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Abstract. We define a restricted disjoint covering system on [1, n] as
a set of congruence classes such that each integer in the interval [1, n]
belongs to exactly one class, and each class contains at least two mem-
bers of the interval. In this paper we report some computational and
structural results and present some open problems concerning such sys-
tems.

1. Introduction

We write S(m, a) for the congruence class {x : x ≡ a (mod m)}. A cov-
ering system of congruences is a set of congruence classes with the property
that every integer belongs to at least one class. If no integer belongs to more
than one class then the system is disjoint (or exact), if the moduli of the
classes are distinct then the system is incongruent. An example of a disjoint
covering system is

{S(2, 0), S(2, 1)},
and an example of an incongruent system is

{S(2, 0), S(3, 0), S(4, 1), S(6, 1), S(12, 11)}.
It is not possible for a system to be both disjoint and incongruent. These
systems were introduced by Erdös in [1] and have spawned a large literature
(see the surveys [11] and section F13 in [4]). The most important unsolved
problems in the area are (a) do there exist incongruent systems in which all
moduli are odd? and (b) do there exist systems in which the least modulus is
arbitrarily large? For (b) the strongest result so far obtained is by Morikawa
[7], [8] who constructed an incongruent covering system with least modulus
24. A number of variations on these ideas have been studied: Fraenkel con-
sidered coverings by Beatty sequences and made a notable conjecture about
them (see [3] and [13]), Jin and Myerson [5] considered systems based on
homogeneous congruences, and other authors studied covering groups with
cosets ([10] and [12]). In this paper we introduce a new variation on the
theme, a restricted disjoint covering system.

We define a restricted disjoint covering system on [1, n] as a set of congru-
ence classes such that each integer in the interval [1, n] belongs to exactly
one class, and each class contains at least two members of the interval. The
condition that the classes contain at least two members is included to avoid
trivialities. As with standard covering systems we describe such a system as
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incongruent if the moduli are distinct. It is not obvious, at first sight, that
any incongruent restricted disjoint covering systems (henceforth IRDCS)
exist. However they do. Here is an example of an IRDCS on [1, 11].

Example 1.1.

S(6, 1), S(9, 2), S(3, 0), S(4, 0), S(5, 0).

Rather than exhibiting an IRDCS in this way we can do so by writing
down a sequence of n integers the ith of which equals the modulus of the
unique congruence class to which i belongs. We call this the alternate no-
tation for an IRDCS. Thus Example 1.1 becomes

6, 9, 3, 4, 5, 3, 6, 4, 3, 5, 9.

We see that an IRDCS on [1, n] could also be defined as a sequence of
integers s1, . . . , sn with the property that si = m for some m if and only if
si+km = m for all k for which i + km is in [1, n], and further such that any
integer appearing in the sequence appears at least twice. Defined in this
way we see a parallel with Langford Sequences. A Langford Sequence [6]
of order n is defined as a sequence l1, . . . , l2n of 2n integers in which each
integer from 1 to n appears exactly twice, and such that if li = lj then
li = |i− j| − 1; for example,

Example 1.2. 4, 1, 3, 1, 2, 4, 3, 2.

Even the alternate notation for an IRDCS becomes unwieldy for large
examples. For these we just list the moduli in order of their first appearance
in the system, so that Example 1.1 becomes 6,9,3,4,5 from which the IRDCS
can be easily constructed. We call this the compact notation.

We need three more definitions. If {S(m1, a1), . . . , S(mt, at)} is an IRDCS
on [1, n] then n is the length of the system, t is its order and

∑t
i=1 1/mi

is its heft. In Example 1.1 the system has length 11, order 5 and heft
191/180=1.0611. . .

2. Computational and Structural Results

We have found all IRDCS with length not exceeding 32. Their properties
are summarised in Table 1.

It is easily checked that if

A = {S(mi, ai), i = 1 . . . t}
is an IRDCS on [1, n] then

A′ = {S(2mi, 2ai), i = 1 . . . t} ∪ {S(2, 1)}
is an IRDCS on [1, 2n + 1]. We call this process “doubling” the IRDCS. If
A has length n, order t and heft h then A′ has length 2n+1 and order t+1.
The heft of A′ is

t∑

i=1

1
2mi

+
1
2

=
1
2
(

t∑

i=1

1
mi

+ 1) =
1
2
(h + 1).
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Length Number of IRDCS Orders
11 2 5
17 4 7
18 6 7,8
19 18 7,8
20 14 7,8
21 26 6,7,8,9
22 84 6,8,9,10
23 88 6,8,9,10
24 46 8,9,10
25 176 8,9,10
26 380 8,9,10,11,12
27 812 8,9,10,11,12
28 844 8,9,10,11,12
29 1770 9,10,11,12,13
30 2164 9,10,11,12,13
31 5554 9,10,11,12,13,14
32 9244 9,10,11,12,13,14

Table 1. IRDCS with length not exceeding 32.

The doubling process can be iterated producing arbitrarily long IRDCS,
with heft approaching 1 and order O(log n). Note that using the alternate
notation the IRDCS so produced begins and ends with 2. We can contract it
to one of length 2n or 2n−1 by removing the initial or final 2. A consequence
of this observation is the following theorem.

Theorem 2.1. There exist IRDCS of all lengths greater than 16.

Proof: We have found IRDCS of all lengths in the interval [17, 32]. Dou-
bling these produces all IRDCS of odd length in the interval [35, 65] and the
even length IRDCS in the interval can be constructed by removing the final
2 from each of the odd length ones. An IRDCS of length 33 is constructed
by removing both the initial and final 2 from the length 35 IRDCS. Iterating
this process produces IRDCS of any greater length. ¤

If
A = {S(mi, ai), i = 1 . . . t}

is an IRDCS on [1, n] then so is

A′ = {S(mi, n + 1− ai), i = 1 . . . t}
which we call the reversal of A. In the alternate notation the reversal is
obtained by simply reversing the order of the sequence. An IRDCS and its
reversal are distinct (which follows from the following result) so that the
number of IRDCS of any length is even.

Theorem 2.2. No IRDCS equals its reversal.
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Proof: Say that such an IRDCS is palindromic and suppose such an IRDCS
exists. The doubling process can be reversed - that is an IRDCS with moduli
2,m2, . . . ,mt can be replaced by one with moduli m2/2, . . . , mt/2, and if the
original IRDCS was palindromic so is its replacement. Suppose we have a
palindromic IRDCS, and without loss of generality, that each of its moduli is
greater than 2. If its length is even the two central numbers must belong to
the same congruence class which is impossible, if it’s odd then the numbers
on each side of the centre belong to the same class. This class therefore has
modulus 2 which is a contradiction. Hence no palindromic IRDCS exists. ¤

A natural question to ask concerning IRDCS is whether they exist with
the least modulus arbitrarily large. As noted above the same question is
asked about (unrestricted) incongruent covering systems. The best example
we have found in this direction is the following length 47 IRDCS,

{S(26, 1), S(30, 2), S(10, 3), S(17, 4), S(12, 5), S(24, 6), S(19, 7),
S(14, 8), S(11, 9), S(15, 10), S(13, 11), S(16, 12), S(21, 14),
S(18, 16), S(29, 18), S(20, 19)}

whose least modulus is 10. One can also ask whether an IRDCS exists in
which no modulus is even, or in which no modulus is divisible by any of the
first k primes.

3. Families of IRDCS

The doubling process produces an infinite family of IRDCS. At the 2006
Western Number Theory Conference ([9]) it was asked whether other infinite
families of IRDCS could be constructed. We now present a technique for
producing such families.

The idea is to start with a special type of IRDCS on [1, n] called a good
IRDCS, defined below, remove one of its classes and use a mapping of the
remaining classes to cover most of the 1 modulo 3 members of [1, 3n]. We
then use a collection of classes with moduli of the form 3(2i) to cover most
of the 2 modulo 3 members of the interval. We use S(3, 0) to cover all the
members congruent to 0 mod 3. Each reference to “most” means all but 2,
so that 4 members of the interval are not yet covered. We introduce two
new classes which cover these, producing an IRDCS. This turns out also to
be a good IRDCS so the process can be repeated.

We now define “good”, then present the algorithm, then an example and
finally a proof of correctness. The description of the algorithm contains a
number of brazen assertions which are demonstrated in the proof of correct-
ness.
Definition An IRDCS on [1, n] is good if,
(a) n is an odd multiple of 3,
(b) if m1 is the modulus of the class containing 1 then m1 > 2/3n. With
(a) this implies that

(3.1) 3m1 ≥ 2n + 3
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(c) 3m1 − n− 1 is not a power of 2,
(d) no modulus in the collection is a power of 2.

An example of a good IRDCS is given in the example below.

The Algorithm Let {S(mi, ai), i = 1 . . . t} be a good IRDCS on [1, n]
where a1 = 1, so that m1 > 2n/3. We construct 4 collections of congruence
classes, A, B, C and D, whose union is a good IRDCS on [1, 3n].

Set A = {S(3, 0)}.

Set B = {S(3mi, 3ai − 2), i = 2 . . . t}. Label x1 = 1 and x2 = 1 + 3m1. B
covers all of S(3, 1) ∩ [1, 3n] except x1 and x2.

Let θ = blog2(n/3)c and m = 3(2θ). It follows that 2m > n > m (since
n is odd 3n/m is not an integer so the inequalities are strict), and since m
and n are divisible by 3 we have

(3.2) 2m ≥ n + 3 ≥ m + 6.

We set

y1 = n + 2(3.3)
y2 = n + 2m + 2.

Set C = {S(3(2i), y1 + 3(2i−1)), i = 1 . . . θ + 1}. It will be shown that C
covers all of S(3, 2) ∩ [1, 3n] except y1 and y2.

Finally set D = {S(y2 − x1, x1), S(x2 − y1, y1)}.

Then A ∪ B ∪ C ∪ D is a good IRDCS on [1, 3n].

Example 3.1. The collection {S(19, 1), S(13, 2), S(9, 3), S(5, 4), S(6, 5),
S(10, 6), S(11, 7), S(17, 8), S(12, 10), S(14, 13)} is a good IRDCS on [1, 27].
In the alternate notation it is

19 13 9 5 6 10 11 17 5 12 6 9 14 5 13 10 6 11 5 19 9 12 6 5 17 10 14

We have n = 27, m1 = 19 (which exceeds 2n/3, as required) so x1 = 1
and x2 = 1 + 3(19) = 58. Also, θ = blog2(27/3)c = 3 and m = 3(2θ) = 24.
Then y1 = n + 2 = 29 and y2 = y1 + 2m = 77. Our four collections of
congruence classes are then:
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A = {S(3, 0)},
B = {S(39, 4), S(27, 7), S(15, 10), S(18, 13), S(30, 16),

S(33, 19), S(51, 22), S(36, 28), S(42, 37)},
C = {S(6, 32), S(12, 35), S(24, 41), S(48, 53},
D = {S(76, 1), S(29, 29)},

and the new good IRDCS is their union.

Proof of Correctness: We first show that the algorithm produces an
IRDCS on [1, 3n], then show that this IRDCS is good. To show that it’s an
IRDCS we must show that each member of [1, 3n] belongs to a congruence
class in the collection, that these classes are disjoint, that their moduli are
distinct and that each class contains at least two members of [1, 3n].

Clearly all integers congruent to 0 modulo 3 are covered by C. Removing
S(m1, a1) from our original collection only uncovers 1 and m1 + 1 since the
goodness of this collection implies m1 > 2n/3. It follows that B covers all
members of [1, 3n] which are congruent to 1 modulo 3 except x1 and x2.

Now consider an integer z in [1, 3n] which is congruent to 2 modulo 3. This
belongs to S(3(2i), y1 + 3(2i−1)) if and only if 3(2i) divides y1− z + 3(2i−1),
that is, if 2i divides (y1 − z)/3 + 2i−1.

We see that all integers congruent to 2 modulo 3 in [1, 3n] are covered
except those for which (y1 − z)/3 does not belong to S(2i, 2i−1) for any
positive i ≤ θ + 1. This happens when (y1 − z)/3 is divisible by 2θ+1, that
is, when

z1 = y1 + 3(2θ+1)l = y1 + 2lm

for some integer l. The cases l = 0 and l = 1 give us y1 and y2 respectively,
which are covered by congruence classes in D. We must show that if l < 0
or l > 1 we get integers outside [1, 3n].

If l < 0 then, by (3.2) and (3.3), y1 + 2lm ≤ n + 2− 2m ≤ 0 and if l > 1
then

y1 + 2lm ≥ y1 + 4m = n + 2 + 4m > 3n,

as required. So only l = 0 and l = 1 give integers in [1, 3n]. It follows that
every integer in [1, 3n] is in one of our classes.

We next show that the classes in A ∪ B ∪ C ∪ D are disjoint.
The classes in B are disjoint from each other since they are derived from

disjoint classes in the original collection. Each is a subset of S(3, 1) and so
disjoint from the classes in A and C which are subsets of S(3, 0) andS(3, 2)
respectively. For the same reason the classes in C are disjoint from that in
A. The classes in C are disjoint from each other by construction. We still
need to consider the two classes in D. These contain x1, x2, y1 and y2 which
clearly do not belong to any class in A ∪ B ∪ C. It remains to show that
these classes contain no other members of [1, 3n].
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Consider S(y2− x1, x1) and recall that x1 = 1 and y2 = y1 + 2m. Clearly
this class contains no member of [1, 3n] less than x1. Any member greater
than y2 is at least 2y1 + 4m− 1 which is greater than 3n by (3.2) and (3.3).
Similar reasoning using (3.1) shows that S(x2− y1, y1) contains exactly two
members of [1, 3n].

Next we show the moduli are distinct. It’s clear that the moduli in B are
distinct from each other. Similarly for the moduli in C. The moduli in B
have the form 3mi, while those in C have the form 3(2i). These are distinct
since goodness requires that no mi is a power of 2. The moduli in D are
y2−x1 and x2−y1 which are congruent to 1 and 2 modulo respectively, and
so distinct from each other and from moduli in A∪B∪C. Hence the moduli
in our collection are distinct.

Finally we must show that each class has at least two members of [1, 3n].
This is immediate for all classes except the class S(3(2θ+1), y1 + 3(2θ)) =
S(2m, y1 + m) in C, and it is easily checked that 1 ≤ y1 −m < y1 + m ≤ 3n
so this class too contains at least 2 members of [1, 3n].

We have shown our collection is an IRDCS. We now show it’s good.

(a) The length 3n is an odd multiple of 3 since n was assumed odd.
(b) The class containing 1 is S(y2 − x1, x1), and

y2 − x1 = n + 2 + 2m− 1
> 2n

by (3.2), and so this modulus is greater than 2/3 the length of the IRDCS,
as required.

(c) We must show that 3(y2 − x1) − 3n − 1 is not a power of 2. After
substituting we see find that this expression equals 9(2θ + 1) + 2 which is
clearly not a power of 2

(d) We must show that no modulus in our collection is a power of 2. This
is clear for the moduli of classes in A ∪ B ∪ C which are all multiples of 3.
The two moduli from D are y2− x1 and x2− y1. Now y2− x1 = n + 2m + 1
and by (3.2)

3m < n + 2m + 1 < 4m.

Now m = 3(2θ) so y2 − x1 lies in the interval (9(2θ), 12(2θ)). This interval
contains no power of 2. Finally x2 − y1 = 3m1 − n− 1. This is not a power
of 2 by part (c) of the definition of goodness. ¤

4. Bounds on Order and Heft

In this section we will write n(A), t(A) and h(A) for, respectively, the
length, order and heft of an IRDCS A, and abbreviate these to n, t and h
when there is no risk of confusion. We have seen that the doubling process
produces IRDCS with t(A) = O(log(n(A)), but how large can the order be
in terms of n?



8 GERRY MYERSON, JACKY POON, AND JAMIE SIMPSON

Theorem 4.1. For any IRDCS A,

(4.1) t(A) ≤ n(A)− 1
2

with equality if and only if n(A) = 11.

Proof: We first suppose that n is odd and write n = 2r − 1. The modulus
covering r must be used at least 3 times. If it’s used 5 or more times then
the remaining 2r− 6 or less members of the interval belong to at most r− 3
congruence classes and so

t ≤ r − 2 <
n

2
and we are done. That modulus can’t be 3 or less, except in the case n = 11.
We assume n > 11.

The modulus covering r − 1 must be r − 1 or r, ditto for the modulus
covering r + 1. We may assume r − 1 covers r − 1, and r covers r + 1.

This forces the modulus covering r + 2 to be r − 2, and that forces the
modulus covering r − 2 to be r + 1, and that forces the modulus covering
r − 3 to be r − 3, and then there’s no way to cover r + 3.

Now suppose that n = 2r. Either r or r + 1 must belong to a modulus
less than r and so belong to a class of size at least 3. Suppose r belongs to
the modulus r and that the class containing r + 1 is the only of size greater
than r. Then r − 1 must belong to the modulus r − 1 and this leaves no
modulus for r + 2 to belong to.

The only IRDCS of length 11 are that in Example 1.1 and its reverse.
These have t = 5 so we get equality in (4.1). ¤

We now consider the heft of an IRDCS. In the case of an (unrestricted)
covering systems an easy density argument shows that the heft is always at
least 1 and equals 1 if and only if the system is disjoint.

Theorem 4.2. For any IRDCS A,

(4.2)
n− t

n− 1
≤ h ≤ n + t

n + 1
.

.

Proof: We consider an IRDCS A = {S(mi, ai), i = 1 . . . t} and assume,
without loss of generality, that m1 < m2 < . . .mt and that 1 ≤ ai ≤ mi

for each i so that ai is the first member of [1, n] belonging to S(mi, ai).
We let the last member of [1, n] belonging to S(mi, ai) to be n + 1 − bi.
This implies that the ais are positive and distinct and so are the bis. We
see that the number of elements of [1, n] belonging to S(mi, ai) in [1, n] is
(n + 1− bi − ai)/mi + 1. Since each member of [1, n] belongs to exactly one
class we have:

t∑

i=1

{n + 1− bi − ai

mi
+ 1} = n.
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Thus

(4.3) n

t∑

i=1

1
mi

=
t∑

i=1

bi + ai − 1
mi

+ n− t.

The right hand side is minimised when

ai = bi = i

for each i, so we have

n
t∑

i=1

1
mi

≥
t∑

i=1

2i− 1
mi

+ n− t.

Using 2i ≥ 2 this leads to

(4.4)
t∑

i=1

1
mi

≥ n− t

n− 1
.

In the other direction we note that ai ≤ mi and bi ≤ mi for each i.
Applying this observation to (4.3) we get,

n
t∑

i=1

1
mi

≤
t∑

i=1

2mi − 1
mi

+ n− t = 2t−
t∑

i=1

1
mi

+ n− t

and then

(4.5)
t∑

i=1

1
mi

≤ n + t

n + 1
.

Combining (4.4) and (4.5) completes the proof. ¤

Corollary 4.3. For any IRDCS with length greater than 11,

(4.6)
n + 1

2(n− 1)
≤ h ≤ 3n− 1

2(n + 1)
.

.

Proof: Substitute (4.1) into (4.2). ¤

The bounds obtained here are weak compared with the values we found
by computation. For example the largest and smallest heft values we found
were 1.061111 (in Example 1.1) and 0.989552 (from an IRDCS of length
28 on moduli 6, 7, 8, 9, 11, 12, 13, 14, 16, 17). Note that the Corollary doesn’t
tell us much more than that the heft lies between 0.5 and 1.5.
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5. Open Problems

We end with some open problems.

(1) Do there exist IRDCS with all moduli odd? Can the smallest modulus
of an IRDCS be arbitrarily large?

(2) Can we sharpen the inequalities relating order, length and heft?

(3) The following two IRDCS both have length 43 and their sets of moduli
are disjoint.

{S(24, 1), S(2, 2), S(4, 3), S(36, 5), S(12, 9), S(16, 13), S(20, 17)}

{S(25, 1), S(33, 2), S(7, 3), S(8, 4), S(9, 5), S(21, 6), S(18, 7), S(13, 8),
S(10, 9), S(11, 11), S(27, 13), S(15, 15), S(26, 16), S(2, 1)}.

Generally, if each of two sets of congruences {S(m1, a1), ..., S(ms, as)} and
{S(n1, b1), ..., S(nt, bt)} is an IRDCS for [1, n] and their sets of moduli are
disjoint, as in the case above, then

{S(3mi, 3ai + 1) : i = 1...s} ∪ {S(3ni, 3bi + 2) : i = 1...t} ∪ {S(3, 0}
is an IRDCS for [1, 3n] in which every modulus is divisible by 3.

This suggests the question, does an IRDCS exist with every modulus di-
visible by k for any value of k? Doubling produces one for k = 2 and the
example above for k = 3.

(4) Our definition of an IRDCS requires that each congruence is satisfied
at least twice. Do analogous systems exist in which each congruence is
satisfied at least k times for values of k exceeding 2?
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