C D

Fig. 6. Vesicular glutamate transporter 2 (vGluT2)-positive local excitatory terminals rarely contain monoacylglycerol lipase (MGL) in the superficial laminae
of the mouse lumbar dorsal horn. (A) Deconvolved confocal microscopy images of MGL-immunofluorescence labeling (green) show a largely non-overlapping
distribution pattern with vGluT2-immunostaining (red) in lamina I–II in the medial dorsal horn of MGL+/+ wild-type mice. vGluT2-immunoreactivity predomi-
nantly labels the axon terminals of intrinsic excitatory interneurons. (B) Whilst alterations in vGluT2-immunostaining were not discernible in spinal cord sec-
tions derived from MGL�/� mice, an almost complete absence of MGL-immunofluorescence was evident. (C) High-magnification of the white boxed region
indicated in (A) shows occasional axon terminals, which contain both MGL and vGluT2 (arrowheads) as validated by 3D reconstruction analysis. Note that col-
ocalization was observed in intensely labeled vGluT2-positive terminals, which are considered to belong to local excitatory interneurons. (D) Quantification of
the percentage of vGluT2-immunofluorescent boutons, which are also immunopositive for MGL. Values obtained from MGL�/� sections are included as an
indication of the low background levels of staining. Scale bars: 10 lm (A and B); 2 lm (C).
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mice than in sections from their MGL+/+ littermates (Fig. 8A; two-
tailed Mann–Whitney U-test, median � IQR: MGL+/+, 294 �
104 AU; MGL�/�, 249 � 56 AU; *P = 0.03, n = 3–3 animals).
In addition, IB4-positive fluorescence intensity was also reduced in
MGL�/� tissue (Fig. 8B; MGL+/+, 429 � 166 AU; MGL�/�,
332 � 102 AU; **P = 0.006, n = 3–3 animals). In contrast, no
changes in the mean intensity of vGluT2-immunostaining (MGL+/+,
280 � 138 AU; MGL�/� 265 � 60 AU; P = 0.86, n = 3–3
animals) or VIAAT-immunostaining (MGL+/+, 205 � 75 AU;
MGL�/� 220 � 80 AU; P = 1, n = 3–3 animals) were observed
between genotypes (Fig. 8C and D). This somewhat unexpected
observation demonstrates that chronic inactivation of MGL activity
triggers an adaptive reorganization process in the central terminals
of nociceptive primary afferent fibers.

Discussion

Inhibition of MGL, an enzymatic metabolic hub regulating both
anti-nociceptive endocannabinoid signaling and pro-nociceptive
prostaglandin signaling, is reportedly beneficial in several models of
acute and chronic pain. In spite of its significance, the distribution
of this enzyme has remained unexplored in pain circuits. Here we
provide the first direct anatomical evidence for the presence of
MGL in the mouse spinal nociceptive circuit, and report the follow-
ing four major findings: (i) the regional distribution of MGL was
highly concentrated in the superficial laminae of the dorsal horn,
where most of the primary nociceptive afferents terminate and the

majority of projection neurons are positioned; (ii) the subcellular
localization of MGL was primarily confined to axon terminals indi-
cating that MGL is in an ideal position to regulate endocannabinoid-
and/or prostaglandin-mediated synaptic signaling in the dorsal horn;
(iii) a substantial proportion of CGRP-positive primary nociceptive
afferents contained MGL, and CGRP-immunostaining was signifi-
cantly reduced following genetic deletion of MGL highlighting the
spinal peptidergic nociceptor synapse as the anatomical location
where MGL may primarily regulate nociception; (iv) MGL was also
detected in subsets of non-peptidergic primary afferents as well as
local excitatory and inhibitory terminals, which are involved in the
processing of different aspects of nociceptive information. This
heterogeneous presynaptic distribution of MGL in several neuronal
elements of the nociceptive circuitry is consistent with the concept
that its multiple enzymatic functions may vary at distinct synaptic
localizations.

MGL abundance in the superficial laminae of the dorsal horn

The superficial laminae represent an anatomical hotspot where noci-
ception can be most efficiently regulated (Todd, 2010). Most projec-
tion neurons are concentrated in lamina I of the dorsal horn, and are
heavily involved in the transmission of acute nociceptive signals,
and in the development of hyperalgesia in inflammatory and neuro-
pathic pain states (Mantyh et al., 1997; Nichols et al., 1999). Lam-
ina I and the underlying lamina II receive the majority of primary
nociceptive and thermoceptive Ad and C fiber afferents. Thus, the
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Fig. 7. Weak colocalization of monoacylglycerol lipase (MGL) and vesicular inhibitory amino acid transporter (VIAAT) in the superficial laminae of the
mouse lumbar dorsal horn. (A) A deconvolved confocal image depicts double-immunofluorescence labeling for VIAAT (red) and MGL (green) in lamina I–II
of a spinal cord section derived from an MGL+/+ mouse. MGL-immunofluorescence partially overlapped with the distribution of VIAAT, which is primarily a
marker of local inhibitory axon terminals in these laminae. (B) MGL-immunostaining was largely absent in sections derived from MGL�/� knockout mice, but
VIAAT-immunolabeling was not changed significantly. (C) A magnified 3D reconstruction of the white boxed region highlighted in (A) provided evidence for
sparse colocalization of MGL and VIAAT (arrowheads). (D) Quantification of VIAAT-positive profiles, which contained MGL-immunolabeling resulted in a
weak colocalization ratio. Values measured from MGL�/� sections demonstrate the low background levels of immunostaining. Scale bars: 10 lm (A and B);
2 lm (C).
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striking density gradient of MGL-immunoreactivity observed in lam-
ina I and IIo is entirely consistent with the notion that MGL plays a
prominent regulatory role in physiological and pathophysiological
forms of nociception (Guindon & Hohmann, 2009). Notably, topical
application of the selective MGL inhibitor JZL184 onto the dorsal
horn potently suppresses both acute and inflammatory nociceptive
activity in spinal neurons, an effect mediated by the CB1 receptor
(Woodhams et al., 2012). The involvement of CB1 receptors, the
major target of the endocannabinoid 2-AG in the nervous system
(Katona & Freund, 2008), suggests a regulatory role for MGL in
nociception via termination of 2-AG signaling. In light of these
functional data, it is particularly striking that both DGL-a, the syn-
thesizing enzyme of 2-AG, and the CB1 receptor share an exactly
overlapping regional distribution with that of MGL in the superficial
dorsal horn (Nyilas et al., 2009).

Presynaptic MGL at spinal synapses

In contrast to the overlapping regional distribution pattern, the syn-
thesizing and degrading enzymes of 2-AG display complementary

synaptic distribution at the subcellular level. DGL-a was found
exclusively in the somatodendritic domain of spinal neurons, most
often located perisynaptically at the postsynaptic edge of metabo-
tropic glutamate receptor 5 (mGluR5)-containing excitatory synapses
(Nyilas et al., 2009). Conversely, in the present study the majority
of MGL-immunoreactivity was found presynaptically in axon termi-
nals throughout the superficial laminae. This presynaptic localization
of MGL at spinal synapses is consistent with recent reports from
other brain regions (Guly�as et al., 2004; Lud�anyi et al., 2011; Uchi-
gashima et al., 2011; Tanimura et al., 2012), and suggests that
MGL plays a conserved role in the regulation of synaptic endocann-
abinoid signaling throughout the CNS.
Genetic inactivation of DGL-a eliminates several forms of endoc-

annabinoid-dependent synaptic plasticity in the brain, providing
unequivocal evidence that 2-AG has a fundamental synaptic function
(Gao et al., 2010; Tanimura et al., 2010; Yoshino et al., 2011).
Genetic or pharmacological blockade of MGL in the brain has an
opposite effect, promoting 2-AG-mediated synaptic signaling pro-
cesses (Pan et al., 2009, 2011; Straiker et al., 2009). These forms of
synaptic plasticity all require presynaptically located CB1 receptors
(Kano et al., 2009), which are also frequently found on axon termi-
nals in the dorsal horn of the spinal cord (Hegyi et al., 2009; Nyilas
et al., 2009). This canonical molecular organization ideally supports
retrograde 2-AG signaling and seems to be a conserved feature of
many synapses in the CNS, including the spinal cord (Katona &
Freund, 2008).
This retrograde signaling pathway certainly has significance in

various forms of nociception and nociceptive plasticity. For
example, spinal 2-AG levels are increased in a non-opioid form of
stress-induced analgesia (Suplita et al., 2006). Stress-induced anti-
nociception is facilitated by mGluR5 activation, and requires both
DGL-a and CB1 activity (Nyilas et al., 2009). Notably, direct spinal
blockade of MGL has similar beneficial effects, which also require
spinal CB1 receptors (Suplita et al., 2006). Taken together, these
findings support the view that presynaptic MGL is integrated into
the retrograde 2-AG signaling pathway at spinal synapses, thereby
playing an important regulatory role in nociception.

The spinal nociceptor synapse: a potential anatomical site for
the anti-nociceptive effects of MGL inhibition

Given the primarily anti-nociceptive effect of systemic and spinal
MGL inhibition (Woodhams et al., 2012; Mulvihill & Nomura,
2013), a major goal of the present study was to reveal the anatomi-
cal location(s) where MGL inhibition may suppress pain transmis-
sion in the dorsal horn nociceptive circuitry. Because the electron
microscopic analysis revealed that MGL is mostly located in axon
terminals, another set of experiments was dedicated to determine
which of the major synapse types contain the highest density of
MGL.
The highest colocalization ratio was observed in CGRP-positive

primary afferents. These terminals target several cellular elements in
the dorsal horn and, in parallel to their arborization in lamina II,
they extensively innervate different types of lamina I projection
neurons giving rise to ascending pathways, for example to the lat-
eral parabrachial nucleus (Polg�ar et al., 2010). These projection
neurons are characterized by high expression levels of somatoden-
dritic neurokinin 1 receptors, and their activity is facilitated by both
substance P and CGRP released from a subset of primary afferents
(Seybold, 2009). Thus, the presence of MGL in these nociceptive
afferents supports the notion that MGL inhibition may control noci-
ception at these spinal nociceptor synapses. Most importantly, a

A B

C D

Fig. 8. Quantitative analysis of monoacylglycerol lipase (MGL)-immuno-
staining and immunofluorescence labeling for neurochemical markers in
MGL+/+ wild-type and MGL�/� knockout mice. (A and B) Genetic dele-
tion of MGL results in a significantly reduced calcitonin gene-related peptide
(CGRP)-immunostaining and isolectin B4 (IB4)-labeling. (C and D) In con-
trast, vesicular glutamate transporter 2 (vGluT2)- or vesicular inhibitory
amino acid transporter (VIAAT)-immunolabeling remained unaltered in the
superficial dorsal horn of MGL�/� mice. Mean intensity values for (A)
CGRP, (B) IB4, (C) vGluT2 and (D) VIAAT in the medial superficial dorsal
horn of MGL+/+ vs. MGL�/� mice are presented. *P = 0.03, **P = 0.006,
two-tailed Mann–Whitney U-test.
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similar cell-type-specific knockout approach such as used for CB1

receptor inactivation (Marsicano et al., 2003; Agarwal et al., 2007;
Pernia-Andrade et al., 2009) will be necessary to determine how
MGL regulates endogenous analgesia at spinal nociceptor synapses
in vivo.
Certainly, presynaptic CB1 receptors on these nociceptors may

also be critical for mediating anti-nociceptive 2-AG signaling. Inter-
estingly, the ratio of CGRP-positive terminals containing MGL in
the present study was in the same range as that reported recently, in
terminals that colocalize substance P, CGRP and CB1 receptors
(Kato et al., 2012). Furthermore, cell-type-specific deletion of CB1

receptors provided direct evidence that retrograde endocannabinoid
signaling mediates long-term depression of glutamatergic currents at
these very same primary afferent terminals (Kato et al., 2012),
which have a surprisingly conserved evolutionary function at pri-
mary nociceptor synapses (Yuan & Burrell, 2013). Besides phasic
endocannabinoid-mediated long-term depression as a candidate
endogenous analgesic mechanism (Kato et al., 2012), the involve-
ment of tonic endocannabinoid signaling in the regulation of noci-
ception may also be relevant. For example, two studies recently
described downregulation of CB1 receptors following chronic inacti-
vation of MGL (Chanda et al., 2010; Schlosburg et al., 2010).
Because this perturbation led to a functional tolerance for CB anal-
gesic effects, it will therefore be interesting to investigate in the
future whether such changes are also present in the spinal nocicep-
tive circuitry, especially on peptidergic primary afferents.
Irrespective of the temporal dynamics of spinal endocannabinoid

signaling, attenuation of glutamate release from nociceptive primary
afferents is generally considered to suppress pain. Accordingly, acti-
vation of presynaptic CB1 receptors on primary afferents reduces
glutamate release from their terminals and consequently attenuates
nociception (Kelly & Chapman, 2001; Morisset & Urban, 2001).
These and many other studies collectively suggest that the 2-AG
signaling pathway forms a tonic and/or phasic endogenous analgesic
circuit by activating presynaptic CB1 receptors at central nociceptor
synapses (Chapman, 1999; Walker & Hohmann, 2005). These CB1

receptors may therefore represent one target of beneficial action of
CB preparations currently licensed to attenuate pain in cancer and
multiple sclerosis (Pertwee, 2012). On the other hand, one also
needs to take into consideration that the neurobiological substrate
for this effect is certainly more complex (Agarwal et al., 2007). For
example, inhibition of MGL also contributes to distinct aspects of
analgesia at supraspinal sites such as the periaqueductal gray matter
and/or in the periphery (Hohmann et al., 2005; Spradley et al.,
2010; Gregg et al., 2012; Guindon et al., 2013).

Heterogeneous distribution of MGL in various cellular
elements of the nociceptive circuitry

The present finding that MGL, a regulator of at least two major
brain signaling pathways (Mulvihill & Nomura, 2013), is located
within at least four major synapse types supports the idea that this
serine hydrolase may indeed play distinct physiological functions at
different circuit locations. Moreover, the partial colocalization with
neurochemical markers raises the possibility of further functional
segregation of MGL into different subpopulations of primary affer-
ents, intrinsic excitatory neurons or inhibitory terminals. For exam-
ple, it will be crucial to study which of the four functionally distinct
major inhibitory interneuron types in the dorsal horn contain presyn-
aptic MGL (Polg�ar et al., 2013). Our initial observations identified
some MGL-positive inhibitory terminals forming axo-axonic syn-
apses with Type II synaptic glomeruli, which may originate from

the parvalbumin-positive interneuron population recently implicated
in these connections (Hughes et al., 2012). Interestingly, these
axo-axonic synapses may represent a location at which MGL inhibi-
tion may facilitate tactile allodynia, rather than inducing a general
analgesic effect. Moreover, postsynaptic target cell-specific quantita-
tive differences in endocannabinoid-mediated plasticity are known in
other brain regions (Peterfi et al., 2012). Thus, future experiments
could address whether the heterogeneity in endocannabinoid-medi-
ated plasticity at spinal nociceptor synapses (Kato et al., 2012)
results from spatial segregation of MGL and CB1 receptors into ter-
minals innervating different postsynaptic target cell populations.
A circuit-specific contribution of MGL to the regulation of prosta-

glandins may also be relevant given the complexity of the molecular
components of these pathways (Zeilhofer & Brune, 2006). Although
pro-nociceptive prostaglandin E receptor 2 is located at specific
GABAergic synapses in a cell-type-dependent manner (Ahmadi
et al., 2002; Reinold et al., 2005), these receptors may also trigger
glutamate release presynaptically (Sang et al., 2005). To further
complicate this picture, it is even possible for the same molecular
pathway to play opposite roles in nociception, as exemplified by the
reported pro-nociceptive role of CB1 receptor signaling at spinal
GABAergic synapses (Pernia-Andrade et al., 2009), and the anti-
nociceptive role of superficial spinal prostaglandin E receptor 3
(Nakamura et al., 2000; Natura et al., 2013), which implies that
MGL inhibition may not even be anti-nociceptive at every circuit
location.
Finally, another indication for the temporally and spatially com-

plex functions of MGL in the spinal cord comes from the observa-
tion that both CGRP-immunoreactivity and IB4-labeling are
downregulated in spinal cord sections from MGL�/� mice. This
implies that MGL may play an important developmental function in
the dorsal horn in accordance with earlier findings in other neuronal
systems (Keimpema et al., 2010). Activation of CB1 receptors dur-
ing axonal path finding in vitro causes growth cone repulsion and
collapse (Berghuis et al., 2007), and hyperactivity of the 2-AG-syn-
thesizing enzyme DGL-a results in spherical exclusion of growth
cones and diminishes cell–cell contact in vitro (Keimpema et al.,
2013). Deletion of MGL leads to a marked elevation in spinal cord
2-AG levels (Chanda et al., 2010), and it is possible that this over-
spill of 2-AG produces similar effects in vivo. The observed reduc-
tion in CGRP-immunoreactivity and IB4-labeling may thus merely
represent a developmental defect due to a loss of precise temporal
and spatial control of 2-AG signaling during the critical period of
primary afferent axonal targeting.

Conclusion

The neuronal circuitry of spinal nociceptive processing displays
remarkable cellular and synaptic complexity (Todd, 2010). Contrib-
uting signaling pathways, such as the endocannabinoid system,
fulfill multiple physiological functions at different circuit locations
(Katona & Freund, 2012). The present anatomical findings demon-
strating commensurate heterogeneous MGL distribution in the spinal
dorsal horn therefore highlight the need for specific pre- and post-
synaptic cell-type-specific approaches to elucidate the functional sig-
nificance of endocannabinoid and prostaglandin signaling in
different pain circuit components.
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