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Optimal information rate of secret sharing
schemes on trees

László Csirmaz and Gábor Tardos

Abstract—The information rate for an access structure is the
reciprocal of the load of the optimal secret sharing scheme for this
structure. We determine this value for all trees: it is (2−1/c)−1,
where c is the size of the largest core of the tree. A subset of the
vertices of a tree is acore if it induces a connected subgraph and
for each vertex in the subset one finds a neighbor outside the
subset. Our result follows from a lower and an upper bound on
the information rate that applies for any graph and happen to
coincide for trees because of a correspondence between the size
of the largest core and a quantity related to a fractional cover
of the tree with stars.
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I. I NTRODUCTION

Secret sharing schemes has been investigated in several
papers, for an extended bibliography see [14]. Such a scheme
with n participants is a joint distribution ofn + 1 discreet
random variables, one called thesecret, the rest being the
shares of the participants. Anaccess structuredesignates
certain subsets of the participants asqualified leaving the rest
of the subsetsunqualified. A secret sharing scheme for an
access access structure has to satisfy that one can recover
the secret with probability 1 from the shares of any qualified
subset of the participants but the secret should be statistically
independent from the collection of shares belonging to an
unqualified subset.

In this paper we deal with access structures based on graphs.
The scheme isbased on the graphG if the participants are
the vertices, and unqualified subsets are the independent sets.
This makes the endpoints of the edges the minimal qualified
subsets. We simply call a secret sharing scheme for the access
structure based on a graphG a secret sharing scheme onG.

The load of a scheme is measured by the amount of infor-
mation the most heavily loaded participant must remember for
each bit in the secret. Formally, this ismaxi(H(Si))/H(ξ),
where Si is the share of participanti, ξ is the secret and
H denotes entropy. We assumeH(ξ) > 0. For a graphG
the information complexity ofG, denoted asσ(G), is the
infimum of the loads of all secret sharing schemes onG.
The information rate, usually denoted asρ(G), is simply
ρ(G) = 1/σ(G), the inverse of this value. The notationσ(G)

Central European University and University of Debrecen. Research was
partially supported by grant NKTH OM-00289/2008 and the “Lendület”
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for the complexity of the scheme was introduced in [10]. The
information rate of graphs has been investigated in several
papers, see [9] for the rate of graphs with at most six vertices
and also (among other works) [2], [3], [4], [5], [6], [7], [13].

In [13] Stinson describes a general secret sharing construc-
tion, which, when applied to graphs, gives the upper bound
(d+1)/2 for the complexity of graphs with maximum degree
d. Blundo et al. in [2] constructed an infinite family of graphs
for eachd for which Stinson’s bound is tight. Thed = 2 case
is fully settled in [3]: the information complexity of paths
and cycles is3/2 except forP2, P3, C3 andC4, when it is
1. The information complexity of thed-regulard-dimensional
hypercube is exactlyd/2, see [8]. Our paper is the first one
which determines the information complexity and information
rate of graphs in a large and natural family, namely, for trees.

To state our result we need the notions ofcore and star
cover rateof an arbitrary graph.

Definition 1.1 We call a subsetX of the vertices of a graph
G a coreof G if it induces a connected subgraph and one can
find a neighborx′ /∈ X of eachx ∈ X such thatx is the only
neighbor ofx′ among the vertices inX and{x′ | x ∈ X} is
an independent set.

A fractional star packingin a graphG is a collection of
star subgraphs ofG, each with an associated positive weight.
The weight of a vertex or an edge in a fractional star packing
is the total weights associated to stars containing that vertex
or edge, respectively. Thestar cover rateof G is the infimum
(minimum) of the maximal vertex weights among all fractional
star packings with each edge having weight at least 1.

If the weights in a fractional star packing are integral we
speak ofstar packingand we say a vertex or edge iscovered
k times if its weight is k.

Notice that whenG is a tree a subsetX of its vertices is a
core if it induces a connected subgraph and eachx ∈ X has
a neighbor outsideX .

Theorem 1.2:Let G be a graph, letc = c(G) be the
maximum size of a core ofG and lets = s(G) be the star
cover rate ofG. For the information complexityσ(G) of G
we have

2− 1/c ≤ σ(G) ≤ s.

Note that the second inequality of this theorem comes from
Stinson [13]. We state it here for completeness. Both the lower
and the upper bounds are often useful, but they are not tight in
general. The graph∆ depicted in Figure 1 has only one vertex
cores, its information complexity is3/2 and its star cover rate
is 5/3. Thus we have strict inequalities in

2− 1/c(∆) < σ(∆) < s(∆).
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Fig. 1. A graph with different information complexity, maximum core size
and star packing rate

For trees, however, our lower and upper bounds coincide
and we can even compute this value efficiently.

Theorem 1.3:Let G be a tree, letc = c(G) be the
maximum size of a core ofG and lets = s(G) be the star
cover rate ofG. For the information complexityσ(G) of G
we have

2− 1/c = σ(G) = s.

One can computec and thusσ(G) and the information
rateρ(G) in linear time. Furthermore, a linear secret sharing
scheme exists onG that achieves optimal load2 − 1/c. In
this scheme the shares are vectors of length2c − 1 over a
finite field, the secret is a vector of lengthc and these are
computed applying linear maps to a uniform random vector
of some fixed length less thannc, wheren is the number of
vertices inG. The actual matrices providing the linear maps
can be found in time linear in theoutput size.

In Section II we prove the lower bound part of Theorem 1.2
using the entropy method, see [7], [8]. Note that the upper
bound comes from Stinson [13].

We prove the equalities of Theorem 1.3 in section III by
proving thats(G) = 2− 1/c(G) if G is a tree.

Finally in Section IV we prove the algorithmic assertions
of Theorem 1.3.

II. I NFORMATION COMPLEXITY OF GENERAL GRAPHS

In this section we show that the information complexity of
an arbitrary graph is at least2 − 1/c wherec is the size of
the largest core inG. This proves the2− 1/c ≤ σ(G) part of
Theorem 1.2.

The proof uses theentropy method, see, e.g. [7], [8]. For
the sake of completeness we sketch how this method works.
Consider any secret sharing scheme for an arbitrary access
structure. For any subsetA of the participants we definef(A)
to be thenormalized entropyof the shares belonging to the
participants inA, namely

f(A) =
H({Sv | v ∈ A})

H(ξ)
,

whereSv is the share of participantv andξ is the secret. Note
that our goal is to lower bound the load of the scheme, which
is maxv f({v}).

Using the standard (Shanon-type) information inequalities
we have

(a) f(∅) = 0,
(b) f(A) ≥ f(B) whenA ⊇ B (monotonicity) and
(c) f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (submodularity).

Using the definition of the secret sharing schemes we further
have

(d) f(A) ≥ f(B) + 1 whenA ⊇ B, A is qualified whileB
is not (strict monotonicity) and

(e) f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) + 1 whenA, B
are qualified whileA ∩B is not (strict submodularity).

The entropy method involves proving a lower bound for
maxv f({v}) for any f satisfying inequalities (a)–(e). In our
case we want to show that there is always a vertexv with
f({v}) ≥ 2− 1/c and this clearly follows from the following
lemma.

Lemma 2.1:Let X be a core of the graphG, and letf be
a real valued function defined on the subsets of the vertices
of G satisfying properties (a)–(e). Then

∑

v∈X

f({v}) ≥ 2|X | − 1.

Proof: First observe that the statement is trivial if|X | ≤
1. We can therefore assume|X | ≥ 2. We use the “independent
sequence lemma” from [1], [8] that ensures

f(X) ≥ |X |+ 1.

Using this inequality it is enough to prove
∑

v∈X

f({v}) ≥ f(X) + |X | − 2. (1)

We prove this latter inequality for all subsetsX that induce
a connected subgraph, not only for cores. We use induction on
the number of the vertices inX . The base caseX = {v, w}
of (1) simplifies to

f({v}) + f({w}) ≥ f({v, w})

which is subadditivity and a consequence of properties (a) and
(c).

Now supposeX induces a connected subgraph and it has
at least three vertices. Let us pick a vertexv ∈ X such that
Y = X − {v} also induces a connected subgraph. Note that
such a vertexv always exists. Letw be a vertex inY connected
to v. Neither {v, w} nor Y is an independent set (we use
|X | ≥ 3 here), but their intersection{w} is independent, thus
unqualified. Property (e) gives

f({v, w}) + f(Y ) ≥ f(X) + f({w}) + 1.

Also, f({v}) + f({w}) ≥ f({v, w}) by subadditivity, which
yields

f({v}) + f(Y ) ≥ f(X) + 1.

The induction hypothesis forY finishes the proof of (1) and
also the proof of the lemma.

III. I NFORMATION COMPLEXITY OF TREES

In this section we show the equalities stated in Theorem 1.3.
They follow from Theorem 1.2 and the following lemma. To
see this simply divide byc the weights of the star packing
claimed by the lemma: the resulting fractional star packing
shows that star cover rate ofG is at most2− 1/c.

Lemma 3.1:Let G be a tree with at least 2 vertices, and
suppose each core ofG has size at mostc. Then there exists
a star packing inG so that (i) all edges are covered exactlyc
times, and (ii) all vertices are covered at most2c− 1 times.

Proof: We replace each undirected edge(u, v) of G by c
directed edges betweenu andv; the number of edges in each
direction will be specified later.



3

To obtain the star packing we partition the (now directed)
edges into stars in such a way that all edges will be directed
outward from the center of the star. Thus all outgoing edges
from a vertexv must be part of stars centered atv. Clearly, we
can do this with as many stars centered atv as the maximal
number ofoutgoingedges fromv to some neighboring vertex.
Furthermorev will be a non-center vertex of exactly as many
stars as the total number ofincoming directed edges tov.
The sum of these two numbers gives the total number of stars
coveringv. As there are exactlyc directed edges along each
original edge, this cover number isc plus the total number
of incoming directed edgesexcept the smallest numberof
incoming directed edges from a single neighbor.

Thus it suffices to show that we can direct these multiple
edges so that this latter sum is at mostc− 1.

We start with assigning positive integers – weights – to each
vertex. The weight of a set of vertices is the sum of the weights
of the vertices in the set. Assigning weights is a technical step
to ensure each vertex is in a maximum weight core.

Let W be the set of all positive integer weight functions
making the weight of every core at mostc. As each vertex
is an element of some core,W has finitely many elements.
FurthermoreW is not empty: if every vertex has weight1,
then by the definition ofc, every core has weight≤ c. We
call a weight functionw ∈ W maximal if increasingw by
one at any one vertex yields a function outsideW . Clearly, a
maximal weight function must exist inW .

From now on fix such a maximal weight functionw ∈ W .
The maximality ofw implies that for every vertexv there
exists a core containingv whose weight is exactlyc.
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Fig. 2. A tree with weights and maximal core sizec = 7.

Now let (v1, v2) be an edge ofG. If eitherv1 of v2 is a leaf,
then direct allc edges betweenv1 andv2 toward the leaf. (If
both v1 andv2 are leaves, thenG is a single edge, and there
is nothing to prove.)

If neitherv1 norv2 is a leaf, then removing the edge(v1, v2)
splits G into two disjoint subtrees,G1 and G2 where Gi

containsvi. Let Ci be a maximal weight (using the weight
function w) core in Gi such thatCi containsvi and let its
weight beci = w(Ci). As C1∪C2 is a core of weightc1+ c2
in G, and all cores inG has weight≤ c, we havec1+ c2 ≤ c.
Among thec directed edges betweenv1 andv2 directc1 from
v1 towardsv2, andc2 from v2 towardsv1. If c1+ c2 < c then
direct the rest of these edges arbitrarily.

The tree depicted on figure 2 has maximal core sizec = 7,
and the numbers show a maximal weight function. Each edge
is replaced by seven directed edges, and the numbers the above
procedure gives are

A→ B B → C C → D D → E E → F F → G
3 6 ≥1 2 4 6

A← B B ← C C ← D D ← E E ← F F ← G
4 1 ≥2 5 3 1

For example, when the edgeCD is deleted, the only core in
the remaining graph containingD is the singleton{D} with
weight 2. This gives the value≥ 2 to C ← D and similarly
we have≥ 1 for C → D. This leaves4 more edges between
C andD that we can direct arbitrarily. In all other edges in
the above example we havec1 + c2 = c, thus the direction of
all other edges are determined.

We claim that our construction satisfies the above require-
ment. Indeed, ifv is a leaf, then it has exactlyc incoming
edges and no outgoing edge. Otherwise letv be a non-leaf
vertex, andC be a core of maximal weight (according tow)
containingv. By the maximality ofw, C has weightc. When
deletingv fromC each connected component of the remaining
graph contains exactly one neighbor ofv in C. Let v1, v2, . . .,
vs be these neighbors and letCi be the connected component
of C − v containingvi. Then

c = w(C) = w(v) + w(C1) + · · ·+ w(Cs).

Both C and C − Ci are cores inG − vvi and they were
considered when directing the edges alongvvi. Therefore we
have at leastw(Ci) edges directed fromvi to v and at least
w(C − Ci) = c − w(Ci) edges going fromv to vi. As this
accounts for allc edges betweenv andvi these are the exact
number of edges going either way. Thus the total number of
incomingedges tov from vertices inC is

w(C1) + . . .+ w(Cs) = c− w(v) ≤ c− 1.

We have two cases: eitherv has a leaf neighbor, or it has
none. In the first case all non-leaf neighbors ofv are inC, as
C was chosen to be maximal. There are no incoming edges
from leaves, thus in this case we are done.

In the other case no neighbor ofv is a leaf. Again by
maximality all but one of the neighbors ofv must be inC. Let
v∗ be the exceptional neighbor ofv outsideC. Now C − Ci

is a core in the graphG− vv∗ and it containsv, thus at least
w(C − Ci) = c − w(Ci) edges are directed fromv toward
v∗. It means that that the number ofincomingedges fromv∗

cannot be more thanw(Ci), which is the number of incoming
edges fromvi. It shows that the smallest number of incoming
edges come fromv∗, and the total number of incoming edges
from the other neighbors is at mostc − 1, which was to be
shown.

IV. A LGORITHMS

We turn to the algorithmic part of Theorem 1.3. LetG be
a tree. The sizec(G) of the maximal core inG can be found
by the following algorithm.

Pick an arbitrary rootr in G. For each vertexv in G let us
denote byGv the subtree ofG “below” v, i.e., Gr = G and
for v 6= r we obtainGv by deleting the edge connectingv to
its “parent” (the neighbor closer tor) and taking the connected
component ofv.
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First we order the the vertices in reverse breadth first search
order (starting from the vertices farthest from the root) and
compute the valuec(v) of the size of the largest core inGv

containingv. We definec(v) = 0 for leaf verticesv. If v
is not a leaf, thenc(v) is one plus the sum ofc(vi) for all
children vi of v with the smallest summand left out of the
summation. This enables us to computec(v) in time O(dv)
from the values computed earlier. Heredv stands for the degree
of v. This makes for a linear time algorithm for computing all
the valuesc(v).

Having computedc(v) for each vertex, computingc(G) is
simple. If the largest core contains the rootr, then its size is
c(r). Otherwise ifv 6= r is its vertex closest to the root its
size is one plus the sum ofc(vi) for all the childrenvi of v
(this time no summand is left out). Computing these values
and finding the maximum takes linear time again.

Finally in order to construct the optimal secret sharing
scheme one has to find a maximal weight functionw ∈ W .
Notice that for an arbitrary weight functionw one can compute
all the valuescw(v) in linear time the same way we computed
c(v). Here cw(v) is the maximalw-weight of a core inGv

containing v. Now increasing the weight of the rootr by
c − cw(r) we can ensure that no core has weight overc but
the root is contained in a core of weightc. Starting from
the all 1 weight function and repeating this procedure for all
vertices as roots we find a maximal weight function. This takes
quadratic time (still OK as the output is huge), but we remark
that with a more careful analysis (increasing the weight of
vertices in a single breadth first search order after computing
first c(v) without weights) a maximal weight function can be
also obtained in linear time.

From a maximal weight functionw one can orientcw(v)
edges fromv to its parent (v 6= r) andc− cw(v) edges from
the parent tov. This yields an optimal star packing. Now we
apply Stinson’s technique [13] to obtain the secret sharing
scheme onG by combining linear schemes on the individual
stars. The parameters of this combined scheme are as stated
in Theorem 1.3.
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[10] J. Martı́-Farré, C. Padró: On secret sharing schemes, matroids and poly-
matroids,Proceedings of the 4th conference on Theory of Cryptography,
Lecture Notes in Comput. Sci.740 (2007) pp.273–290

[11] S. A. Plotkin, D. B. Shmoys, Eva Tardos: Fast Approximation Algo-
rithms for Fractional Packing and Covering ProblemsMath. Oper. Res.,
Vol 20, pp 257–301, 1995

[12] Edward R. Scheinerman, Daniel H. Ullman:Fractional Graph Theory:
A Rational Approach to the Theory of GraphsWiley-Interscience, (1997)

[13] D. R. Stinson: Decomposition constructions for secretsharing schemes,
IEEE Trans. Inform. Theory40 (1994) pp 118–125.

[14] D. R. Stinson, R. Wei: Bibliography on Secret Sharing Schemes,
available at http:// www.cacr.math.uwaterloo.ca/
˜dstinson/ssbib.html
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