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Element Rotation Tolerance in a Low-Frequency

Aperture Array Polarimeter

A. T. Sutinjo∗ P. J. Hall∗

Abstract — We present a rotation error tolerance
analysis for dual-polarized dipole-like antennas com-
monly found in low-frequency radio astronomy. A
concise Jones matrix expression for the phased ar-
ray is derived which facilitates calculations of rota-
tion error effects in polarimetry. As expected, for
random rotation error and number of elements ap-
proaching infinity, the estimation error converges to
that of the error-free case. However, as in practice
large but finite number of antennas are involved, we
present a simple analysis to estimate rotation error
effects. An example calculation based on a “base-
line” design for a low-frequency Square Kilometre
Array (SKA) “station” is discussed.

1 INTRODUCTION

How tightly should (dual linearly-polarized) low-
frequency aperture arrays (LFAA) antenna ele-
ments be aligned? It seems clear that misalign-
ment should degrade array gain. It also appears
on the surface that polarization properties should
be at least as sensitive if not more so. How about
if “large” number of antennas are involved? These
are the questions that motivate our investigation.

As opposed to microwave antennas where pre-
cise machine tolerances may be maintained, LFAA
antennas are inevitably human deployed in their
(often harsh) environment. Demanding very tight
alignment tolerance on each antenna seems im-
practical due to the time and cost involved. The
Murchison Widefield Array (MWA) [1, 2] largely
obviates this problem by their architecture as reg-
ularly spaced “bowties” are clipped onto (N-S and
E-W) pre-surveyed metallic grids, forming “tiles”
as seen in Fig. 1.

Although this method was found satisfactory for
the MWA and could be replicated in larger SKA
LFAA context, a review of this topic is warranted
for a few reasons. Firstly, recently developed high-
gain antennas such as the log-periodic “SKALA”
candidate element [3, 4] have been designed to be
directional in absence of a metallic ground plane.
Hence, the possibility of having to align the an-
tennas in the absence of a grid and the tolerance
involved should be considered. Secondly, our field
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experience using a simple compass for alignment
yields a standard deviation of approximately 5o;
clearly, we need to understand if this is acceptable.
Thirdly, we seek to review this problem in light of a
recently introduced fundamental figure-of-merit for
radio polarimeters—the intrinsic cross-polarization
ratio (IXR) [5]— as it may reveal an essential in-
sight.

Figure 1: An MWA tile consisting 16 dual-polarized
bowties on a 5 m X 5 m wire mesh. The output of
each antenna polarization is routed to an analog
beamformer box seen on the middle right side of
the photo.

2 JONES MATRIX DERIVATION

For dipole-like antennas, a polarimeter response
with small rotation errors may be expressed as:

f i = EiJLe (1)

where f i = (f ix, f
i
y)T indicates the measured vector,

e = (eθ, eφ)T denotes the sky Jones vector, and for
linear polarization

JL =

(
Jxθ Jxφ
Jyθ Jyφ

)
(2)

and the rotation error matrix is given by

Ei =

(
cos δi sin δi
− sin δi cos δi

)
(3)



Figure 2: Rotational misalignment in an array of
identical cross-dipole elements (top view). δi is the
rotation error of pair i.

Assuming that the Jones matrices for the an-
tenna pairs are identical, the polarimeter response
for a planar array is given by

f =
1

N

( N∑
i=1

ej(kxxi+kyyi+ϕi)Ei
)
JLe (4)

where kx = (2π/λ) sin θ cosφ, ky =
(2π/λ) sin θ sinφ, xi, yi are the element positions,
and ϕi is the phase shift for pair i. Converting
the array measurement and sky bases from linear
polarization (LP) to circular polarization (CP) [6],
we obtain

fC =
1

N
R
( N∑
i=1

ej(kxxi+kyyi+ϕi)Ei
)
JLR

Hec (5)

where fC = (fl, fr)
T (subscripts l,r refer to left

hand [LH] and right hand [RH] CP, respectively),
eC = (el, er)

T is the CP sky vector, and the trans-
formation matrix is

R =
1√
2

(
−j 1
1 −j

)
(6)

After simplification, the rotation error for the ar-
ray may be expressed as a diagonal matrix that
pre-multiplies the error-free Jones matrix

fC =

(
F− 0
0 F+

)
JCeC (7)

where JC = RJLR
H is the CP Jones matrix and

F± =
1

N

N∑
i=1

ej(kxxi+kyyi+ϕi±δi) (8)

3 IXR DEGRADATION

At the intended beam scanning direction (θt, φt)

F±t =
1

N

N∑
i=1

e±jδi (9)

Note that F+
t = (F−t )∗ and we can write

fCt = F−t

(
1 0
0 16 (−2F−t )

)
JCeC

= F−t MerrJCeC (10)

IXR including rotation error may be calculated
for JerrC = F−t MerrJC using [5]

IXR =

(
σmax/σmin + 1

σmax/σmin − 1

)2

(11)

where σmax/σmin is the (spectral norm) condition
number for the Jones matrix.

Recall that IXR is unitarily invariant [5, 6] and
is unaffected by scalar multiplication. Since Merr

is a unitary matrix

IXR(JerrC ) = IXR(JC) (12)

Hence given our assumptions (identical Jones ma-
trices and small δi), IXR is unaffected by rotation
error. It is important to note that no assumption
regarding error distribution nor number of elements
has entered the picture, therefore (12) applies to ar-
bitrary distributions for any N .

One must not, however, infer from the above
statement that polarimetry is unaffected by rota-
tion error. Let us interpret (12) properly: if the
total relative input error to the polarimeter is held
constant despite rotation error, then the relative
output error upper bound remains unchanged; beg-
ging the question: how does rotation error affect to-
tal relative input error? This question is addressed
next.

4 UNPOLARIZED SOURCE

As radio astronomy sources are generally unpolar-
ized or are weakly polarized [7], we now assume
that there exists a single unpolarized point source
at the intended beam direction (θt, φt). The auto-
correlation matrix may be written as [5, 8]

V = JBJH (13)

where B =
〈
eeH

〉
(for an unpolarized source, B =

I/2 [8]) is the brightness matrix and J is the Jones
matrix for the entire array at the intended beam



direction. Let (13) be the error-free case. Keeping
the the same source at (θt, φt), let the case with
rotation error be

Ṽ = J̃BJ̃H (14)

where .̃ indicates the presence of error.
Assuming the errors are not corrected in the “cal-

ibration” procedure (which introduces an input er-
ror to the polarimetry), the the following brightness
matrix estimate is obtained.

B̃ =
1

2
J−1J̃J̃H(JH)−1 (15)

Assuming CP bases and small rotation errors

B̃ ≈ 1

2
J−1FJJHFH(JH)−1 (16)

where F = F−t Merr as per (10). Note that the
presence of the diagonal matrix F introduces off-
diagonal “leakage” (i.e., non-zero cross-polarization
correlation: 〈ele∗r〉, 〈ele∗r〉) terms in B̃.

Introducing statistical rotation errors to the
problem, let δi be a Gaussian random variable with
zero mean and variance σ2 (independent and iden-
tically distributed for every i). The mean and vari-
ances (real [σr] and imaginary [σi]) for Ft is well
known from array tolerance theory [9, 10].

E[Ft] = e−σ
2/2 (17)

σ2
r =

1 + e−2σ2

2N
− e−σ

2

N

σ2
i =

1− e−2σ2

2N
(18)

For N →∞, the variances vanish and

B̃ ≈ 1

2
E[Ft]

2 (19)

which is simply a scaled version of B = I/2. As-
suming E[Ft] introduces only small degradation in
system sensitivity (which is reasonable: e.g., for
σ = 10o, E[Ft]

2 = 0.97—i.e., 3% degradation), the
scaling factor may be appropriately re-scaled re-
sulting in the correct answer (i.e., detection of a
purely unpolarized source). In this particular case,
polarimetry is unaffected by small rotation errors.

Let us transition to a more practical case where
N is high but finite. Multiplying the matrices in
(16), the leakage levels may be estimated as

B̃1,2 ≈ 4jJ∆Im(F−t ) (20)

where J∆ has been introduced to refer to a cross-
diagonal component in the CP Jones matrix. The
approximate variance of the leakage level is

VAR[4J∆Im(F−t )] = (4J∆)2σ2
i ≈

(4J∆σ)2

N
(21)

For finite number of elements and leakage with a
certain desired standard deviation, one may calcu-
late the minimum number of elements required for
a given σ and J∆. This is illustrated in Tab. 1 for a
baseline SKA LFAA station where N = 289 [4] and
a presumed tolerable leakage standard deviation of
0.5%. Note that a moderate J∆ of 0.2 requires rota-
tion standard deviation of ≈ 6.1o whereas a “good”
J∆ of 0.1 may tolerate rotation error of ≈ 12o. We
point out that the above performances are achiev-
able with power gain degradation of less than 5%
(as reported in the third column). These rotation
tolerances are well within our field alignment accu-
racy based on a compass of approximately 5o stan-
dard deviation (sample size: 16 elements).

Table 1: Rotation error standard deviation (σ) re-
quired to achieve leakage with standard deviation
of 0.5% for N = 289.

J∆ σ (o) 1− (E[Ft])
2 (%)

0.1 12.2 4.4
0.2 6.1 1.1
0.33 3.7 0.4

5 Conclusion

For an array of dual-polarized dipole-like pairs
where the Jones matrices are identical, the po-
larimeter’s Jones IXR is unaffected by (small) el-
ement rotation error. Furthermore, when the ro-
tation error is random (Gaussian) and the number
of elements approaches infinity, the array with ro-
tation errors correctly detects a single unpolarized
source in the intended beam direction without re-
course to an error-correction scheme. For practical
“large” numbers of antennas, we presented calcu-
lations for 289 elements in an SKA LFAA station.
We found that a moderate antenna raw-cross po-
larization of 0.2 requires rotation standard devia-
tion of ≈ 6.1o. This tolerance is consistent with a
compass-based alignment method, which from our
experience achieves approximately 5o standard de-
viation.
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