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On the µ invariant of rational surface singularities
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Abstract We show that for rational surface singularities with odd deter-
minant the µ invariant defined by W. Neumann is an obstruction for the
link of the singularity to bound a rational homology 4–ball. We identify
the µ invariant with the corresponding correction term in Heegaard Floer
theory.
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1 Introduction

Smoothings of surface singularities play a prominent role in constructing new
and interesting smooth (and symplectic) 4–manifolds. It is of particular inter-
est when the singularity at hand admits a rational homology 4–ball smooth-
ing. Such smoothings led to the discovery of the rational blow–down procedure
[2, 20], which in turn provided a major tool for finding exotic 4–manifolds. Re-
strictions for a singularity to admit rational homology 4–ball smoothing have
been found recently in [22].

A topological obstruction for a Z2–homology 3–sphere (that is, a 3–manifold
Y with H∗(Y ; Z2) = H∗(S

3; Z2)) to bound a spin rational homology 4–ball is
its µ–invariant, defined modulo 16. An integral lift µ of µ has been defined
by Neumann in [14] (cf. also [21]) for plumbed Z2–homology 3–spheres, but
it was unclear whether this integer valued invariant obstructs the 3–manifold
to bound a spin rational homology 4–ball. Special cases, like Seifert fibered 3–
manifolds, have been considered by Saveliev [21]. More recently, based on work
of Ozsváth and Szabó [16, 17, 18] the correction term of spinc 3–manifolds
(stemming from gradings on the Ozsváth–Szabó homology groups) provided
further obstructions. For applications of these invariants along similar lines see
[7].

In fact, in [14] the µ–invariant is defined for any spin rational homology 3–
sphere which can be given by plumbing spheres along a tree (i.e., the assumption
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on the parity of the determinant of the plumbing graph can be relaxed). By
identifying µ of a spin 3–manifold (Y, s) which is a link of a rational surface
singularity with the appropriate correction term, we show

Theorem 1.1 Suppose that YΓ is given as a plumbing of spheres along a
negative definite tree Γ , defining a rational surface singularity.

• For a spin structure s ∈ Spin(YΓ) the invariant µ(YΓ, s) ∈ Z is an ob-
struction for the existence of a spinc rational homology 4–ball (X, t) with
boundary (YΓ, s) .

• If Πs∈Spin(YΓ)µ(YΓ, s) 6= 0 then the rational singularity does not bound a
spin rational homology 4–ball.

• Specifically, if det Γ is odd and µ(YΓ) 6= 0 then YΓ is not the boundary of
a rational homology 4–ball. Consequently the corresponding singularity
does not admit rational homology 4–ball smoothing.

Corollary 1.2 Suppose that SΓ is a normal surface singularity with det Γ odd.
If µ(YΓ) 6= 0 then SΓ does not admit a rational homology 4–ball smoothing.

Proof If SΓ is not a rational singularity then it does not admit rational ho-
mology 4–ball smoothing. If det Γ is odd, then for rational surface singularities
Theorem 1.1 concludes the proof.

We hope that this obstruction will be useful in completing the characteriztion
of surface singularities with rational homology 4–ball smoothing, along the line
initiated in [22].

Remark 1.3 The assumption on the parity of det Γ cannot be relaxed in
general, since for example the singularity with resolution graph having a single
vertex of weight (−4) has two spin structures with µ invariants −3 and +1,
but the link of the singularity is the boundary of a rational homology 4–ball:
the complement of a quadric in the complex projective plane. In fact, this
rational homology 4–ball can be given as a smoothing of the singularity. In
accordance with Theorem 1.1 the spin structures on the link of the singularity
do not extend to the rational homology 4–ball.

As it was indicated earlier, the proof of Theorem 1.1 above rests on the following,
more technical statement. Here the invariant d(Y, s) of a spinc 3–manifold
(Y, s) is the correction term in Heegaard Floer theory. (For more on Heegaard
Floer theory see Section 4.)
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Theorem 1.4 Suppose that Γ is a negative definite plumbing tree of spheres,
giving rise to a rational surface singularity. Let s be a given spin structure on
the associated 3–manifold YΓ . Then µ(YΓ, s) = −4d(YΓ, s) .

2 The µ and µ invariants

Suppose that Y is a rational homology 3–sphere, and the rank |H1| of its first
homology is odd. Then H1(Y ; Z2) = H1(Y ; Z2) = 0, hence Y admits a unique
spin structure. Consider a spin 4–manifold X with ∂X = Y . The classical
definition of Rokhlin’s µ–invariant is

µ(Y ) ≡ σ(X) mod 16,

where σ(X) is the signature of the 4–manifold X . The invariance of this
quantity is a simple consequence of Rokhlin’s famous result on the divisibility
of the signature of a closed spin 4–manifold by 16. (If Y is an integral homology
sphere, that is, H1(Y ; Z) = 0 also holds, then the signature σ(X) of a spin 4–
manifold X with ∂X = Y is divisible by 8, and in this case sometimes Rokhlin’s
invariant is defined as σ(X)

8 ∈ Z2 .)

It is not hard to see that if X is a spin rational homology 4–ball (i.e., H∗(X; Q) =
H∗(D

4; Q)) with ∂X = Y and H1(Y ; Z2) = 0 then µ(Y ) = 0. Consequently,
the µ–invariant of a Z2–homology sphere Y provides an obstruction for Y to
bound a spin rational homology 4–ball. (The spin assumption on X is impor-
tant, since for example the Brieskorn sphere Σ(2, 3, 7) has µ = 1 and bounds
a nonspin rational homology 4–ball, cf. [3].) Since µ is defined only mod 16, it
is typically less effective than an integer valued invariant. Interest in integral
lifts (or related obstructions) was motivated also by a result of Galewski and
Stern [4] about higher dimensional (simplicial) triangulation theory.

In [14] Walter Neumann defined a lift µ ∈ Z of µ for spin 3–manifolds given by
the plumbing construction along a weighted tree. Before giving the definition
of this invariant we shortly review a few basic facts about plumbing trees. For
a general reference see [14].

Suppose that Γ is a weighted tree with nonzero determinant. Let XΓ denote
the 4–manifold defined by plumbing disk bundles over spheres according to the
weighted tree Γ, and define YΓ as ∂XΓ . As it is described in [14], the mod
2 homology H1(YΓ; Z2) can be determined by a simple algorithm, which we
outline below. Consider a leaf v of Γ, connected to the vertex w .

• Move 1: If the weight on v is even, then erase v and w from Γ.
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• Move 2: If the weight of v is odd, then erase v and change the parity
of the weight on w .

This procedure stops once we reach a graph Γ′ with no edges. Suppose that Γ′

contains p vertices, q of them with even weights.

Lemma 2.1 The dimension of the vector space H1(YΓ; Z2) over Z2 is equal
to q .

Proof Denote the set of vertices of the given weighted plumbing tree Γ with
nonzero determinant by V = {v1, . . . , vn}. It is known (cf. [5, Proposi-
tion 5.3.11]) that the homology group H1(YΓ; Z) admits a presentation by tak-
ing elements of V as generators, and equations

ni · vi +
∑

j 6=i

〈vj , vi〉 · vj = 0

as relations (i = 1, . . . , n), with the convention that ni is the weight on vi ,
and 〈vj , vi〉 is one or zero depending on whether vj and vi (as vertices of the
tree Γ) are connected or not. These relations follow easily from the existence of
Seifert surfaces for the components of the surgery link. The mod 2 reduction of
the relations (with the same generators) provide a presentation for H1(YΓ; Z2).
Now the moves for simplifying the graph (until it becomes a disjoint union of
some vertices) obviously correspond to base changes and expressions of gen-
erators in terms of others. Indeed, when Move 1 applies to v and w then
the relation for v shows w = 0, while the relation for w expresses v in terms
of the other neighbours of w . In the situation of Move 2 the relation for v

simply asserts that v = w (mod 2). From this observation the statement easily
follows: a single point with odd weight gives rise to a 3–manifold with vanish-
ing first mod 2 homology, while with even weight the first mod 2 homology is
1-dimensional.

Recall that an oriented 3–manifold Y always admits a spin structure, and
the space of spin structures is parametrized by the first mod 2 cohomology
H1(Y ; Z2)(∼= H1(Y ; Z2)) of Y . A convenient parametrization of the set of spin
structures on the rational homology 3–sphere YΓ is given as follows. First we
define a set of subsets of the vertex set for every plumbing graph Γ. We start
with a graph Γ′ having no edges: in that case consider the subsets of the vertices
which contain all vertices with odd weights. Every such subset will give rise to
a unique subset S ⊂ V for the original graph Γ as follows. We describe the
change of S under one step in the process giving Γ′ from Γ. Suppose that Γ′
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is given by Move 1 from Γ (via erasing v = vi and w = vj ), and a set S′ ⊂ V ′

is specified for Γ′ . Now we define the set S ⊂ V by taking it to be equal to
S′ or S′ ∪ {vi} according as the number of indices in S′ adjacent to w = vj

have the same parity as nj or nj − 1. If Γ′ is derived from Γ by Move 2 (via
erasing vi ) then let S be equal to S′ or S′∪{vi} depending on whether vj was
in S′ or not. It is not hard to see from this algorithm that if vi, vj ∈ S then vi

and vj are not connected by an egde in Γ.

Suppose now that S ⊂ V is a subset defined as above. Consider the submanifold
ΣS ⊂ XΓ defined as the union of the spheres corresponding to the vertices in
S . Notice that since by construction S does not contain adjacent vertices, the
above surface is a disjoint union of embedded spheres. Let cS ∈ H2(XΓ; Z)
denote the Poincaré dual of ΣS . The inductive definition (and the starting
condition) shows that cS is a characteristic element, that is, for every surface
Σv ⊂ XΓ defined by a vertex v we have

cS(Σv) ≡ nv mod 2.

On the simply connected 4–manifold XΓ a characteristic cohomology class
uniquely specifies a spinc structure tS , which restricts to a spinc structure
sS on the boundary YΓ . Since PD(cS) =

⋃
v Σv = ΣS is in H2(XΓ; Z), on

the boundary the spinc structure sS = tS|∂XΓ
has vanishing first Chern class,

therefore it is a spin structure on YΓ . Hence every subset S constructed above
defines a spin structure sS on YΓ ; the set S is called the Wu set of the cor-
responding spin structure. Since this construction provides a spin structure on
the complement X − ΣS , it is obvious that two different sets induce different
spin structures: if S1 and S2 differ on the vertex v of even weight (in the
disconnected graph our construction started with) then only the spin structure
corresponding to the Wu set not containing v will extend to the cobordism
we get by the appropriate handle attachment along v . In conclusion, we get
an identification of H1(YΓ; Z)(∼= H1(YΓ; Z)) with the set of spin structures on
YΓ : take the characteristic function of S on the starting disconnected graph Γ′

(which by the above said determines S ), and associate to it the corresponding
first mod 2 cohomology class. Now the definition of the µ invariant of Neumann
(cf. also [14]) is as follows.

Definition 2.2 For a spin structure s on YΓ consider the corresponding Wu
set S and embedded Wu surface ΣS ⊂ XΓ . Define µ(YΓ, s) ∈ Z as the differ-
ence

µ(YΓ, s) = σ(XΓ) − [ΣS ]2.
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By applying the handle calculus developed in [15] together with the Wu set S ,
the proof of the following statement easily follows.

Proposition 2.3 ( [14, Theorem 4.1]) The quantity µ(YΓ, s) is an invariant
of the spin 3–manifold (YΓ, s) and is independent of the choices made in the
definition.

3 Rational singularities

Consider the plumbing tree Γ and suppose that Γ is negative definite. Accord-
ing to a classical result of Grauert [6], for any negative definite plumbing graph
there exists a normal surface singularity such that the plumbing along the given
graph is diffeomorphic to a resolution of the singularity.

Definition 3.1 A normal surface singularity SΓ is called rational if its geo-
metric genus pg = 0. A negative definite plumbing graph Γ is rational if there
is a rational singularity SΓ with resolution diffeomorphic to XΓ .

Although the singularity corresponding to a plumbing graph might not be
unique, it is known that rationality is a topological property and can be fairly
easily read off from the plumbing graph through Laufer’s algorithm. Namely,
consider the homology class

K0 =
∑

v∈Γ

[Σv] ∈ H2(XΓ; Z).

In the ith step, consider the product Ki ·Σvj
= 〈PD(Ki), [Σvj

]〉 . If it is at least
2 then the algorithm stops and the singularity is not rational. If the product
is nonpositive, move to the next vertex. Finally, if the product is 1 for some
v ∈ Γ, then replace Ki with Ki+1 = Ki + [Σv] and start checking the value
of the product for all vertices of Γ again. If all products are nonpositive, the
algorithm stops and the graph gives rise to a rational singularity.

Lemma 3.2 A rational plumbing graph is always a (negative definite) tree
of spheres, and the link is a rational homology 3–sphere. In addition, for any
vertex vi ∈ Γ the sum of its weight ni and the number di of its neighbours is
at most 1.

Notice that in a rational graph a vertex with weight (−1) has degree d ≤ 2,
hence can be blown down by keeping Γ a plumbing tree. For this reason, we
might assume that ni ≤ −2 for all vertices vi ∈ Γ.
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4 Heegaard Floer groups

In [17, 18] a set of very powerful invariants, the Ozsváth–Szabó homology groups

ĤF (Y, s),HF±(Y, s) and HF∞(Y, s) of a spinc 3–manifold (Y, s) were intro-
duced. In the following we will use these groups and relations among them;
for a more thorough introduction see [17, 18, 10]. Recall that a rational ho-

mology 3–sphere Y is an L–space if ĤF (Y, s) = Z2 for every spinc structure
s ∈ Spinc(Y ). (In the version of the theory we are about to apply, we use Z2–

coefficients.) In this case we can label the unique nonzero element of ĤF (Y, s)
by the corresponding spinc structure s . Recall also that for a rational homology
3–sphere Y the groups are equipped with a natural Q–grading. The grading
of the unique nontrivial element of ĤF (Y, s) for an L–space Y is called the
correction term d(Y, s) of the spinc 3–manifold (Y, s). For the proof of the
next proposition, see for example [8, Theorem 2.3].

Proposition 4.1 Suppose that d(Y, s) 6= 0. Then there is no spinc rational
homology 4–ball (X, t) with ∂(X, t) = (Y, s) .

Proposition 4.2 Suppose that det Γ is odd. If d(YΓ, s) 6= 0 for the unique
spin structure s then YΓ does not bound any rational homology 4–ball.

Proof Suppose that YΓ = ∂X for a rational homology 4–ball X . Let ϕ : YΓ →
X denote the embedding of the boundary, inducing the map ϕ∗ on homology.
Since |H1(YΓ; Z)| is odd, the size of the subgroup Im ϕ∗ is also odd. This
implies that an odd number of spinc structures in Spinc(YΓ) extend to X .
Since s ∈ Spinc(YΓ) and its conjugate s extend at the same time, we conclude
that the spin structure s = s of YΓ extends to X as a spinc structure, therefore
Proposition 4.1 concludes the proof.

A relation between the singularity’s holomorphic structure and its Heegaard
Floer theoretic behaviour was found by A. Némethi:

Theorem 4.3 (Némethi, [13]) Suppose that the negative definite plumbing
tree Γ gives rise to a rational singularity. Then YΓ is an L–space.

5 A relation between µ(YΓ, s) and d(YΓ, s)

The proof of our main result about the µ–invariant relies on the identification
of it with the appropriate multiple of the d–invariant of the spin 3–manifold at
hand.

7



Proof of Theorem 1.4 Let Γ be a given negative definite rational plumbing
tree with a spin structure s (represented by its Wu set S ⊂ V ). Let mΓ,S

denote the number of those vertices vi ∈ Γ which are not in S but −ni of the
neighbours of vi are in S . (Notice that by the rationality of Γ this means that
vi has −ni or −ni + 1 neighbours and either all or all but one neighbours are
in S .)

The proof of the theorem will proceed by induction on mΓ,S . Let us start with
the easy case when mΓ,S = 0, that is, for any vertex vi in Γ we have

cS(Σvi
) < −ni. (5.1)

For vi ∈ S we have cS(Σvi
) = ni , while if vi is not in S then cS(Σvi

) is the
number of neighbours of vi which are in S . In particular, 0 ≤ cS(Σvi

) ≤ di

holds for all vi not in S . Since cS is characteristic, Inequality (5.1) actually
means that cS(Σvi

) ≤ −ni − 2. In conclusion, cS satisfies ni ≤ cS(Σvi
) ≤

−ni − 2 for all vertices, hence cS is a terminal vector in the sense of [19]. By
subtracting twice the Poincaré duals of the homology classes represented by
surfaces corresponding to vertices in S , eventually we get a path back to a
vector K ∈ H2(XΓ; Z) which satisfies K(Σvi

) = −ni for vi ∈ S and K(Σvi
) ≥

−di ≥ ni + 2 if vi is not in S . This means that K is an initial vector, hence
cS is in a full path (again, in the terminology of [19]). By the identification of
[13] this implies that cS gives rise to a Heegaard Floer homology element in

ĤF (Y, s) of degree 1
4 (c2

S −3σ(XΓ)−2χ(XΓ)). (Here, as costumary in Heegaard
Floer theory, χ(XΓ) is understood as the Euler characteristic of the cobordism
we get from S3 to YΓ by deleting a point from XΓ .) Since YΓ is an L–space,
this degree must be equal to d(Y, s). On the other hand, since Γ is negative
definite, χ(XΓ) = −σ(XΓ), hence the above formula for the degree shows that
−µ(YΓ, s) = c2

S − σ(XΓ) is equal to 4d(YΓ, s).

Next we assume that the statement is proved for graphs (Γ, S) with mΓ,S ≤
m − 1. In the inductive step we will utilize the exact triangle for Heegaard
Floer homologies, proved for a surgery triple, see [18, 9]. To this end, fix
a graph Γ with Wu set S and corresponding spin structure s ∈ Spin(YΓ)
having mΓ,S = m > 0 and let v denote a vertex with −ni neighbours in S .
(Consequently v is not in S .) Consider the following plumbing graphs (with
spin structures specified by the various Wu sets):

• Let Γ′,Γ′′ denote the same graphs as Γ with the alteration of the framing
on v from ni to ni − 2 and ni − 4, resp. It is easy to see that S still
provides Wu sets S′, S′′ (and hence spin structures s′, s′′ ) for Γ′ and Γ′′ .
Notice that mΓ′,S′ = mΓ′′,S′′ = mΓ,S − 1. In addition, since v was not
in the Wu set S , we see directly that µ(YΓ, s) = µ(YΓ′ , s′) = µ(YΓ′′ , s′′).
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Laufer’s algorithm shows that Γ′,Γ′′ are also rational.

• Let Γ1 be the disjoint union of Γ′ and the graph on a single vertex w with
framing (−2). The set S1 is chosen as S ∪ {w}. Simple computation
shows that µ(YΓ1

, s1) = µ(YΓ, s) + 1. In the surgery picture for YΓ1

resulting from the plumbing let K denote the unknot linking the unknot
corresponding to v ∈ Γ chosen above and the new (−2)–framed circle
(corresponding to w ) once.

Attach a 4–dimensional 2–handle to the 3–manifold YΓ1
along K with framing

(−1). The resulting coboridsm will be denoted by X .

Lemma 5.1 The result of the above surgery is YΓ , and the spin structure s1

on YΓ1
defined by S1 extends as a spin structure to provide a spin cobordism

(X, t) from (YΓ1
, s1) to (YΓ, s) .

Proof By sliding K and the handle corresponding to w down, the first state-
ment is obvious. The extension follows from the fact that for the graph con-
taining Γ1 together with K , the vertex corresponding to K is not in S1 .

Notice that by induction on mΓ,S the statement of the theorem holds for Γ1

and Γ′ , hence we have that −4d(YΓ1
, s1) = µ(YΓ1

, s1) = µ(YΓ, s) + 1 and
−4d(YΓ′ , s′) = µ(YΓ′ , s′) = µ(YΓ, s).

If the spin cobordism (X, t) of Lemma 5.1 between (YΓ1
, s1) and (YΓ, s) in-

duces a nontrivial map on the Ozsváth–Szabó homology groups, we can easily
conclude the argument: since a negative definite spin cobordism with χ = 1 and
σ = −1 shifts degree for Ozsváth–Szabó homologies by 1

4 , the unique nontrivial

element of ĤF (YΓ1
, s1) maps to the unique nontrivial element of ĤF (YΓ, s) of

degree d(YΓ1
, s1) + 1

4 = d(YΓ, s), reducing the proof to elementary arithmetics.
The nontriviality of the map FX,t is, however, not so obvious. Let us set up
the exact triangle defined by the surgery triple (YΓ1

, YΓ, YΓ′′) along the knot
K ⊂ YΓ1

:

ĤF (YΓ1
) ĤF (YΓ)

ĤF (YΓ′′)

FX

FUFV

for the identification of the two manifolds YΓ, YΓ′′ simple Kirby calculus ar-
guments are needed. Recall that the map FX is the sum of all FX,u for
u ∈ Spinc(X).

9



We claim first that FX(s1) has nonzero s–component. Since U is not negative
definite, the map F∞

U vanishes, and since YΓ is an L–space, this implies the
same for the maps F+

U and FU . In particular, by exactness we get that FV

is injective and FX is surjective. Suppose that FX(s1) has zero s–component.

Then FX(s1) = a + a for some a ∈ ĤF (YΓ), where a is a formal sum of
some spinc structures on YΓ and a denotes the sum of the conjugate spinc

structures, cf. [10]. By surjectivity now there is x ∈ ĤF (YΓ1
) with FX(x) = a ,

hence s1 + x + x is in the kernel of FX , so in the image of FV . If FV (y) =
s1 +x+x then the same holds for y , hence by the injectivity of FV the element
y satisfies y = y . In order FV (y) to have spin component, y must have a spin
component, hence we have found some spin and spinc structures z ∈ Spin(YΓ′′)
and t′ ∈ Spinc(V ) with FV,t′(z) = s1 . By the uniqueness of extensions this z

must be s′′ , and the spinc cobordism (V, t′) connecting z = s′′ and s1 must
be spin. Therefore the grading shift between the elements s′′ and s1 is 1

4 . This
implies

d(YΓ′′ , s′′) +
1

4
= d(YΓ1

, s1). (5.2)

Recall that

µ(YΓ′′ , s′′) = µ(YΓ, s) = µ(YΓ1
, s1) − 1. (5.3)

Since by induction for the spin 3–manifolds (YΓ1
, s1) and (YΓ′′ , s′′) the invariant

µ actually computes the correction term, that is, −4d(YΓ1
, s1) = µ(YΓ1

, s1)
and −4d(YΓ′ , s′) = µ(YΓ′ , s′), Equations (5.2) and (5.3) contradict each other.
Therefore the element FX(s1) has nontrivial s–component, verifying our claim.

The nontriviality of FX between s1 and s , however, implies that there is a
connecting spin structure t with FX,t(s1) = s , cf. [10, Lemma 3.3]. Conse-
quently the degree shift given by FX,t is 1

4 , hence the inductive step concludes
the proof of Theorem 1.4.

Proof of Theorem 1.1 Combining Propositions 4.1 and 4.2 with the identi-
fication of Theorem 1.4 the proof follows at once.
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[19] P. Ozsváth and Z. Szabó, On the Floer homology of plumbed three-manifolds,
Geom. Topol. 7 (2003) 185–224.

[20] J. Park, Seiberg–Witten invariants of generalized rational blow–downs, Bull.
Austral. Math. Soc. 56 (1997) 363–384.

[21] N. Saveliev, Fukumoto–Furuta invariants of plumbed homology 3–spheres, Pacific
J. Math. 205 (2002) 465–490.
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