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Abstract 

Geopolymer composites reinforced with different layers of woven cotton fabric are fabricated 

using lay-up technique. Mechanical properties, such as flexural strength, flexural modulus, 

impact strength and fracture toughness of geopolymer composites reinforced with 3.6, 4.5, 

6.2 and 8.3 wt% cotton fibres are studied. The fracture surfaces of the composites are also 

examined using scanning electron microscopy. The results show that all the mechanical 

properties of the composites are improved by increasing the cotton fibre contents. It is found 

that the mechanical properties of cotton fabric reinforced geopolymer composites are superior 

to pure geopolymer matrix. 

 

Keywords: A. Polymer-matrix composites, B. Microstructures, B. Mechanical properties, B. 

Fracture toughness. 

 

1. Introduction  



Geopolymers are inorganic compounds that can be cured and hardened at near-ambient 

temperatures to form materials that are effectively low-temperature ceramics with typical 

temperature resistance and strength [1].
 
In recent years, geopolymers have emerged as an 

alternative to cements [2,3]. However, despite their many desirable attributes, such as 

relatively high strength, elastic modulus and low shrinkage, geopolymers suffer from brittle 

failure like most ceramics. Nevertheless, this limitation can be overcome by the introduction 

of reinforcing materials, including short fibres or unidirectional long fibres into the 

geopolymer matrix. For this purpose, various inorganic fibres have been previously used as 

reinforcement in geopolymer composites [4-7].  

 

However, contemporary concerns over environment and climate change have given rise to an 

increasing interest in natural materials to produce environmentally friendly composite 

materials for construction. Natural fibres are very attractive for composite materials as they 

have several useful characteristics, such as low cost, low density, availability, recyclability, 

and renewability. In addition, they possess excellent mechanical properties like high degrees 

of toughness, flexibility, specific modulus and specific strength [8,9].  

 

For these reasons, natural fibres are more attractive to researchers and scientists as an 

alternative source of reinforcement to develop organic polymer composites. As an 

illustration, cellulose fibres have been used to reinforce various organic matrices like 

polyester, vinyl ester, and epoxy matrices [10-13]. However, at present there has been limited 

published research on the use of natural fibres to reinforce inorganic matrices despite the 

advantages they offer in terms of low cost, ready availability, low toxicity and good 

mechanical strength [14]. In a previous report, the authors studied the mechanical properties 

of short cotton fibre-reinforced geopolymer composites. Results showed that further increases 



in short cotton fibre content beyond 0.5 wt% caused a reduction in the mechanical properties 

due to poor workability which led to formation of voids and fibre agglomerations [15,16] . In 

a follow-up work by the same authors [17], similar behaviour has been reported in cotton 

fabric-reinforced geopolymer composites, with the exception that the mechanical properties 

decreased beyond 2.1 wt% cotton fibres. This decrease was attributed to the poor bond 

between the cotton fibre and matrix due to insufficient amount of geopolymer matrix in the 

composites containing more than 2.1% wt% cotton fibres.  

 

In the present study, woven cotton fabrics (CF) have been impregnated (wet out) with 

geopolymer paste, stacked, and compressed by a roller to force the paste to penetrate the 

fabric and to remove most of the trapped air. The aim is to investigate the possibility of 

applying above technique to manufacture geopolymer composites with cotton fabrics for 

structural applications, and to examine the basic mechanical properties through experimental 

testing. Useful results have been gathered for composites with various cotton fibres contents 

(0, 3.6, 4.5, 6.2 and 8.3 wt%) under the three-point bending test. The results show that the 

addition of cotton fibres improves the mechanical properties of geopolymer composites such 

as flexural strength, flexural modulus, impact strength and fracture toughness. Synchrotron 

radiation diffraction (SRD) and scanning electron microscopy (SEM) are used to characterise 

the phase composition, microstructure, and failure mechanisms of woven cotton fibre 

reinforced geopolymer composites. 

 

 

2. Experimental investigation 

2.1. Materials 



Cotton fabric (CF) of 30 cm × 7.5 cm was used to reinforce the geopolymer. This fabric is 

made up of yarns with a density of 1.54 g/cm
3
, tensile strength of 400 MPa, and Young’s 

modulus of 4.8 GPa. Low calcium fly-ash (ASTM class F), collected from Collie power 

station in Western Australia, was used as the source material of the geopolymer matrix. The 

chemical composition of fly-ash (FA) is shown in Table 1. The alkaline activator for 

geopolymerisation was a combination of sodium hydroxide solution and sodium silicate 

grade D solution. Sodium hydroxide flakes with 98% purity were used to prepare the 

solution. The chemical composition of sodium silicate used was 14.7% Na2O, 29.4% SiO2 

and 55.9% water by mass. 

 

2.2. Preparation of geopolymer composites 

To cast the composite samples, five wooden moulds with open tops were prepared and 

greased to avoid the samples sticking during de-moulding. The fabrics were pre-dried for 60 

minutes at 70 °C. An 8 molar concentration of sodium hydroxide solution was prepared and 

combined with the sodium silicate solution one day before mixing. The fly ash and alkaline 

solution were mixed in a Hobart mixer to form a homogeneous paste. A thin layer of 

geopolymer paste was first spread in the wooden mould and the first layer of woven fabric 

was carefully laid on that layer. The fabric was then fully impregnated (wet out) with 

geopolymer paste by a roller and the process repeated for the desired number of cotton fibre 

layers. Each specimen contained different layers of cotton fabric (see Table 2) with final 

layer being geopolymer paste. The alkaline solution to fly ash ratio was fixed at 0.35 whereas 

the ratio of sodium silicate solution to sodium hydroxide solution was maintained at 2.5. The 

composite specimens were placed on a vibration table in order to ensure better penetration of 

the matrix between the fabric openings and to remove the entrapped air voids. Then, the 

composite specimens were pressed under 25kg load for 3 hours. Subsequently, the specimens 



were covered with plastic film and cured at 80 °C in an oven for 24 hours. The samples were 

de-moulded and kept in room condition for 28 days before testing. The mechanical properties 

of unreinforced geopolymer used in this study are measured and used for comparison 

purpose. Typically, the compressive strength of the geopolymer paste is 21 MPa with density 

of 1.9 g/cm
3
. 

 

2.3. Characterisation 

2.3.1. Synchrotron Radiation Diffraction (SRD) 

The Powder Diffraction beamline at the Australian Synchrotron was used to collect the 

diffraction patterns of fly-ash and the geopolymer composites. The diffraction pattern of each 

sample was collected using a wavelength of 0.825 Å over the 2θ range of 5° - 45°. 

 

2.3.2. Scanning Electron Microscopy (SEM) 

The microstructures of geopolymer composites were examined using a Zeiss Evo 40XVP 

scanning electron microscope. The specimens were mounted on aluminium stubs using 

carbon tape and then coated with a thin layer of platinum to prevent charging before the 

observation. 

 

2.4. Mechanical properties 

2.4.1. Flexural strength  

Rectangular bars with a length of 60 mm were cut from the fully cured samples and subjected 

to three-point bend tests to evaluate their flexural strength. The tests were performed in a 

LLOYD Material Testing Machine (50 kN capacity) with a displacement rate of 0.5 

mm/minute. Five specimens of each composition were tested. The flexural strength (F) was 

determined using the following equation [9]: 
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where Pm is the maximum load at crack extension, S is the span of the sample, B is the 

specimen width and W is the specimen thickness (depth).   

 

Values of the flexural modulus (EF) were computed using the initial slope of the load–

displacement curve, XP  / , using the following formula [9]: 
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2.4.2. Impact strength 

The impact strength was determined using a Zwick Charpy impact tester with a 7.5 J 

pendulum hammer. Five bars of 60 mm long were utilised. The impact strength (σi) was 

calculated using the following equation [18]:
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where E is the impact energy required to break a sample with a ligament of area A. 

 

2.4.3. Fracture toughness 

Rectangular bars of 60 mm long and cross-sectional dimension of 20 x 20 mm were used in 

the fracture toughness measurements. A crack with a length to thickness (depth) (a/W) ratio 

of 0.4 was introduced into the specimen using a 0.4 mm diamond blade to evaluate the 

fracture toughness. The fracture toughness KIC was calculated using the following equation: 
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where Pm is the maximum load at crack extension, S is the span of the sample, B is the 

specimen width, W is the specimen thickness (depth), a is the crack length where f(a/W) is the 

polynomial geometrical correction factor given by [9]: 
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3. Results and discussion 

3.1. Synchrotron radiation diffraction 

The synchrotron radiation diffraction (SRD) patterns of class F fly ash, cotton fibres, and 

geopolymer composites containing 0, 3.6, 4.5, 6.2 and 8.3 wt% of cotton fibres, are shown in 

Fig.1. The crystalline phases present were indexed using Powder Diffraction Files (PDFs) 

from the Inorganic Crystal Structure Database (ICSD). The diffraction pattern of cotton fibres 

shows typical characteristic peaks, indicating the presence of cellulose.  The SRD pattern of 

fly ash shows that the major crystalline phases are quartz, mullite and hematite. These 

crystalline phases are the main component of fly ash.  When comparing the SRD pattern of 

the original fly ash with those of the hardened geopolymeric materials shown in Fig. 1, it is 

seen that the crystalline phases of quartz, mullite and hematite remain unchanged and have 

not been visibly altered by the activation reaction. This finding confirms that the crystalline 

phases are not reactive or involved in geopolymerisation, but simply present as inactive fillers 

in geopolymer network [18-21]. In this case, however, amorphous aluminosilicate phases are 

more reactive and dissolvable in alkaline solution during the formation of a geopolymer [22-

24].  

 

3.2. Mechanical properties 

3.2.1. Flexural strength and modulus 



Flexural tests are often used to characterise the mechanical properties of layered materials 

since they provide a simple means of determining the bending response. This provides useful 

information on the performance of layered fabric-based composites [25]. The test results 

show that the flexural strength of cotton fabric reinforced composite increases as wt% of 

cotton fibres increase (see Fig. 2). The composite containing 8.3 wt% woven cotton fibres 

exhibited the highest flexural strength among all composites. The flexural strength of the 

composites increased from 8.2 MPa to 31.7 MPa compared to pure geopolymer. This 

indicates that increasing the number of woven cotton fibres leads to considerable 

improvement in flexural strength in the composite. This finding can be justified from the fact 

that the flexural strength is controlled by the number of reinforcement layers. The lower 

weight of cotton fabrics allows multiple layers of fabric in the composite, to resist the shear 

failure and contribute in sustaining the applied load to the composites. This permits greater 

stress transfer between the matrix and the cotton fibres, resulting in improved flexural 

strength [26].  

 

In previous studies [15,16], the authors studied the flexural behaviour of short cotton fibre 

reinforced geopolymer composites and observed minimum improvement in the flexural 

strength over that of the unreinforced specimens due to poor dispersion of short cotton fibres 

in the matrix. In fact, agglomerations of cotton fibres were noticed which degraded the 

interfacial adhesion between the fibre and the matrix as shown in Fig. 6. In present study, the 

utilisation of continuous fibres as reinforcement for geopolymer composites has shown better 

mechanical properties than short cotton fibres, owing to their ability to effectively bridge the 

cracks due to their alignment in the direction of tension resulted in greater stress transfer at 

the interface of the composites. The improved performance of cotton fabric-geopolymer 

composite can be explained by observing the SEM microscope images as seen in Fig. 7F. 



This shows good penetration of geopolymer paste into the filament of the cotton bundle 

making up the fabric, providing improved bonding between the fabric and the geopolymer 

matrix and leading to an improvement in flexural strength.  

 

The flexural modulus of geopolymer composites is shown in Fig. 3 and indicates similar 

trends to flexural strength values. In reality, the addition of woven cotton fibres in the 

geopolymer matrix increases the flexural modulus over plain geopolymer matrix. The 

flexural modulus is a measure of resistance to deformation of the composite in bending. It 

was observed that none of the specimens are completely broken at peak load. This could be 

due to the crack bridging by long continuous fibres, which makes their flexural modulus 

higher than un-reinforced geopolymer. Such fibres are able to withstand a higher load and are 

capable of undergoing multiple cracks throughout the loading process, thus prevent brittle 

failure of the specimens. Similar results have been reported by Low et al. [9] when testing the 

mechanical properties of cellulose fibre-reinforced epoxy laminates using the three point 

bending test. They report an increase in both flexural strength and modulus as the fibre 

contents increase. 

 

The increase in woven cotton fibre content was exceptionally useful in terms of improving 

the flexural strength and modulus of this inorganic polymer matrix. 

 

3.2.2. Impact strength  

Impact strength is an essential dynamic property of engineering material that gives an 

indication of its resistance against sudden impact. The impact strength of fibre reinforced 

polymer is governed by the matrix-fibre interfacial bonding, and properties of matrix and 

fibres. When the composites undergo a sudden force, the impact energy is dissipated by the 



combination of fibre pull outs, fibre fracture and matrix deformation [27, 28]. The 

experimental results presented in Fig. 4 indicate that the impact strength of the composites 

increases as cotton fibre content increases. The impact strength of the neat geopolymer 

increased from 2.1 to15.6 kJ/m
2
 after the addition of 8.3 wt% woven cotton fabric to the 

geopolymer composite. This significant enhancement in impact strength could be the result of 

pressing the top surface of the geopolymer composites, which expelled the trapped air from 

the sample and forced the geopolymer paste into the voids and pore spaces. As a result, the 

bonding between the fabrics and the matrix is enhanced, and results in increased impact 

strength. 

 

This improvement in impact strength may also be attributed to the fibrillation of cotton layers 

that creates branches in the fibre (see Fig. 7G), resulting in the formation of micro fibrils 

which increase the fibre specific surface area [29, 30]. This results in an enhanced fibre-

matrix interaction, and a strong bonding between the micro fibrils and the geopolymer 

matrix. Therefore, better stress transfer from the matrix to the micro fibrils results in 

increased fibre-matrix bonding. Similar remarkable improvements in impact strength was 

reported by Graupner [31 ]. Based in his observation, the addition of cotton fibre increased the 

impact strength of pure poly (lactic acid) (PLA) matrix. He concluded that the increase was 

due to greater elongation of cotton fibres at break. Fibres containing much cellulose generally 

have high elongation at break values. Cotton has a cellulose content of about 88–96%. 

Elongation at break and impact strength are directly correlated. The high elongation at break 

of cotton fibres increased the elongation at break in the composites, leading to higher impact 

strength. 

  

3.2.3. Fracture toughness 



Generally, crack deflection, debonding and bridging of fibres slows down the crack 

propagation in fibre reinforced composites and increase the fracture energy [32-37]. 

 

Fig. 5 shows the influence of cotton fabric content on the fracture toughness of the 

composites, the composite containing higher cotton fibre content exhibits higher fracture 

toughness. The greatest improvement in fracture toughness (from about 0.6 MPa.m
1/2

 in the 

unreinforced matrix to about 1.8 MPa.m
1/2

) was obtained with 8.3 wt% cotton fibre 

reinforcement. This extraordinary enhancement is due to the unique properties of woven 

cotton fibre to resist fracture resulted in increased energy dissipation from crack-deflection at 

fibre–matrix interface, fibre-debonding, fibre-bridging, fibre pull-out and fibre-fracture. The 

high values of fracture toughness obtained in geopolymer composites with woven cotton 

fibres were due to better interaction between fibre and matrix as shown in Fig. 7. The 

improved interfacial adhesion enabled higher stress transfer between the fibres and matrix 

and reduced the chance of fibre de-bonding. Accordingly, the load required to break the 

sample increases when the content of cotton fibre is increased. Therefore, the fracture 

toughness of geopolymer composites increases with increasing wt% of cotton fibres. 

 

Fig. 7E demonstrates selected scanning electron micrographs of fracture surface of 

geopolymer composite and explains the fracture toughness behaviour. It can be seen from 

Fig. 7E that small pieces of geopolymer paste were attached to the fibre surface of cotton 

fibre/geopolymer composites. Hence, retention of the matrix on the fibre surfaces shows the 

good adhesion between cotton fibres and geopolymer matrix. Additionally, it was observed 

that geopolymer composites with woven cotton fibres did not completely break into two 

pieces due to close spacing of woven cotton fabric which lead to fibres bridging the cracks 



and enhancing the crack propagation resistance. The tortuous pathway of the crack 

propagation indicates that high energy is absorbed by the cotton fibre layers (see Fig. 8). 

 

3.3. Microstructure characteristics 

The fracture surfaces of the woven cotton fibre reinforced geopolymer composites have been 

studied under SEM and are shown in Fig. 7. Generally, fibre pullout, fibre-debonding, fibre 

breakage and matrix fracture are observed after the fracture test of all composites. In fact, 

such toughening mechanisms increased the fracture properties of samples reinforced with 

woven cotton fibres. The effect of fibre content on the fracture surface is clearly seen in Figs. 

7A and B. Composites filled with lower fibre content (3.6 and 4.5) wt% show an increase in 

matrix-rich regions compared to composites filled with higher fibre content. An increase in 

matrix rich regions means that the matrix is not reinforced by enough fibres. Therefore, there 

are insufficient fibres to transfer the load from the matrix [37]. Due to this reason, the 

geopolymer composites with low fibre content exhibited low fracture toughness and 

mechanical properties. However, Figs. 7C and D illustrate the fracture surfaces of the 

geopolymer composites with higher fibre content. It can be seen that there are higher fibre-

rich regions of composites filled with 6.2 and 8.3 wt% cotton fibres. An increase in fibre-rich 

regions means greater stress-transfer from the matrix to the cotton fibres thereby resulting in 

the improvement of mechanical properties. 

 

Therefore, these observations indicate that the woven cotton fabrics can be used as potential 

material to reinforce geopolymer composites due to their good mechanical properties.   

 

4. Conclusions  



This study on mechanical properties of cotton fabric-reinforced geopolymer composite shows 

that the presence of cotton fabric layers in the geopolymer paste significantly increases all 

mechanical properties (flexural strength, flexural modulus, impact strength and fracture 

toughness) compared to neat geopolymer. This remarkable enhancement is due to the unique 

properties of cotton fibre in withstanding greater bending and fracture forces than the more 

brittle geopolymers. SEM micrographs show a number of toughness mechanisms, such as 

crack bridging, fibre pullout and fibre fracture, and matrix fracture. These toughening 

mechanisms of cotton fabric-reinforced geopolymer composites are the major factors 

contributing to the enhanced mechanical properties of samples reinforced with cotton fabric.  

Cotton fibres appear to be uniquely suited to reinforce the geopolymer composites since they 

process easily under conventional manufacturing techniques to yield a product with good 

mechanical properties at low cost. They can be classified as desirable performing composites 

that offer benefits to engineers, particularly in less developed countries or countries that need 

low-cost construction materials. Possible applications for cotton fibre-reinforced geopolymer 

composites include slabs or shingles for siding, certain types of roofing, and some interior 

uses in the building structure. They may also be used for other applications such as pipes and 

cooling towers.    
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Figure Captions 

1. Synchrotron radiation diffraction patterns of (A) cotton fibres (CF), (B) fly-ash , and 

geopolymer composite with (C) 3.6 wt% CF, (D) 4.5 wt% CF, (E) 6.2 wt% CF and (F) 

8.3 wt% CF. [Legend: 1 = mullite (PDF 15–0776), 2 = quartz (PDF 05–0490), 3 = 

hematite (PDF 13–0534), 4= cellulose (PDF 00–060–1502) ]. 

2. Flexural strength of geopolymer composites as a function of fibre content 

3. Flexural modulus of geopolymer composites as a function of fibre content. 

4. Impact strength of geopolymer composites as a function of fibre content. 

5. Fracture toughness of geopolymer composites as a function of fibre content. 

6. SEM showing agglomeration of short fibres in cotton fibre/geopolymer composites 

loaded with 1.0 wt%. 

7. SEM images of the fracture surface for geopolymer composites reinforced with varying 

content of cotton fibres (A) 3.6, (B) 4.5, (C) 6.2 and (D-E) 8.3wt%. The micrographs of 

(F) penetration of the geopolymer matrix into cotton fabrics and (G) micro fibrillation of 

cotton fibers. 

8. Optical image of crack propagation in cotton fabric/geopolymer composites loaded with 

8.3 wt% fibre. 
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Table 2: Formulations of samples. 

Sample                 Fabric layers   Fibre content 

(wt%) 

Composite   0 

Composites 1 

Composites 2 

Composites 3 

Composites 4 

                      0              

                      5 

                      10 

                      20 

                      40 

 0 

3.6 

4.5 

6.2 

8.3 

 

 

 

 

 

 

 

 

 

 

SiO2  Al2O3  Fe2O3 CaO MgO  SO3  Na2O  K2O  LOI 

 50%  28.25%  13.5%  1.78%  0.89%  0.38%  0.32%  0.46%  1.64% 
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Fig. 7A 
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