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Abstract. In this paper we apply the projected Newton-type algorithm to
solve semi-infinite programming problems. The infinite constraints are replaced
by an equivalent nonsmooth function which is then approximated by a smooth-
ing function. The KKT system is formulated as a nonsmooth equation. We
then apply the projected Newton-type algorithm to solve this equation and
show that the accumulation point satisfies the KKT system. Some numerical
results are presented for illustration.

1. Introduction. Semi-infinite programming problems (SIP) have wide applica-
tions, such as the approximation theory, optimal control, eigenvalue computation,
statistical design and other engineering problems. There are many papers in the
literature dedicating to SIP problems. These include survey papers, such as [2, 11].
In [4], a constraint transcription technique is developed to solve a general class of
SIP problems, where a smoothing parameter is required to be adjusted. In [13], the
constraint transcription technique is used in conjunction with the concept of the
penalty function for solving a general SIP problem.

Newton method is an effective tool in the numerical computation of nonlinear
equations ([7, 9, 12, 14]). In [5, 6, 10, 15, 16], Newton method was used to develop
numerical algorithms for solving SIP problems, where the KKT system is formulated
as a nonsmooth equation. This method is very efficient, but its shortcoming is also
quite obvious. More specifically, the number of Lagrange multipliers in KKT system
is not known. In fact, even if the number of Lagrange multipliers is assumed given,
it is still a demanding task to determine the respective attainers.
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To overcome these difficulties, we apply the Newton method to solve the SIP
problems through a different formulation of the KKT system. More specifically,
the infinite constraints are transformed into an equivalent nonsmooth function. We
then approximate this nonsmooth function by a smoothing function with a positive
smoothing variable. For a given smoothing variable, we derive the corresponding
KKT system for the smoothing function. The Newton method is used to develop a
computational algorithm for solving this KKT system, where the smoothing variable
is kept positive during computation. In this way, the task of determining the number
of Lagrange multipliers and to the respective attainers is not necessary.

We organize the paper as follows. In Section 2, we formulate the KKT system
of this problem by introducing a smoothing function. In Section 3, some suffi-
cient conditions are obtained. In Section 4, approximate smoothing functions are
introduced. In Section 5, a projected Newton-type algorithm is developed. For
illustration, some numerical results are showed in Section 6.

2. Problem Formulation. We consider the semi-infinite programming (SIP) prob-
lem

min f(x) (2.1a)

s.t. g(x, v) ≤ 0, ∀v ∈ V, (2.1b)

where f : Rn → R, g : Rn×Rm → R are twice continuously differentiable functions,
and V is a bounded compact subset in Rm.

An efficient method to solve (2.1) is to formulate its KKT system as an equation
and then the Newton method is used. However, the KKT system so formulated
contains p multipliers together with the corresponding points vi, i = 1, . . . , p, at
each of which g(x, vi) = 0. These points are called attainers. However, the number
p is not known, and so are the attainers.

The determination of vi is a serious task. For example, suppose v1, v2 ∈ V, v1 6=
v2, such that g(x, vi) = 0, i = 1, 2. For each i = 1, 2, vi is solved by the necessary
condition∇vg(x, vi) = 0. Since both v1 and v2 satisfy this condition, we may end up
with a solution of v1 = v2 during the computation. This means that we have missed
finding one of the two attainers. Consequently, it also gives a wrong indication on
the number p.

Because of these deficiencies, we propose an alternative approach. Clearly, the
infinite inequality constraints (2.1b) are equivalent to

G(x) = max
v∈V

g(x, v) ≤ 0. (2.2)

However, G(x) is nonsmooth. Suppose there exists a function Gs(t, x), defined
in {(t, x)|t ≥ 0, x ∈ Rn}, such that the following properties are satisfied.
Property 1 (Gs(t, x)).

i. Gs(t, x) is twice differentiable when t > 0.
ii. Gs(0, x) = G(x), ∀x ∈ Rn.
iii. lim

t→0+,z→x
Gs(t, z) = G(x), ∀x ∈ Rn.

iv. ∇tGs(t, x) ≥ 0, ∀x ∈ Rn, t > 0.

Gs(t, x) is a smoothing function of G(x). For properties of smoothing functions,
see [8]. In Section 4, we will give a smoothing function which satisfies the properties
mentioned above.
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For each t > 0, we obtain an approximate problem of (2.1) given below.

min f(x) (2.3a)

s.t. Gs(t, x) ≤ 0. (2.3b)

Then, we aim to solve (2.1) via solving (2.3) as t → 0+.
For this approximate problem, we assume that the constraint qualification holds

at the optimal solution x(t) when t > 0 is sufficiently small. Clearly, the KKT
system of the approximate problem (2.3) is given by




∇f(x(t)) + µ(t)∇xGs(t, x(t)) = 0

µ(t)Gs(t, x(t)) = 0
µ(t) ≥ 0, Gs(t, x(t)) ≤ 0,

(2.4)

where µ(t) is the Lagrange multiplier with respect to x(t).
Suppose that x(t) has an accumulation point x(0) as t → 0+, and the corre-

sponding Lagrange multiplier vector µ(t) also has an accumulation point µ(0) as
t → 0+. Then, the pair (x(0), µ(0)) satisfies




∇f(x(0)) + µ(0)∇xGs(0, x(0)) = 0

µ(0)Gs(0, x(0)) = 0
µ(0) ≥ 0, Gs(0, x(0)) ≤ 0,

(2.5)

where ∇xGs(0, x(0)) = lim
t→0+

∇xGs(t, x(0)).

Adding a new positive variable t into (x, µ), we see that (0, x(0), µ(0)) is a solution
of 




t = 0
∇f(x(t)) + µ(t)∇xGs(t, x(t)) = 0

µ(t)Gs(t, x(t)) = 0
µ(t) ≥ 0, Gs(t, x(t)) ≤ 0.

(2.6)

Next, we consider the constraint Gs(t, x) ≤ 0. It is equivalent to

max{0, Gs(t, x)} = 0.

The function max(0, y) is nonsmooth. It can be approximated by many kinds of
smoothing functions. Here, we suppose that a smoothing function ϕt(y), which
satisfies the following properties, is given.
Property 2 (ϕt(y)).

i. ϕt(y) is differentiable when t > 0.
ii. ϕt(y) = max(0, y), ∀y ∈ R.
iii. lim

t→0+,z→y
ϕt(z) = max(0, y), ∀y ∈ R.

The function max(0, Gs(t, x)) = 0 can be approximated by

G̃(t, x) = ϕt(Gs(t, x)) = 0. (2.7)

Then, by denoting ω = (t, x, µ) and letting Ω = {(t, x, µ)| ∈ Rn+2, t ≥ 0, µ ≥ 0} be
the set of all ω, (0, x(0), µ(0)) is the solution of the following problem.

Problem 1. Find a ω ∈ Ω, such that

Υ(ω) =
(

t
W (t, x, µ)

)
= 0, (2.8)
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where

W (t, x, µ) =



∇f(x) + µ∇xGs(t, x)

G̃(t, x)
µGs(t, x)


 . (2.9)

For this problem, ∇xGs(t, x) is not continuous when t = 0. Thus, it is important
to keep t > 0 during the numerical computation. In Section 5, we will propose an
algorithm by keeping t > 0 during the iteration and find the accumulation point as
t → 0+.

3. Approximation Analysis. In this section, we introduce some sufficient condi-
tions and show that the optimal solution x = x(0) of (2.1) together with t = 0 and
the corresponding multiplier vector µ = µ(0) is the accumulation point of Problem
1. On this basis, we can solve problem (2.1) by finding the accumulation point of
Problem 1.

Suppose that the smoothing function Gs(t, x), which satisfies the Property 1, is
given. Define

Xt = {x|Gs(t, x) ≤ 0}, X0 = {x|G(x) ≤ 0}. (3.1)
Clearly, Xt and X0 denote the feasible fields of the approximate problem (2.3)
and problem (2.1), respectively. Since ∇tGs(t, x) ≥ 0, Gs(t, x) is monotonically
increasing with respect to t. That is,

Gs(t1, x) ≥ Gs(t2, x) ≥ G(x), if t1 > t2 > 0. (3.2)

Then, we have
Xt1 ⊆ Xt2 ⊆ X0, if t1 > t2 > 0. (3.3)

Consequently, ⋃
t>0

Xt ⊆ X0. (3.4)

In this paper, we assume that the following condition is satisfied.

X0 =
⋃
t>0

Xt. (3.5)

Some sufficient conditions for the validity of (3.5), are given in the following
theorem.

Theorem 3.1. Define X ′
0 = {x|x ∈ X0, G(x) = 0}. If X ′

0 does not contain any
open sets in X0 (i.e., (O ∩ X0) * X ′

0, for any open set O ⊂ Rn). Then, (3.5) is
satisfied.

Proof. Suppose that (3.5) is not satisfied, that is, ∃x′ ∈ X0 but x′ /∈ ⋃
t>0

Xt. Then,

we must have G(x′) = 0. This is due to the fact that if Gs(0, x′) = G(x′) < 0,
then, by the continuity of Gs(t, x′) with respect to t, there exists a t1 > 0, such
that Gs(t, x′) ≤ 0 for all t, 0 ≤ t < t1. Thus, x′ ∈ ⋃

t>0
Xt. This is a contradiction.

Therefore, x′ ∈ X ′
0. To continue, we note that

⋃
t>0

Xt is a closed set in X0 and x′ /∈
⋃

t>0
Xt. Thus, there exists a neighborhood N (x′) ⊂ Rn, such that N (x′)∩ ⋃

t>0
Xt = ∅.

Since X0 = X ′
0 ∪

⋃
t>0

Xt, we have

(N (x′) ∩X0) = (N (x′) ∩X ′
0) ⊆ X ′

0.
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This is a contradiction. Thus, (3.5) is satisfied.

On the basis of Theorem 3.1, we have the following corollary.

Corollary 1. Suppose that the extended Mangasarian-Fromovitz constraint qualifi-
cation (EMFCQ) holds at X ′

0. That is, for any x ∈ X ′
0, there exists a vector d ∈ Rn

such that
(∇xg(x, v))ᵀd < 0, ∀v ∈ V (x), (3.6)

where
V (x) = {v ∈ V : g(x, v) = 0}.

Then, (3.5) is satisfied.

Proof. For any x ∈ X ′
0 and any neighborhood N (x) of x in Rn, it follows from (3.6)

that there exists a point x′ ∈ N (x) such that G(x′) < G(x) = 0. This means that
X ′

0 does not contain any open set in Rn. Consequently, X ′
0 does not contain any

open set in X0. Therefore, by virtue of Theorem 3.1, (3.5) is satisfied.

We have the following theorem.

Theorem 3.2. Suppose that the condition (3.5) is satisfied. Let x(t) be the optimal
solution of the approximate problem (2.3) and let x(t) admit at least an accumulation
point x(0) as t → 0+. Then, x(0) is an optimal solution of (2.1).

Proof. Note that
Xt1 ⊆ Xt2 ⊆ X0, if t1 > t2 > 0.

We have
f(x(t1)) ≥ f(x(t2)) ≥ f(x(0)).

Consequently, {f(x(t)} has a limit when t → 0+. Since x(0) is an accumulation
point, it follows that, by the continuity of f , f(x(0)) is a limit of {f(x(t))} as
t → 0+.

Let f∗ be the optimal value of (2.1). Since x(0) is the accumulation point of
x(t), we have x(0) ∈ X0 and hence f(x(0)) ≥ f∗.

Suppose that f(x(0)) > f∗. Then, by the continuity of f over X0, there exists
a point x1 ∈ X0 such that f∗ < f(x1) < f(x(0)). By (3.5), there exists a sequence
{x1(t) : x1(t) ∈ Xt}, such that lim

t→0+
x1(t) = x1. Thus, we have f(x1(t)) < f(x(0)) ≤

f(x(t)), provided t is sufficiently small. This contradicts to the fact that x(t) is the
optimal solution of (2.3). Thus, we have f(x(0)) = f∗ and x(0) is an optimal
solution of (2.1). The proof is complete.

4. Smoothing Functions. In this section, we give the appropriate smoothing
functions Gs(t, x) and ϕt(y), and then discuss their respective properties.

In a numerical computation, it is impossible to calculate the exact maximum of
the function g(x, v) over the compact set V . We shall discretized the compact set
V into VN = {vi ∈ V, i = 1, . . . , N}. Then, we find the maximum of the function
g(x, v) over the discretized set VN . In this way, we obtain an approximate function
for G(x) as given below.

GN (x) = max
v∈VN

g(x, v) = max
i

g(x, vi). (4.1)
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For GN (x), we introduce the following smoothing function.

Gs(t, x) =





A + t ln(
N∑

i=1

e(g(x,vi)−A)/t), if t > 0,

GN (x), if t = 0,
(4.2a)

where A is a constant which satisfies

A ≥ max
v∈VN

g(x, v). (4.2b)

Remark 1. The smoothing function (4.2) is obtained by modifying the one given
in [15], which is:

Gs(t, x) =





t ln(
N∑

i=1

eg(x,vi)/t), if t > 0,

GN (x), if t = 0,
. (4.3)

The original smoothing function (4.3) is unsatisfactory in the sense that it will
lead to overflow in the numerical computation when g(x, vi) is positive and t is
small. Thus, we have constructed the smoothing function (4.2). With this smoothing
function, the deficiency associated with (4.3) is overcome.

We need to verify that Gs(t, x) satisfies the properties given in Section 2. The
first two properties are easy to verify. For the third property, it follows from the
continuity of G(x) and the approximation property given by

0 ≤ Gs(t, x)−GN (x) ≤ t ln(N), ∀x ∈ Rn. (4.4)

For the fourth property, we first calculate ∇tGs(t, x) directly, giving

∇tGs(t, x) = ln(
N∑

i=1

(e(g(x,vi)−A)/t))− 1
t

N∑
i=1

[e(g(x,vi)−A)/t · (g(x, vi)−A)]

N∑
i=1

e(g(x,vi)−A)/t

. (4.5)

Since there exists at least one integer i′ ∈ {1, . . . , N} such that g(x, vi′) = A, it

follows that we have
N∑

i=1

e(g(x,vi)−A)/t ≥ 1 and consequently

ln(
N∑

i=1

e(g(x,vi)−A)/t) ≥ 0.

Furthermore, when t > 0, by virtue of the facts that e(g(x,vi)−A)/t ≥ 0 and g(x, vi)−
A ≤ 0, it follows that

−1
t

N∑
i=1

[e(g(x,vi)−A)/t · (g(x, vi)−A)]

N∑
i=1

e(g(x,vi)−A)/t

≥ 0.

Thus, the fourth property in Section 2 is also satisfied. Therefore, we conclude that
Gs(t, x) is a well-defined smoothing function.



A SMOOTHING APPROACH FOR SEMI-INFINITE 7

To proceed further, we note that ∇xGs(t, x) can be calculated directly as

∇xGs(t, x) =

N∑
i=1

(e(g(x,vi)−A)/t · gx(x, vi))

N∑
i=1

e(g(x,vi)−A)/t

, t > 0. (4.6)

On this basis, suppose that

lim
t→0+

∇xGs(t, x) =
∑

i∈I(x)

gx(x, vi)/nx 6= 0 (4.7)

holds on x(0), where I(x) = {i ∈ {1, . . . , N} : g(x, vi) = A} and that nx is the
number of I(x). Then, (2.4) is satisfied.

For max{0, y}, there are many smoothing functions. We use the Chen-Harker-
Kanzow-Smale smoothing function given by

ϕt(y) =

√
y2 + 4t2 + y

2
. (4.8)

The approximation property for this smoothing function is given by

0 ≤ ϕt(y)−max(0, y) ≤ t, ∀y ∈ R. (4.9)

Thus, by the choices of Gs(t, x) and G̃(t, x), we can formulate the SIP problem
(2.1) in the form of Problem 1.

5. A Smoothing Projected Newton-Type Algorithm. In this section, we
propose an algorithm To solve Problem 1, which keeps t > 0 during the iterations
of numerical computation. It is based on the smoothing projected Newton-type
algorithm proposed in [12]. Details are given as follows.

Define a merit function Ψ by

Ψ(ω) =
1
2
‖ Υ(ω) ‖2 . (5.1)

Then, Problem 1 is equivalent to

Problem 2. Find a ω ∈ Ω, such that

minΨ(ω) = 0. (5.2)

It is not difficult to see that Ψ(ω) is continuously differentiable when t > 0, and
the gradient is given by

∇Ψ(ω) = ∇Υ(ω)Υ(ω). (5.3)
A common stopping rule of numerical methods for solving Problem 2 is given by
the projected gradient direction (see [12]). That is,

‖ d̄G(1) ‖= 0. (5.4)

Here,
d̄G(1) = ΠΩ(ω − γ∇Ψ(ω))− ω, (5.5)

where γ > 0 is a constant related to ω, ΠΩ(·) is an orthogonal projection operator
onto Ω.

Based on this stopping rule, we state the smoothing projected Newton-type al-
gorithm as follows.

Algorithm 1.
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0. (Initialization)
Choose constants η, ρ, ξ ∈ (0, 1), ε > 0, p1 > 0, p2 > 0 and ξ > 0, t̄ > 0, α <

1 with αt̄ < 1. Let ω̄ = (t̄, 0, 0), t0 = t̄ and ω0 = (t0, x0, µ0) with µ0 ≥ 0. Set
k := 0.

1. (Stop Test)
Let

γk = min{1,
tk

|tk +∇tW̄ (ωk)W̄ (ωk)| ,
η‖Υ(ωk)‖
‖∇Ψ(ωk)‖ ,

ηΨ(ωk)
‖∇Ψ(ωk)‖2 }, (5.6)

where ∇tW̄ (ωk) is the first row of ∇W̄ (ωk). Compute d̄k
G(1) by (5.5). If

‖Υ(ωk)‖ < ε, stop. Otherwise, compute βk by

β0 = α min{1, ‖d̄0
G(1)‖2},

βk =
{

βk−1, if α min{1, ‖d̄k
G(1)‖2} > βk−1

α min{1, ‖d̄k
G(1)‖2}, otherwise . (5.7)

2. (Compute Search Direction)
Compute dk

G by
dk

G = −γk∇Ψ(ωk) + βkω̄. (5.8)

Compute dk
N by solving the following linear system:

Υ(ωk) + Υ′(ωk)dk
N = βkω̄. (5.9)

If (5.9) has no solution or

∇Ψ(ωk)T dk
N < p1‖dk

N‖p2 ,

then let dk
N := dk

G.
3. (Line Search)

Let mk be the smallest nonnegative integer m satisfying

Ψ(ωk + d̄k(ρm)) ≤ Ψ(ωk) + ξ∇Ψ(ωk)T d̃k
G(ρm), (5.10)

where for any λ ∈ [0, 1],

d̄k(λ)) = τ∗(λ)d̃k
G(λ) + (1− τ∗(λ))d̃k

N (λ). (5.11)

Here,

d̃k
G(λ) := ΠΩ(ωk + λdk

G)− ωk, d̃k
N (λ) := ΠΩ(ωk + λdk

N )− ωk, (5.12)

τ∗(λ) is a solution of the following minimization problem:

min
τ∈[0,1]

1
2
‖Υ(ωk) + Υ′(ωk)[τ d̃k

G(λ) + (1− τ)d̃k
N (λ)‖2. (5.13)

Let λk = ρmk and ωk+1 = ωk + d̄k(λk).
4. Set k := k + 1 and go to step 1.

Remark 2. τ∗(λ) is derived as

τ∗(λ) = max{0,min{1, τ(λ)}}, (5.14a)

where

τ(λ) =

{
0, if Υ′(ωk)[d̃k

G(λ)− d̃k
N (λ)] = 0,

− [Υ(ωk)+Υ′(ωk)d̃k
N (λ)]T Υ′(ωk)[d̃k

G(λ)−d̃k
N (λ)]

‖Υ′(ωk)[d̃k
G(λ)−d̃k

N (λ)]‖2 , otherwise.

(5.14b)
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In this algorithm, the choice of βk, which is defined in (5.7), is the perturbed
parameter to keep t > 0. It is shown on the following theorem, which is also given
in [6, 15].

Theorem 5.1. Let {ωk = (tk, xk, µk)} be a sequence generated by Algorithm 1.
Then, for each k, ωk satisfies

tk ≥ βk t̄. (5.15)
Furthermore, if ωk is not a stationary point of (5.2), then

tk > 0. (5.16)

We call d̃k
G(λ) the projected perturbed-gradient direction and d̃k

N (λ) the pro-
jected perturbed-Newton direction. The search direction d̄k(λ)), which is given in
(5.11), is the optimal combined direction of d̃k

G(λ) and d̃k
N (λ). It guarantees the

global and fast local convergence. The proof showing (5.14) is an optimal solution
of (5.13) is similar to that given for Lemma 3.1 in [12].

From [6, 15], we have the local descent property of this algorithm given in the
following theorems.

Theorem 5.2. Suppose that ωk = (tk, xk, µk) ∈ Ω with tk > 0 is not a stationary
point of (5.2). Then, for any λ ∈ (0, 1], it holds that

∇Ψ(ωk)T d̃k
G(λ) ≤ − λ

γk
(1− αt̄)‖d̄k

G(1)‖2 < 0. (5.17)

Theorem 5.3. Suppose that ωk = (tk, xk, µk) ∈ Ω with tk > 0 is not a stationary
point of (5.2). Then there exists a constant λ′ ∈ (0, 1] such that for any λ ∈ (0, λ′],
d̄k(λ) is a decent direction of Ψ(ωk) at ωk and

Ψ(ωk + d̄k(λ)) ≤ Ψ(ωk) + σ∇Ψ(ωk)T d̃k
G(λ). (5.18)

Details on the superlinear local convergent property and the global convergent
property can be found in [6, 15].

6. Numerical Results. In this section, the proposed method is applied to the
following examples. The computation was performed in Fortran 77 double precision.
It was run on a PC with the Windows system, having a CPU speed of 1.6GHz and
equipped with 192MB RAM. The parameters are set as:

η = 0.9, ρ = 0.5, σ = 0.3, α = 0.6, ε = 10−8, p1 = 0.5, p2 = 4, N = 10000.

Example 1. This example is chosen from [6, 16].

f(x) =
1
2
xᵀx, g(x, v) = 3 + 4.5 sin(

4.7π(v − 1.23)
8

)−
n∑

i=1

xiv
i−1,

The results obtained are compared with those obtained by other methods. The
comparisons are given in Table 1.

Example 2.

f(x) = 1.21ex1 + ex2 , g(x, v) = v − ex1+x2 , V = [0, 1].

Example 3.

f(x) = (x1 − 2x2 + 5x2
2 − x3

2 − 13)2 + (x1 − 14x2 + x2
2 + x3

2 − 29)2,

g(x, v) = x2
1 + 2x2v

2 + ex1+x2 − ev, V = [0, 1].
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Methods V n f(x)
[1,100] 10 0.07412
[1,100] 20 0.08319

[6] [1,100] 40 3.1788
[1,100] 60 4.8860

[16] [0,200] 20 0.0357
[1,100] 10 0.072781
[1,100] 20 0.032866

Proposed method [1,100] 40 0.016433
[1,100] 60 0.010956
[0,200] 20 0.035485

Table 1. Results for Example 1

Example 4.

f(x) = x2
1/3 + x1/2 + x2

2,

g(x, v) = (1− x2
1v

2)2 − x1v
2 − x2

2 + x2, V = [0, 1].

Example 5.

f(x) = (x1 − 0.1)2 + x2
2 + 2.5x2

3,

g(x, v) = 2 sin(3πv + x3)− x2
1 − x2 − 2x3 − 1, V = [0, 1].

The results obtained for Examples 2-5 are given in Table 2.

Examples (x, µ) f(x)
2 (−0.0953, 0.0953, 0.1100) 2.2000
3 (0.7200,−1.4505, 4.9218) 97.1589
4 (−0.7500,−0.6180, 0.5528) 0.1945
5 (0.3220, 0.3447, 0.2758, 0.6895) 0.3583

Table 2. Results for Examples 2-5.

7. Conclusion. In this paper, we have presented a smoothing projected Newton-
type algorithm for solving the semi-infinite programming problems. By transform-
ing the infinite inequality constraints into a nonsmooth constraint, we constructed
the smoothing function to approximate the nonsmooth constraint, leading to a
sequence of approximate smoothing problems. The KKT system with a smooth-
ing parameter is formulated for each of the approximate smoothing problems. A
projected Newton-type method is applied to solve the KKT system, in which the
smoothing parameter is taken as a decision. From the numerical examples solved
using the method proposed, we see that it is highly efficient and effective.
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[7] Burcu Özçam and Hao Cheng, A discretization based smoothing method for solving semi-
infinite variational inequalities, Journal of Industrial and Management Optimization, 1
(2005), 219–233.

[8] L. Qi and D. Sun, Smoothing functions and smoothing Newton method for complementarity
and variational inequality problems, J. Optim. Theory and Appl., 113 (2002), 121–147.

[9] L. Qi, D. Sun and G. Zhou, A new look at smoothing Newton methods for nonlinear com-
plementarity problems and box constrained variational inequalities, Math. Prog., 87 (2000),
1–35.

[10] L. Qi, S.Y. Wu and G. Zhou, Semismooth Newton methods for solving semi-infinite program-
ming problems, J.Global Optim., 27 (2003), 215–232.

[11] R. Reemtsen and S. Görner, “Numerical methods for semi-infinite programming: a survey,”
In semi-infinite programming, R. Reemtsen and J. Rückmann, Eds., Kluwer Academic Pub-
lishers, Boston, 1998, 195–275.

[12] D. Sun, R.S. Womersley and H. Qi, A feasible semismooth asymptotically Newton method for
mixed complementarity problems, Math.Prog., 94 (2002), 167–187.

[13] K.L. Teo, V. Rehbock and L.S. Jennings, A new computational algorithm for functional
inequlity constrained optimization problems, Automatica, 29 (1993), 789–792.

[14] X.J. Tong, F.F. Wu, Y.P. Zhang, Z. Yan and Y.X. Ni, A semismooth Newton method for
solving optimal power flow, Journal of Industrial and Management Optimization, 3 (2007),
553–567.

[15] X.J. Tong and S.Z. Zhou, A smoothing projected Newton-type method for semismooth equa-
tions with bound constraints, Journal of Industrial and Management Optimization, 1 (2005),
235–250.

[16] S.Y. Wu, D.H. Li, L.Q. Qi and G.L. Zhou, An iterative method for solving KKT system of
the semi-infinite programming, Optimization Methods and Software, 20 (2005), 629–643.

E-mail address: z.feng.scholar@gmail.com


