
©2006 IEEE. Personal use of this material is permitted. However, 
permission to reprint/republish this material for advertising or 
promotional purposes or for creating new collective works for 
resale or redistribution to servers or lists, or to reuse any 
copyrighted component of this work in other works must be 
obtained from the IEEE. 
 



4th International Conference on Electrical and Computer Engineering
ICECE 2006, 19-21 December 2006, Dhaka, Bangladesh

TEXT-TO-BRAILLE TRANSLATOR IN A CHIP

Xuan Zhang, Cesar Ortega-Sanchez, and fain Murray

Electrical and Computer Engineering Department
Curtin University of Technology

Kent Street, Bentley 6102, Western Australia
E-mail: ied

ABSTRACT
This paper describes the hardware implementation of
a text to Braille Translator using Field-Programmable
Gate Arrays (FPGAs). Different from most
commercial software-based translators, the circuit
presented in this paper is able to carry out text-to-
Braille translation in hardware. The translator is
based on the translating algorithm, proposed by Paul
Blenkhorn [1]. The Very high speed Hardware
Description Language (VHDL) was used to describe
the chip in a hierarchical way. The test results
indicate that the hardware-based translator achieves
the same results as software-based commercial
translators, with superior throughput.

1. INTRODUCTION
Before the invention of the original dot-based written
language for the blind early in the nineteenth century,
visually impaired people was, for all practical
purposes, unable to read. The dot-based language
made a big contribution to improve the way visually
impaired people learnt and communicated with the
rest of the world. However, the original dot-based
language was not easy to use because it employed
twelve dots to represent characters, with up to 4096
possible combinations.

In 1829 Louis Braille developed a system based on a
6-dot cell, which allowed the blind to read and write
more easily. In the 64 possible combinations, there
are 26 alphabetic letters, decimal numbers,
punctuations and sign marks.

Useful as it was, the original Braille system suffered
from low speed because text had to be spelled letter
by letter. To solve this problem, English and other
languages introduced the use of contractions [1, 2, 3].
When contractions are used, Braille is usually called
"grade 2" in contrast to "grade 1" transcriptions
where all words are spelled out letter-by-letter. In

English, almost all Braille is
contractions [3].

grade 2 with 189

Since Braille became one of the most important ways
for the blind to learn and obtain information,
translating normal text into Braille became a
necessity. However, manual translation is time-
consuming and prone to have errors; hence different
devices to perform automatic translation have been
conceived.

Today, most Braille translators rely on the use of a
computer and the American Standard Code for
Information Interchange (ASCII). In software-based
translators, sixty-four ASCII codes, referred to as
Braille ASCII codes are employed to represent the
sixty-four basic Braille characters. Therefore, the
translating process becomes the conversion from
ASCII codes into Braille ASCII codes [4].

Another solution for text to Braille translation is
portable devices. These devices are based on a
microcontroller running a translating program that in
most cases relies on a dictionary or a look-up table
to carry out the translation [5].

Paul Blenkhorn's proposed a system to convert text
into Standard English Braille [1]. This method uses a
decision table with input classes and states and a rule
table with all rules for translation [6, 7]. The format
of each row in the table is:

Input class <TAB> Rule <TAB> New state

The system presented in this paper only considers
grade 2 Braille translations; hence the table can be
simplified by ignoring input classes and states. Only
rules are considered.

Every rule has the following format:

Left context [focus] Right context = input text

To make rules generic, several wildcards are used in
the left context and the right context [2].

530



2 ARCHITECTURE OF THE SYSTEM

Figure 1 shows that the translating block consists of
8 sub-blocks. The translating controller block gets
feedback from the load-translated-codes block and
also receives and stores the text data in registers. In
this particular implementation, the maximum
number of characters for one translation is forty,
which is enough for five words. The load-translated-
codes block feeds back the number of translated
characters so that the translating controller can skip
over those characters and find a new entry. The
entry character is sent to the find-entry block. The
original text is sent to both the focus-check block
and the right-context-check block.

The find-entry block receives the entry character
from the translating controller and outputs a
particular address to the output-rule block. In this
block, there is a look-up table which stores all the
entry addresses. If an address corresponds to a
particular entry character, this address and an
address ready signal is sent to the output-rule block.
However, if no entry address can be found for a
particular character, then the character and a fail
signal is sent to the output-translated-codes block.

Translator
Translating Bloc

p Data
Controflle_

Text
ASCII

Finid

Look--up
Table

Braille
ASCII *utut ^

<= = r~~Tififi6Candla§

Two operations keep running in the output-rule
block. One is reading rules from the look-up-table
block, and the other is sending every single rule to
focus-check, right-context-check, left-context-check,
and load-translated-codes blocks. Input signals for
the output-rule block are all the outputs from the
find-entry block, the look-up-table block and the
feedback signals from load-translated-codes block
that indicate if the output rule is used correctly.

The find-entry block sends an address to the look-
up-table to read one rule and send it separately to
focus-check, right-context-check, left-context-check
and out-rule block. If the rule does not find a match,
then a feedback signal is generated and the output-
rule block gets the next rule and sends it until a
match is found and the focus is successfully
translated.
The focus can have one or more characters. Also, the
same focus can have different left and right contexts.
If a string is identical to the focus in a particular
rule, the right and left contexts need to be checked as
well. If all three parts match, the rule fires, and the
string can be translated.
The focus-check and right-context-check blocks
receive not only the rule form output-rule block, but

Figure 1. Block diagram of text to Braille translator

531



also the whole group of words to be translated from
the translating controller because more than one
letter of focus and right context might need to be
checked. These three blocks perform similar
functions; hence only focus-check block are
described next.
As shown in Figure 1, the focus is checked first,
right context second and left context third. If the
focus for a particular rule matches the input, then the
letter number of the focus and a check complete
signal are sent to the right-context-check block.
However, if the focus does not match any of the
rules, then a signal is sent to the right-context-check
block. This signal is also passed to the left-context-
check block, the load-translated-codes block, the
output-rule block and finally to the translating
controller.
If the focus, right context and left context match one
of the rules, then the load-translated-codes block
sends the translated codes, which were already
stored in its registers, to the output-translated-codes
block, and sends feedback signals to the translating
controller to let it know how many characters were
translated. After one group of characters has been
translated, the output-translated-codes block
transmits the characters one by one. Then a new
cycle starts.

3 IMPLEMENTATION AND TEST
The translator has been implemented using a Top-
Down design methodology where high level
functions are defined first, and the lower level
implementation details are filled in later [8]. To
implement the system, a Xilinx's Virtex-4 FPGA
evaluation board was used. The texts to be
translated, as well as the results of the translation
were stored in a PC as text files and transmitted
using an RS-232 serial connection. Figure 2 shows
the setting used to test the translator.

Figure 2. Test bench for Braille translator.

The system depicted in Figure 2 works as follows:

1. The text to be translated is sent to the FPGA
through a serial link using Hyper Terminal.

2. Part of the FPGA implements a receiver that
converts serial data into bytes. A signal is
generated to indicate to the translator that a new
character has just been received.

3. The translator takes the new character and
stores it in a buffer. Characters are received and
stored until a space is detected. At this point the
translation process described in section 2 takes
place.

4. The results of the translation are sent to a serial
transmitter so that they can be received and
stored in a text file in the computer.

For the implementation reported in this paper, the
FPGA receives the text file to be translated at 4,800
bauds and sends the translated text back to the PC at
57,600 bauds. The reason for this difference is that
the current implementation works on complete
words. This means that a whole word has to be
translated and transmitted to the computer before the
next word can be received. In high-performance
applications, parallel communications could be used
to increase the throughput of the system.

The FPGA evaluation board includes 64MB of DDR
SDRAM, 4MB of Flash, USB-RS232 bridge, a
10/100/1000 Ethernet PHY, 100 MHz clock source,
RS-232 port, and additional user support circuitry to
develop a complete system [9]. For testing purposes,
only the RS-232 port and FPGA have been involved.
There is a PowerPC 405 processor integrated in the
Xilinx XC4VFX12 FPGA, this processor will be
involved in future work for embedded applications.

To simplify the implementation, all rules were
modified to be of the same length. ASCII code 0 was
used as end-sign for every part of the rule. Although
this method increases the amount of memory
required, Virtex4 FPGAs have dedicated memory
blocks that can contain the complete table [10].

All the blocks of the serial communication and the
translator were implemented in VHDL. Xilinx' s ISE
FPGA-development suite was used for system
implementation, synthesis, simulation, and FPGA
configuration.

During testing, outputs of the hardware translator
were compared against the outputs of a commercial
Braille translation program. The results show that
the hardware translator is able to perform
translations with the same accuracy as the
commercial system.

532

K



4 CONCLUSIONS AND FUTURE WORK

The design and implementation of an FPGA-based,
text-to-Braille translator has been presented. In its
current version, the system can be used in embedded
and high-performance applications. However, there
are several improvements which will be incorporated
in future versions of the hardware translator. For
example, the current system is a stand-alone
component. Its structure has to be changed for every
individual application. An improved version will
incorporate the hardware translator in a system on a
chip for multifunctional text-Braille translation. The
system will consist of a microcontroller for interface
and control, and the text-Braille translator, all
integrated in one single chip.
For further improvement, a multi-language-Braille
translator will be considered. Look-up tables for
different languages could be stored in flash memory
so that when translation of text in a particular
language is required, the microcontroller loads the
corresponding look-up table into the FPGA.
Standards for Braille translation are much higher
than for print. This level of accuracy is necessary
because Braille uses the same ASCII code for
different purposes according to the context. Hence,
even slight errors can cause extreme difficulties in
interpretation. The results obtained with the
hardware-based translator show that the system is
able to implement text-to-Braille translation with
high accuracy.

REFERENCES
[1] Blenkhorn, P. "A System for Converting Print into

Braille", IEEE Transactions on Rehabilitation
Engineering, vol. 5, No. 2, 1997, pp. 121-129.

[2] Blenkhorn, P., "A System for Converting Braille into
Print", IEEE transactions on Rehabilitation
Engineering, vol. 3, no. 2, 1995, pp 215-221.

[3] Jonathen, A. "Recent Improvement in Braille
Transcription", in Proceedings of the ACM annual
Conference, vol. 1, 1972, Boston, pp. 208-218.

[4] Durre I. and Tuttle D. "A Universal Computer Braille
Code for Literary and Scientific Texts", International
Technology Conference, December 1991.

[5] J0rgen V. "Computerized Braille production", ACM
SIGCAPH Computers and the Physically
Handicapped, issue 15, pp. 35-40, 1975.

[6] Slaby W. "The MARKOV system of production rules:
a universal Braille translator", ACM SIGCAPH
Computers and the Physically Handicapped, issue 15,
pp. 53-59, 1975.

[7] Slaby W. "Computerized Braille Translation", Journal
of Microcomputer Application, vol. 13, issue n2, pp.
107-113, 1990.

[8] Zeidman B. Designing with FPGAs and CPLDs,
CMP books, ISBN: 1-57820-112-8, 2002.

[9] Memec Company, "Virtex-4 FX12 LC Development
Board User's Guide", electronic document, version
1.0, 2005.

[10] Xilinx Company, "Virtex-4 User Guide", electronic
document, version 1.4, 2005.

533


