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FLOER HOMOLOGY AND SINGULAR KNOTS
PETER OZSVATH, ANDRAS STIPSICZ, AND ZOLTAN SZABO

ABSTRACT. In this paper we define and investigate variants of the link Floer homology
introduced by the first and third authors. More precisely, we define Floer homology
theories for oriented, singular knots in S® and show that one of these theories can be
calculated combinatorially for planar singular knots.

1. INTRODUCTION

Singular knots arise naturally in the skein theory of ordinary knots, see for example [4].
Moreover, they play a crucial role in the Khovanov-Rozansky categorification of the
HOMFLY-PT polynomial [3]. In this paper we define and investigate Floer homology
theories for oriented, singular knots in S%, whose Euler characteristic is the Alexander
polynomial of the knot. The definitions of these theories are generalizations of knot and
link Floer homology, [7], [11], [10].

Informally, one can think of a singular knot as an ordinary knot with a finite set
of double points. However, for the purpose of skein theory, it is important to endow
these objects with some extra structure. To this end an abstract singular knot is a
connected, trivalent graph with a distinguished set of edges, called thick edges (and the
remaining edges are called thin edges), which satisfies an additional hypothesis: at each
vertex, we require two of the edges to be thin, and the third to be thick. An oriented
abstract singular knot is obtained by orienting all the edges in such a manner that at
each vertex, both thin edges are oriented the same way, while the thick edge is oriented
oppositely, see Figure 1(a). For an example of an oriented singular knot see Figure 1(b).
Of course, not all abstract singular knots can be oriented in this way; an example for
a nonorientable abstract singular knot is shown in Figure 1(c). A singular knot, then,
is a PL embedding of an oriented abstract singular knot in S3. By contracting all the
thick edges to points, we obtain an oriented knot with a finite set of double points.

As it is customary in knot theory, we will mainly study singular knots through their
generic projections. In fact, we consider projections which have crossings only among
thin edges. Singular knots arise naturally from projections of oriented knots as follows.
Given a projection of an ordinary knot, we replace some of its crossings by inserting a
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FIGURE 1. Singular knots. (a) shows a thick edge, (b) illustrates the
orientation convention, while (c) is an example of a singular knot which
cannot be oriented.

thick edge, in such a manner that the orientations of the thin edges are preserved. This

A X
N

FIGURE 2. Singularizing knot projections. The diagram shows how
to replace a positive/negative crossing by a thick edge in the projection.
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Let K be an oriented, singular knot. The Alexander polynomial Ag(T') of K can be
defined using the extension of Alexander polynomials of ordinary links via skein theory,
as it is discussed in Section 3.

In this paper we construct a bigraded homology theory associated to K whose graded
Euler characteristic is determined by Ag (7). In fact, there are two variants of this

homology theory, }/IF/S(K ) and HFS(K), and each splits as

HFS(K) = (D HAFS4(K,s) and HFS(K) = (P HFS,(K, s)
s,d s,d

where d (corresponding to the homological, or Maslov grading) is an integer, and s (the
Alexander grading) is either an integer or a half-integer, depending on the number of
thick edges of the singular knot. The group HFS(K) is a module over the polynomial
ring F[Uy, ..., Uy, where ¢ + 1 denotes the number of thick edges of K (¢ > 0) and
F =7Z/2Z. In fact, HF'S(K) is gotten as the homology of a chain complex CFS(K)
over this ring. The group HFS( ) is obtained by taking the homology of the complex
CFS(K) gotten by specializing all U; = 0 in CFS(K). Multiplication by U; drops
Alexander grading by one, and it drops Maslov grading by two.

Note that in the definition of HFS(K), the number of variables is one less than
the number of thick edges; our construction treats one of these edges specially. Thus,
these Floer homology groups depend on this choice of a distinguished thick edge on the
singular knot; L.e. the resulting group is an invariant of the singular knot equipped with
a thick edge. The groups HFS(K') use all thick edges more symmetrically, and as such
depends only on the singular link. See Theorem 2.4 for the invariance statement.

The relationship between these invariants and the Alexander polynomial is spelled
out in the following:

Theorem 1.1. For the Floer homology theory HFS we have
(1) Y X(HFS,(K.s)) - T° = (1= T)" - Ax(T),
where £ 4+ 1 denotes the number of thick edges in K. For HFS we have

(2) > X(HFS, (K, 5)) - T* = Ag(T).

A singular knot projection gives rise to a natural Heegaard diagram. Using such a
diagram, and generalizing the notion of Kauffman states to singular knots (see Section 4
for details), we get a natural interpretation of a set of generators for the Floer homology
groups in terms of these extended Kauffman states, similarly to [6, Theorem 1.2].

Theorem 1.2. Let K be a singular knot, and fix a decorated projection P of K. Con-
sider the vector space C(K) over F generated by all generalized Kauffman states of P.
There is a differential on C(K) whose homology calculates HFS(K).
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A more precise statement is given in Section 4, where we also give an explicit formula
for the bigrading associated to each generalized Kauffman state.

We turn our attention to the Floer homologies of singular knots in the case where
the singular knot K is planar, that is, K admits an injective projection to the plane.

Theorem 1.3. Suppose that K is a planar singular knot. Then the group HFS(K) is
determined by the Alexander polynomial Ag(T); indeed, the homology HFS,(K,s) is
supported on the line 2s = d.

It is more challenging to calculate ﬁf‘/S(K ). In particular, we exhibit an example

which shows that HFS(K, s) can be non-trivial even when its Euler characteristic van-
ishes. -

The present paper is organized as follows. In Section 2 we give the definition of HF'S
and HFS. In Section 3 we briefly discuss Alexander polynomials of singular knots. In
Section 4 we give the state sum model for the Floer homology theory HFS of singular
knots, leading us to the proofs of the theorems announced above. In Section 5 we show
an alternative Heegaard diagram for planar singular knots and do some calculations in
some special cases.

Most of the material described in this paper was discovered in 2004, while the sec-
ond author was visiting the Institute for Advanced Study. The invariants for singular
knots described here (and some suitable modification of them) form the basis for a cube
of resolutions description of knot Floer homology, described in [5], which gives a con-
struction of knot Floer homology quite similar in character to the Khovanov-Rozansky
categorification of the HOMFLY-PT polynomial [3]. A different construction of knot
Floer homology for singular links has appeared very recently in [1], cf. also [13].

1.1. Acknowledgements. The authors wish to thank the referee for a careful reading
and extensive suggestions.

2. DEFINITION OF THE FLOER HOMOLOGY GROUPS

2.1. Heegaard diagrams. Consider an oriented surface ¥ of genus g, endowed with
two (g + ¢)-tuples of mutually pairwise disjoint, embedded circles o = oy, ..., a4y and
B = Pi,..., Bgre (Where ¢ is a non-negative integer), chosen so that aq,..., a4, and
B1, ..., Bgse determine handlebodies U, and Ug with 0U, = —0Uz = X. If U, Uy Ug =
S3, we call (X, o, B) a balanced Heegaard diagram for S3. A self-indexing Morse function
on S% with £+ 1 maxima and minima determines a balanced Heegaard diagram for S®.

Apoint pe ¥ —ag —... —age— 1 — ... — Byys determines a gradient flow which
connects some index zero and index three critical point. Indeed, given a collection of
points w = wy,...,w, and z = 21,..., 5, eachin ¥ —aqg — ... —ogpe — B1 — ... — By,

we obtain an oriented graph I'y ,, which is oriented compatibly with the flow along
the edges corresponding to w;, and oppositely for the edges corresponding to z;. We
suppose moreover that I'y, , is a connected graph with vertices of degree three. This
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condition implies that each component {Bz}fill of ¥ — 1 — ... = Bg+¢ has two points of
type z (denoted by z! and 2?), and one point of type w (which will be denoted by w;).
A similar statement holds for the components {Aj}ﬁ;ﬂ of ¥ —aq — ... — agqe. In this
way we obtain an oriented singular knot in S® by declaring the edges passing through
wy, ..., we to be thick edges. Conversely, it is not hard to see that any singular knot
K C 83 arises in this way, that is, for any K there is a balanced Heegaard diagram
compatible with it. An example of such a Heegaard diagram will be given in the next
subsection.

2.2. Decorated projections and Heegaard diagrams. Fix a generic projection P
of an oriented singular knot K. We also fix a generic initial point ) on the projection.
We call this data a decorated knot projection for K. Given this data, we describe an
associated Heegaard diagram, generalizing the one given in [6]. (Note that we have
switched here the roles of the a and [ circles from the conventions from [6].) The han-
dlebody U, is a regular neighborhood of the projection of K, and Up is its complement
in S3. Let X and Y be the regions in the projection which contain the distinguished
point (). For each region in the complement of the projection other than X, we choose
a corresponding (-circle given by the contour of the region. For each crossing in the
projection we choose a circle «; supported in a neighborhood of the crossing as it is
shown in Figure 3. For each thick edge, we choose a pair of a-circles a; and o1 which
are meridians for the two incoming arcs, and also an additional circle 3;, which meets
only o and a4 in two points apiece. We call 3; an internal 3-circle for the thick edge.
This is illustrated in Figure 4. The diagram also shows how to place the base points
2 near the thick edge. To complete the construction, finally we omit one of

w; and 2z}, 2
the internal (-circles. We will take the convention that wy,; is the distinguished thick

FiGURE 3. Heegaard diagram at a crossing. The position of the «
circle (depending on the sign of the crossing) is shown.
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edge. Moreover, in Section 4, we will find it useful to choose a diagram where the initial
point () lies on a thin edge which points into the distinguished thick edge, and that
the internal (-circle for this thick edge is omitted. It is easy to see that the resulting
balanced Heegaard diagram is compatible with the given singular knot.

2.3. Definition of HFS(K) and HFS(K). Suppose now that K C S® is a singular
knot and (X, o, 3, w, z) is a balanced Heegaard diagram compatible with K. As usual
(compare [8], [10]), we consider the (g + ¢)-fold symmetric power Sym9T¢(X) of the
genus-g surface X, equipped with the tori

To=0a1 x...xXag and Tg= P51 X ... X Byte

in Sym9T¢(X). Let m(x,y) denote the set of homology classes of topological disks
connecting the intersection points x,y € T, N Tg. For p € ¥ — oy — ... — agpp —
i — ... — Byre and ¢ € my(x,y) we define n,(¢) as the intersection of ¢ with V), =
{p} x Sym9+*=1(%). We decompose the complement of the c; and 3; into its components

E—O&l—...—Oég+g—61—...—ﬂg+g:HCk.
k

Given ¢ € my(x,y), the domain D(¢) associated to ¢ is the formal linear combination
D(¢) = >_;n;C}, where here n; = n.,(¢) for any choice of ¢; € C;. The homology class
of ¢ is uniquely determined by its associated domain. We say that the domain D is
nonnegative (writing D > 0) if D = } . n;C; with n; > 0 for all j.

Two functions

A/Z (TaﬂTﬁ) X (Ta ﬂTﬁ) — 7
and
N': (To N'Ts) x (To N Tg) — Z

\V

FiGURE 4. Heegaard diagram at a thick edge. The diagram de-
scribes the a-cirles and the internal (-circle corresponding to a thick edge,
together with the base points w and two z’s.
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can be defined by the formulas
41

(3) Ax,y) = Y (20,(6) = 21 (6) ~ n2(9))

and
041

N/(Xv y) = :U’(¢) - Qanz(¢)7

where ¢ € mo(x,y) is arbitrary, and p(¢) is the Maslov index of ¢ € ma(x,y).

Lemma 2.1. The functions A" and N' are well-defined, i.e. they are independent of
the choice of ¢ € may(x,y). Moreover, given x,y,w € T, N Tz, we have that A'(x,y) +
Ay,w)=A'(x,w) and N'(x,y) + N'(y,w) = N'(x,w).

Proof. Consider ¢ and ¢’ € my(x,y). The difference D = D(¢) — D(¢’) of their
domains specifies a two-chain whose boundary is a sum of a- and (-circles. Since
H,(X) is spanned by the images of the two g-dimensional subspaces spanned by the

{[e] 2 and {[B,]}91/, it follows that any such domain can be written as a sum of some
Dy and D,, where

041 041
D1:Zai-Ai and D2:szBza
i=1 i=1
where {A;}:X] resp. {B;}X] are the components of ¥ — a; — ... — gy resp. ¥ — 3 —

... — Bgte, and a;, b; € Z. Now, our combinatorial condition on the Heegaard diagram
ensures that each component A; or B; contains two points of z and one point of w
(corresponding to a thick edge). Since these latter points contribute to the sum in A’
with multiplicity two, it follows readily that

+1

> (200,(6) = n.p(9) —n.2(9)

+1
= 3 (206 = nar(6) = m2(0)) 5
i=1
ie. A’ is well-defined. Well-definedness of N’ follows from standard properties of the
Maslov index, see [10, Proposition 4.1]. Additivity of these quantities is straightforward.
O

It follows from Lemma 2.1 that there are functions A: T, N Tg — Z and N: T, N
Tz — Z, uniquely characterized up to an overall translation by the property that
A(x) — Aly) = A(x,y) and N(x) — N(y) = N'(x,y). It will be useful to have the
following
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Lemma 2.2. Givenx € T,NTg, there is a unique ¢ € mo(X,X) with ny (@) = ny(¢) = 0.

Proof. Notice first that the trivial class ¢y € ma(x,x) has the required property. Any
other class in 7y (x, x) differs from ¢y by adding D; and D5 as above. Now the condition
on ny, and n, implies that for any a; in D; and b; in D, with the property that A; N B,
contains some z; or w; we have that b; = —a;. Using this repeatedly, together with the
fact that I'y, , is connected, we see that D; + Ds is zero, concluding the proof. O

We define the complex CFS(K) to be the chain complex freely generated over F[Uy, . .., U]
(with F = Z/2Z) by the intersection points T, N Tg, endowed with the differential

¢

(4 o= Y > #M(9) - (HUS"“* (@*“Z?”’”) y.

YETTs {pema(x.y) | 1(6)=1.nw (6)=0} i=1

where #M\ (¢) is the mod 2 count of holomorphic representatives of ¢ € m(x,y) up to
reparametrization.

The functions A and N defined above induce gradings on CFS(K), the Alezander
and algebraic gradings, with the convention that multiplication by U; drops A-grading
by one, and preserves N.

For the case of non-singular knots, knot Floer homology is bigraded, with Alexander
and Maslov degrees. The Maslov degree of [7] behaves differently from the grading N
introduced here: multiplication by U; drops Maslov grading, while it preserves N. In
fact, we could define the following Maslov grading for the case of singular links by taking

£+1

M'(x.y) = (@) +2- 3 (1 (6) = na1(8) = n2(9))

This is analogous to the Maslov grading for knots, and in particular, with respect to

the induced grading on CFS(K), multiplication by any U; drops this grading by two.

Note that we have the following easily checked relationship between the three gradings:
N =M —24A"

The complex CFS(K) is the chain complex we get by setting all U; = 0 (i = 1,. .., /)
in CFS(K). Equivalently, it is the free Abelian group generated over F by T, N Tp,
endowed with the differential

ox)= Y > H#M(9) -y

YETNTS {pems ()| 1(6)=1mw (6)=0.na(6)=0})

Lemma 2.3. The maps d and O induce differentials on CFS and CFS which drop the
N-grading by one, and preserve the A-grading.
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Proof. The sum defining 0 is finite, according to Lemma 2.2. For 9, we argue that for
fixed x and y, there are only finitely many ¢ € ma(x,y) with ny(¢) = 0 and D(¢) > 0.
To see this, observe that the homology class of any ¢ with ny(¢) = 0 is uniquely
determined by n,(¢) (by Lemma 2.2), and moreover according to Lemma 2.1, the sum

/41

> 1 (9) + nas(6)

is independent of the choice of ¢ (since it is A(y) — A(x)).
Since the coefficients in our theories are chosen in F = Z/2Z, the arguments of [10]

apply. Now the proof that 2 = 0 = 8?2 is an adaptation of [10, Lemma 4.3]. O

Note that, we have so far defined N and A only up to an overall additive constant.
The indeterminacy in N can be easily removed with the following observation. Suppose
that we set all the U; = 1 in the definition of CFS (equivalently, consider the differential
which counts holomorphic disks with ny(¢) = 0, and ignore the reference points z).
In this way we obtain a chain complex whose homology is (up to an overall degree
shift) isomorphic to H.,(T"), see [10, Theorem 4.5]. Note that by Lemma 2.2, it follows
that this diagram is admissible, so that the theorem applies. We choose N so that
the homology group is isomorphic to H,(T*), with a shift in the grading making the
top-most homology supported in degree zero.

The indeterminacy of A can be removed in an invariant manner using relative Spin®
structures (compare [14]), though this is a slightly awkward approach for the present
applications. Rather, we will leave the A-grading well-defined only up to an overall
shift, which could be removed with the help of the state sum formulae of Section 4. We
now write

CFS(K) = (P CFS4(K,s) and CFS(K) = (P CFS,(K,s)

d,s d,s

where here CFS4(K, s) and CFSy(K, s) are generated by elements with M = d € Z and
A = s. (Presently, the grading by s is well-defined only up to an additive constant.)

Theorem 2.4. Consider the homology groups
HFS(K @HFsd (K,s) and HFS(K @HFsd (K, s)

of the chain complexes ((ﬁ?/S(K), ) and (CFS(K),d), where here d € Z is an absolute
integral grading and s (which is in Z or Z+ %, depending on the parity of the number of
thick edges) is a relative integral grading. Then, HFS(K) is an invariant of the singular
knot K, together with the distinguished thick edge; while ﬁFS(K) 1s an imvariant of the
singular knot.
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Proof. By Morse theory it is known that any two pointed Heegaard diagrams for a
fixed singular knot can be connected by a sequence of (pointed) handleslides, isotopies,
stabilizations and birth /death of index 0/1 (and 2/3) cancelling handles. Using the proof
of [12, Lemma 1.1] we can avoid the appearance of cancelling 0/1 and 2/3 handles. For
the remaining moves the proof of the invariance of the knot Floer homology groups
follows the same lines as the proof of [10, Theorem 4.7]. O

2.4. Other constructions. There are other variants of Floer homology for singular
knots, which generalize the constructions we describe here. For example, we could
introduce a variable Uy for the final thick edge. The corresponding theory is the
analogue for singular knots of HFK™ for knots (while the construction HFS here plays

the role of ﬁﬁ{)

Indeed, this can be further generalized as follows: consider the chain complex C’
which is freely generated by T, N Ty over the ring F[Uy, ..., U], where m denotes the
number of thin edges in our diagram, and endowed with the differential:

o= Y ¥ s ([o)s
YETTS foem (ey)| m(6)=1,mw (8)=0} =
The chain complex (CFS, 0) described earlier can be thought of as the chain complex
over the quotient ring where we set U, = U, if e and €' are two edges which point

into the same vertex; and also for some edge ey, we set U,, = 0. See [5] for related
constructions.

3. ALEXANDER POLYNOMIAL OF SINGULAR LINKS

State sum formulas for the Alexander polynomial of a smooth knot were introduced
in [2]. Our aim in this section is to recall the Alexander polynomial for singular links,
and describe a state sum description for it, cf. also [4].

Proposition 3.1. There is a unique extension KK(T) of the one-variable symmetrized
Alezander polynomial Ay (T') for non-singular, oriented links to singular, oriented links,
which 1s characterized by the skein relations

Ag+(T) = Ag(T) + T2 - Ago(T)
Ag-(T) = Ag(T) + T2 - Ago(T),

where here K° denotes the resolution of K at a singular point v, and K+ and K~ denote
the positive and negative resolutions at v (cf. Figure 5).
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XX

AN 0

FiGURE 5. Resolutions at a thick edge.

Proof. Uniqueness of such an extension follows from simple induction on the number
of singular points, since K + and K° have fewer singular points than K. The fact
that Ak (T') is well-defined follows from a similar inductive argument together with the
fact that, because of the ordinary skein relation for the Alexander polynomial, the two
equations above provide coherent results. O

From now on, the Alexander polynomial Ak (T') for a singular knot K will be denoted
simply by Ax (7). Now we turn to the state sum description of A (7)) for singular
knots. To this end, first we recall the definition of Kauffman states for a singular link
projection. Fix a decorated projection P for a singular link K with initial point ) and
contract the thick edges to points. Let Cr(P) and R(P) denote the set of crossings
and the set of regions in the complement of the projection, resp. Let X and Y be
the two regions which contain the edge containing Q). A Kauffman state is a bijection
x: Cr(P) — R(P) — X — Y which assigns to each crossing v € Cr(P) one of the (up
to) four regions which meet at v. Let z be a Kauffman state and v a crossing in the
projection. There is a local contribution Z,(x) defined according to which quadrant z
assigns to v, and the type of v (i.e., whether it is singular, positive, or negative). When
v is non-singular, this local contribution takes values Z,(z) € {1,+7%*2}, and when v
is singular, Z,(z) € {0,1,=T2 — T~2}. The precise rules are illustrated in Figure 6.
This definition can be regarded as an appropriate extension of the local contributions
for Kauffman states of ordinary links. In the case of ordinary links, the appropriate
sum of the local contributions of Kauffman states provides the Alexander polynomial;
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Proposition 3.2 generalizes this fact to singular links. We note here that for our later
purposes a refinement of Kauffman states (which we will call generalized Kauffman
states) will be introduced in Section 4.

Proposition 3.2. Fiz a decorated projection P of the oriented link K, let Cr(P) denote
the set of crossings in the projection while X (P) denotes its set of Kauffman states.
Then the Alexander polynomial Ak (T') is calculated using the state sum formula

(5) A= > | J] %@

zeX(P) \veCr(P)

Proof. The state sum formula for K° can be thought of as given by a state sum
formula for states of K, where the local contribution at the resolved point contributes
as in Figure 7. Since the state sum formula satisfies the skein relation of Proposition 3.1,
and the identity of the proposition is known to hold for a non-singular link, the formula
of (5) for Ag(T) follows at once. O

FiGURE 6. Local contributions. We illustrate here the local contri-
bution function Z,(z) of a Kauffman state at a given crossing v. The left
and right diagrams illustrate the case where the crossing is a non-singular
point of K, while the middle one illustrates the case where v is a singular
point.

FiGURE 7. Local contributions at a resolved point.
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4. KAUFFMAN STATES AND THE CHAIN COMPLEX

Our aim is to give a simple set of generators for a chain complex whose homology
is isomorphic to HFS(K'). These generators can be described concretely in terms of a
suitable generalization of Kauffman states, which we describe presently.

Fix a decorated projection P for a singular knot K with initial point (). We contract
all the thick edges, so that they become crossings of the projection. However, the four
quadrants around a singular point v do not play equal roles. There are two quadrants,
the side quadrants which correspond to regions which used to contain the thick edge in
their boundary, which we denote A, and C,. There are two remaing quadrants: the top
quadrant B,, which is pointed towards by the thick edge, and the bottom quadrant D,,.
We define four quadrants A,, B,, C,, and D, at the ordinary crossings analogously.

We define a set, the set of Kauffman corners at v, for each crossing v of K, which
depends on whether v is an ordinary crossing or a contracted thick edge. If v is an
ordinary crossing, the Kauffman corners are the four corners A, B, C', or D of the
crossing v. If v is a singular crossing, the Kauffman corners correspond to A, C, D*,
and D~, where both Dt and D~ belong to the bottom corner D.

Let R(P) denote the set of regions in the complement of the projection. Let X and
Y be the two regions which contain the edge containing @). Let Cr(P) denote the set of
crossings of P (i.e. Cr(P) consists of the ordinary crossings and also the contracted thick
edges). A generalized Kauffman state for a singular knot is a map x which associates to
each crossing v € Cr(P) one of its four allowed Kauffman corners, with the constraint
that in each allowed region in R(P), there is a unique Kauffman corner in the image
of x, compare [2]. (Note that this is a very mild generalization of the notion from
Section 3: there, we had four states corresponding to four quadrants, except one corner
in the singular case contributed ~T3 — T_%; for our present purposes, it is convenient
to think of both terms as corresponding to two different states DT and D~.)

Each Kauffman corner has a local Maslov grading M,,, which is zero on all Kauffman
corners except for D (and DT, D~ at a singular point), where it is F1 according to the
sign of the crossing. This choice of signs is illustrated in Figure 8. The Maslov grading
of a generalized Kauffman state is the sum of local Maslov gradings over each crossing
of K. (Notice that at the singular point no value at B is specified, since when v is a
singular point, B is not a Kauffman corner.)

Similarly, each Kauffman corner has a local Alexander grading S,, defined as follows.
If v is an ordinary positive crossing then S,(A) = S,(C) =0, S,(B) =1/2 and S,(D) =
—1/2; while if v is negative, then S,(A) = 5,(C) =0, S,(B) = —1/2 and S, (D) = 1/2;
finally, if v is a singular crossing, then S,(A) = S,(C) = 0 and S,(D~) = —1/2,
Sy(DT) = 1/2, see Figure 9. The Alexander grading S(z) of a Kauffman state z is
given as a sum of local Alexander gradings.

Fix a decorated projection for a singular knot K, with the property that the distin-
guished edge @ is just underneath a singular crossing p. Consider next the associated
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FiGURE 8. The local Maslov grading M, is illustrated at a cross-

ing v.
\1/2
X
12 -1/2 ‘1/2\
P
D D

FiGure 9. The local Alexander grading S, is illustrated at a
crossing v.

Heegaard diagram for K described in Section 2.2. Leave out the internal (-circle f3,
associated to the singular crossing p which lies above (). Moreover, p corresponds to the
special thick edge. It is easy to see that there is a Kauffman state associated to each
x € T, NTp, determined as follows. Suppose that v is a singular crossing other than
p, and let a; and ;41 be the two circles supported in a neighborhood of the singular
point v. Let (3, be the corresponding internal ( circle, and write (54, O, B¢, and Op
be the four [-circles corresponding to the four quadrants meeting at v. Our tuple x
contains exactly one of the four points

{av, co, dy,dy} = (a5 U ;) N (BaU Be U Bp),

where a, € (4, dX € p, and ¢, € B¢ (note that the intersection cannot contain more
points since 3; = 3, meets only «; and «;11). We distinguish d;f and d, by the following
convention: d; lies on the same a-circle as ¢,. Now, our Kauffman state is determined
by z(v) = A,, D, D, and C,, if x contains a,, d;, d,, and ¢, respectively. The local
picture at such a generic singular crossing is illustrated in Figure 10. At the singular
point p, a similar but somewhat simpler picture applies (the internal 3-circle is missing,
as is one of the f-arcs corresponding to a distinguished edge). The Kauffman state at
an ordinary crossing is determined similarly, cf. [6].
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Bg

B Pa \_/ Bc

4

FiGure 10. The local picture of the Heegaard diagram near
a singular point v. There are four unlabelled intersection points (the
intersection points of 3, with a; and a;4+1): two are white and two are
gray. The white ones correspond to generators with e(v) = 41, the gray
ones to those with e(v) = —1.

Of course, each Kauffman state is associated to 2¢ different intersection points of
T, NTs (where £ 4+ 1 denotes the number of singular points), distinguished by their
coordinates on the internal (-circles. More specifically, the intersection points in T, N
Ts are in one-to-one correspondence with pairs x a generalized Kauffman state and
e: s(P) — {£1}, where here s(P) denotes the set of singular points in the projection
near which we have an internal (-circle (i.e. all but the distinguished one, p). Suppose
that (z,€) and (x, €') represent two different intersection points x,x" € T, NTs with the
same underlying Kauffman state, then we can find a homology class ¢ € m(x,x’) with
nw(¢) = 0 and 2(n,1(¢) + n.2(¢)) = —ex(v) + ex(v). In fact, this homology class is a
union of disjoint bigons. In particular, each Kauffman state x is realized by a unique
generator x € T, N Ty which has maximal Alexander grading among all generators
realizing x, corresponding to the map e(v) = +1, for all v, cf. Figure 11.

Our aim in this section is to establish the following precise version of Theorem 1.2:

Theorem 4.1. Fix a decorated projection for a singular knot K with the property that
the distinguished edge Q) is just below a singular point. Let Cy(K,s) be the free Abelian
group generated by generalized Kauffman states with Alexander grading s and Maslov
grading d. There is a differential

0: C(K,s) — C(K,s)
which carries Cy(K,s) to Cy_1(K, s), with
Hy(C.(K,s),0) = HFSy(K, s).
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FiGure 11. Alexander grading maximizers. For each Kauffman
corner illustrated in the top row, we have drawn its corresponding Alexan-
der grading maximizing intersection point below it.

Before giving the proof, we establish some lemmas. Indeed, we find it convenient to
focus first on the case where K is a planar singular link (which is in fact the case where
Theorem 4.1 is the most valuable).

4.1. Planar singular links. We analyze the Heegaard diagram in the case where K is
a planar singular link (that is, admits an injective projection to the plane), establishing
a special case of Theorem 4.1 in this case, from which Theorem 1.3 follows. First, we
establish several lemmas.

Lemma 4.2. Let K be a planar singular link. Let x and y be two generalized Kauffman
states, and let x,y € T, NTs unique Alexander grading mazimizing intersection points
representing them. Then, the difference between the Alexander gradings of x and y (in
the sense of Equation (3)) coincides with the difference between the Alexander gradings
S(z) and S(y) of the Kauffman states x and y.

Proof. Given x and y, it suffices to construct a particular homology class ¢ € m(x,y)
which satisfies

(6) S(x) = S(y) = Y (200, (8) — 1.1 (6) — n.2(9)).

i=1
Indeed, it suffices to consider the case where there are no D~ corners in x or y, in view of

the following observation. Consider first the special case where x and y agree at all but
n corners, where x is assigned DT and y is assigned D~. In this case, it is easy to find
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a locally supported homology class ¢ € ma(x,y) with > n.,(¢) = —n, > ny,(¢) =0, as
illustrated in Figure 12.

Suppose then that z and y contain no D~ corners. We construct a curve v which
connects x to y, as in Figure 13. This curve 7 is a (possibly disconnected) closed path
constructed from arcs within the a and (-circles. In fact, if x has components x; and
y has components y;, then 7 is constructed from arcs in o; from z; to y; and arcs in j;
from y; to xy.

Now, order the edges {e;} in the order they are encountered in the singular knot,
starting from (). Let v be some crossing where e; and e;;; meet. Fix reference points
T; on the Heegaard diagram, placed on top of the i*" edge, see the lower left picture in
Figure 13. We can draw an arc ¢; from 7; to T;, 1, which crosses only one of the a-circle
which is the meridian for the i edge, and none of the other circles. Similarly, let n; be
the short arcs going from w, to 2} and 22 (inside the disk bounded by £3,). Then,

v

AX) = Aly) = D #(1: 1 99)
=" #((e; + mi) N 99),

since U;¢; 1s a closed curve. We claim that

1

(7) #(Ez + nz) N a¢ = Sv(x) - Sv(y) - 5 (Wx(v)(K) - Wy(v)(K)) )

where here W, (K') denotes the winding number of K around a point in the region 7.
We see this as follows. The only part of ¢ which intersects ¢; + 7; lies on the internal
(-circle. Since the intersection number of ¢; + n; with the internal [-circle is zero,
it suffices to verify Equation (7) replacing d¢ with any arc connecting x to y on the
internal (§-circle. Thus, we can verify Equation (7) by considering the various cases of
x and y (locally, about each singular point), as illustrated in Figure 13.

FIGURE 12. Domains for comparing D" and D~. We have illus-
trated on the right a domain ¢ which connects the Alexander grading
maximizing generator of DT with that of D~. All multiplicities are +1,
—1, or 0; regions with local multiplicity +1 are indicated by hatch marks
from upper right to lower left, while regions with multiplicity —1 are
indicated by the other hatching.
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Now, summing Equation (7), we see that

A~ Aly) = (50— 2 3 W) |~ [50)— 5 3 W)

veCr(P) veCr(P)

But observe that

D We(E)= Y Wi(K)
veCr(P) reR(P)-X-Y
is independent of the Kauffman state x. This finishes the proof. O

Definition 4.3. Let K be a planar singular knot projection. Two generalized Kauff-
man states x and y are said to be equivalent if x(v) € {A,, D, } if and only if y(v) €
{A,,D;}. Let x be a generalized Kauffman state. This determines an associated sub-
graph of the knot projection as follows. At each crossing v, if x(v) € {A,, D, }, then we
remove the lower left edge from the projection; if x(v) € {C,, DI}, we remove the lower
right edge from the crossing. We call the associated subgraph I', of the projection the
pruning associated to the Kauffman state. Thus, two Kauffman states are equivalent if
and only if they induce the same pruning.

Note that the pruning is a graph, with exactly one in-coming edge at each vertex,
and at most two out-going ones.

FIGURE 13. Verifying Equation (7). We verify that equation, using
arcs connecting the black dot (representing x) to the white dot (repre-
senting y) supported on the internal g-circle.
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Lemma 4.4. The pruning associated to a Kauffman state for a planar singular knot is
a connected graph.

Proof. Suppose that I', is not connected. We argue that I', must contain some cycle.
This is seen by taking some edge e which is in a different path component from the
initial point, and continuing backwards through e. Since each vertex in I', has a unique
incoming edge, this process can be continued; so the component through e must contain
a cycle.

Now, we consider some closed circuit C' in ['; in a path component disjoint from the
distinguished edge (). The circuit C' can be thought of as enclosing a region A of the
projection which does not contain the distinguished edge. We restrict our Kauffman
state to A. The restriction of our projection to A gives the region, which is topologically
a disk, the structure of a CW complex, where the vertices correspond to the V' crossings,
and edges corresponding to the E arcs in A, and which divide A into F faces. There are
four kinds of vertices in the one-complex of A: bivalent ones (with one in-coming and
one out-going edge) whose number is D, vertices with two in-coming and one out-going
edge whose number is T}, vertices with one in-coming and two out-going edges whose
number is 75, and four-valent ones (two in-coming, and two out-going edges) whose
number is W, so that V = D + 17 + T, + W. Note that all vertices counted in D, T,
and Ty occur on the boundary of A. By counting edges, we can verify that 77 = T5.
In fact, the total number of edges is given by £ = D + 375 + 2W. But since A is a
disk, its Euler characteristic is one, so we get the relation that ' — T, — W = 1. Since
each face in A is occupied by a Kauffman corner (we are using here the fact that @ is
not contained in A), the restriction of our Kauffman state z to A demonstrates that
F < T} + W (at each vertex v counted in D or Ty, x(v) is not a face of A, whereas
at each vertex v in W, z(v) is a face of A, while at each vertex v in T3, z(v) might or
might not be a face of A), contradicting 77 = Ty and F — Ty, — W = 1. O

This has the following easy consequence:

Lemma 4.5. If x and y are generalized Kauffman states for a planar singular knot K
which are equivalent, then x and y coincide.

Proof. We construct the following subset P of the complement of I',. Suppose that
x and y differ at a crossing v. Then, of course there is a different crossing w with the
property that y(w) and x(v) are assigned to the same region. We then connect y(w)
and z(v) along some arc in the complement of the knot projection. Next, we connect
x(v) to y(v) by an arc which crosses one of the four edges of our knot projection; but
that is precisely the edge removed to obtain I',. We continue this procedure.

In this manner, we construct a collection of closed curves P. If P is non-empty, let
R be any connected component of P. It is easy to see that R divides the plane into



20 PETER OZSVATH, ANDRAS STIPSICZ, AND ZOLTAN SZABO

two regions, both of which contain points in I',. But this contradicts the fact that (by
Lemma 4.4) I', is connected. O

We now have the ingredients required to establish Theorem 4.1, at least in the case
when K is a planar singular link.

Proposition 4.6. Theorem 4.1 holds for planar singular links; i.e. if K is a planar
singular link, let Cyq(K, s) be the free Abelian group generated by generalized Kauffman
states with Alexander grading s and Maslov grading d. There is a differential

0: C(K,s) — C(K,s)
which carries Cy(K,s) to Cy_1(K, s), with
Hy(Cy(K, s),0) 2 HFS4(K, s).

Proof. If e and € differ at a single singular point v, then the homology class ¢ clearly
admits a single holomorphic representative up to reparametrization. In fact, by placing
basepoints at all the other regions of our Heegaard diagram, we obtain a filtration of
the chain complex CFS whose Ejy term counts only these short differentials; i.e. its
differentials are given by tensor product of the space of Kauffman states with ¢ chain
compexes of the form
F[U;,...,U] —2 FU,,..., U]

It is easy to see that the E; term, now, is simply the free F-module generated by the
Kauffman states. Indeed, this homology is carried by the pairs (z, €™ ), where e~ (v) = —1
for each v.

It remains to identify the Alexander and Maslov gradings of the intersection points
(z,e”) with the corresponding gradings for their underlying Kauffman states. This
statement for the Alexander grading is an immediate consequence of Lemma 4.2. For
the statement about the Maslov gradings, it suffices to show that the algebraic grading
N of any of the Alexander grading maximizing generators vanishes identically. To this
end, let x be a generator and x its underlying Kauffman state. We claim that there is
a new Heegaard diagram, obtained by moving the central S-circles, each across exactly
one of the two z; for fixed 7, so as to cancel two of the intersection points of this
with one of the two a-circle meridians, depending on the value of x(v), as illustrated
in Figure 14. Let +, denote the isotoped image of ,. Note that the ~, are chosen so
that the intersection point x persists into the new diagram. Indeed, the generators for
the new diagram now correspond to pairs (y, €), where here y is some Kauffman state
equivalent to z, and €: s(P) — {£1}. According to Lemma 4.5 it follows at once that
the generators for the new diagram correspond simply to maps €: s(P) — {£1}, since
they all have the same underlying Kauffman state. We claim that this is an admissible
Heegaard diagram for S® with ¢ basepoints (supplied by w). To see admissibility, we
proceed as follows. Let II be a periodic domain with multiplicity m near some singular
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FIGURE 14. Isotopies of the standard diagram. Given the gener-
ator x, we consider the new diagram obtained by isotoping the central
(-circle as indicated by the light dotted line. Note that the new diagram
for A and D~ coincide, while the diagram for C' and D™ coincide.

point v. Let u be the preceding vertex to v in the pruning I',. If II has only non-
negative multiplicities, then its local multiplicity near u must be greater than or equal
to m. Iterating this, we can go back to the root of the pruning, in view of Lemma 4.4,
where the local multiplicity in turn must equal zero. This shows that our periodic
domain must vanish identically.

Ficure 15. Verifying admissibility. We have illustrated here the
Heegaard diagram near two vertices, along with part of a periodic domain.
(We have suppressed the basepoints z, as they no longer play a role.) If
the periodic domain has local multiplicity m near the vertex v, and local
multiplicity ¢ in the small region, then its local multiplicity near the
preceding vertex u in the pruning must be m + c.
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Next, note that the isotopy, of course, changes the Floer homology; but it leaves invari-
ant the theory where all U; = 1 for ¢ > 1 (inducing an isomorphism between N-graded
theories). Indeed, recall [9] that the isomorphism induced on homology by isotopies can
be thought of as induced by a chain map which counts holomorphic triangles. More-
over, the count of holomorphic triangles clearly takes the generator corresponding to
(x,€), to the generator corresponding to the same € (respecting N-gradings). The result
follows. O

This immediately gives a proof of Theorem 1.3:

Proof. [of Theorem 1.3.] Applying Proposition 4.6, we see that the differential actually
must vanish identically, since the state sum ensures that for fixed Alexander grading,
the generators of the chain complex have fixed Maslov grading. O

4.2. The general case of Theorem 4.1. The discussion above can be generalized to
the case of (non-planar) singular knots, as well. For example, we have the following
generalization of Lemma 4.2:

Lemma 4.7. Let K be a singular link. Let x and y be two generalized Kauffman
states, and let x,y € T, NTs unique Alexander grading mazimizing intersection points
representing them. Then, the difference between the Alexander gradings of x and y (in
the sense of Equation (3)) coincides with the difference between the Alexander gradings
S(x) and S(y) of Kauffman states x and y.

Proof. We argue as in the proof of Lemma 4.2, establishing Equation (7) in the
presence of non-singular intersection points. This time, it is the central a-circle which
meets the curve Ue;. Its total intersection number with this curve is zero, so it sufficies
to verify Equation (7) by replacing d¢ with arcs in the central a-circle which connect
the two generators x and y, compare Figure 16. This is straightforward to verify, and
the previous proof goes through. O

Proof. [of Theorem 4.1] Proceed as in the proof of Proposition 4.6 to see that there
is a chain complex generated by Kauffman states. Lemma 4.7 verifies the identification
between the Alexander gradings coming from the Heegaard diagram with the state sum
formula.

It remains to verify that the Maslov grading for each Alexander grading maximizing
generator x corresponding to a given Kauffman state x is given by the state sum formula;
indeed, since we have already verified the corresponding statement for the Alexander
gradings, it suffices to verify the corresponding statement for the N-grading (which has
the advantage that it is independent of the placement of the z; basepoints). Proceeding
as before (as indicated in Figure 14), we isotope (3, across one of the basepoints z; at
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FiGure 16. Verifying Equation (7) in the presence of non-
singular crossings. The black dot represents x, the white represents
y. For negative crossings, rotate the diagram.

each singular crossing v to get a new circle. In fact, we can equivalently view this as an
isotopy of one of the a-circles intersecting [3,, replacing it with a new circle 7, disjoint
from (3,. Consider next a non-singular crossing v. If x(v) is of type A or C, we replace
the a-circle by a new circle v, which is a meridian for the corresponding in-coming edge.
If x(v) is of type D, we replace its corresponding (-circle by the meridian ~, for either
of the two in-coming edges. Finally if x(v) is of type B, we replace the a-circle by a
new circle v, supported locally near the crossing pictured, as shown by Figure 17.

In this manner, we obtain a new diagram (3,4, 3, w,z), equipped with a set S =
T, NTs, from which we have a map to the Kauffman states for K. Indeed, elements of
S map to the Kauffman states for the projection of another knot K which is obtained
by resolving all the crossings where z(v) = B. Let xy denote the induced Kauffman
state on K. It is easy to see that any other intersection point y of T., N Ty induces a
Kauffman state y which associates B or D to each vertex v where z(v) = B, and hence
it can be restricted to Ky. In fact, yo is equivalent to zy, and hence by Lemma 4.5
To = Yyo. From this, it follows easily that x = y. Indeed, Lemma 4.4 shows that the ~
circles divide ¥ into £+ 1 components. Since the span of the ~; is contained in the span
of the «, it follows that these two spans coincide, and that (3,~, 3, w) is a Heegaard
diagram for S3.

Now, given generator x € T, N Ty (maximizing Alexander grading among all in-
tersection points corresponding to the Kauffman state x), we have exhibited a new
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A X

FIGURE 17. A generator ©’. The black dots represent the generator
© € T,NT,. At each vertex, the v- and a-circles meet in two points,
one of which we colored black, the other white. For a positive crossing,
the black has N-grading one greater than the white generator; this can be
verified using the obvious bigon (minus disks) going from black to white.
Similarly, at a negative crossing, the N-grading of the white generator is
one greater than the N-grading of the black one.

Heegaard diagram, equipped with a corresponding Alexander grading maximizing gen-
erator X' € T, N'T,, which clearly has N-grading equal to zero. In fact, T, N T, also
has a minimal number of intersection points. Let © denote its N-maximizing generator.
If n denotes the number of negative crossings v where z(v) = B (and z is the Kauff-
man state corresponding to x), and p denotes the number of such positive crossings,
then we claim that there is an obvious ¥ € my(0',x,x’) where gr(0’) = gr(©) — n,
and u(y) = —p, cf. Figure 18. The map induced by counting holomorphic triangles
preserves gradings, in the sense that N(©') + N(x) — u(¢) = N(x'), from which it
follows now that N(x) = n —p. Comparing with Figures 8 and 9, we have verified that
N(x) = M(xz) —25(x). O

The proof of Theorem 1.1 is an immediate corollary of Theorem 4.1:

Proof. [of Theorem 1.1.] Equation (2) is an immediate consequence of Theorem 4.1
and Proposition 3.2.
Equation (1) follows by a simple comparison of the chain complexes: each generator

x for CFS corresponds infinitely many generators for Uy - ... - U;"* indexed by ¢-tuples
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A X

FIGURE 18. Triangles. We denote the generator © by a grey dot;
x' € T,NT, and x € T, NTs. The triangle on the left (corresponding to
the positive crossing) has local coefficent —1 (and indeed Maslov index
equal to —1) while the one on the right has positive local multiplicity
(and Maslov index equal to zero).

of non-negative integers (nq,...,ny). Each such generator occupies Alexander grading
A(x) — 3¢, ny, and N-grading equal to the N-grading of x. Equation (1) follows. O

According to Theorem 1.3, calculating HFS(K) for a planar knot is equivalent to
computing its Alexander polynomial. This can be efficiently done either using the state

sum formula
ATy = >, ] %@

z€K (P) veCr(P))
we have discussed in Section 3, or the skein relations

Ag+(T) = Ag(T)+ T2 - Ago(T)
Ag-(T) = Ag(T)+T72 - Ago(T),

we have used in the definition of the Alexander polynomial for singular links.

5. SOME CALCULATIONS

5.1. Planar singular links. Recall that a singular link K is called planar if it admits
an injective projection to the plane. For such links a simple Heegaard diagram of genus
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zero can be given in the following way. Fix a planar singular link K, consider an injective
projection, contract all its thick edges to singular points and take the a- and S-curves
at every crossing as it is instructed by Figure 19. Note that an a-curve corresponds to
each thick edge and the two outgoing thin edges, while a -curve corresponds to a thick
edge and two incoming thin edges. By taking these curves for all the crossings and then
deleting an (arbitrary) a- and f-curve from the collection, we get a Heegaard diagram
of a singular link.

Proposition 5.1. The resulting Heegaard diagram is compatible with the given planar
singular link K. O

We can distinguish coordinates of an intersection point x = (z1,...,2¢) € T, N Ty
according to whether x; corresponds to a thin or thick edge — in the diagram it is
reflected by the fact whether x; is near a base point of type z or of type w. Since near
a fixed w or z the a— and [F—curves intersect each other in two points, we can group our
intersection points into groups of cardinality 2¢.

5.2. An example. We will illustrate the above principle by an example. This exam-
ple also shows that the Floer homology theory HFS is not determined naively by the
Alexander polynomial of a planar singular knot.

By taking the (3,3) torus link and singularizing its natural projection we get the
singular knot K depicted by Figure 20. The planar Heegaard diagram corresponding to
this projection is shown by Figure 21. The diagram also indicates (with dashed lines)
the a- and [-curves which we delete according to the algorithm for constructing the
diagram from the projection.

The Alexander polynomial of the singular knot K given above can easily be computed
from the state sum formula, giving

Ag(T)=T*+5-T+9+5-T ' +T72

RN

FiGure 19. Heegaard diagram of a planar singular link. The
crossing on the left (obtained by contracting a thick edge) is replaced by
the piece of Heegaard diagram on the right.
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FiGure 20. Singular knot given as the singularization of the
projection of the (3,3) torus link.

Ficure 21. The planar Heegaard diagram corresponding to the
singular knot projection of Figure 20.
It follows from Theorem 1.1 that

> (—1)nk HFSy(K,s) - T° = —T7+6-T° —21-T5+21-T? — 6+ T~

s,d
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In the following we will identify the generators of the Floer chain complex CFS and
determine part of the boundary map O for this particular singular knot. In certain
Alexander gradings, this differential is trivial; indeed, we have the following:

Proposition 5.2. The rank of I-/IIT/S(K, s) for s = 2,3 is 21, for s = 0,5, it is 6, for
s =—1,6 is 0 while for s = —2,7 it is 1.

Proof. This is a straightforward calculation, explicitly identifying the generators, and
finding some boundary maps. See the proof of Proposition 5.3 for more details. O

The rank of HFS is not equal to its Euler characteristic. More precisely we show that
for the above singular link K

Proposition 5.3. The Floer homology group Iﬁ?/S*(K, 4) is nontrivial, although its
Euler characteristic is zero.

Proof. In order to prove this statement, we first list the intersection points of the tori
T, and Ty in Sym®(S?) and identify the ones which have Alexander grading 4. First of
all notice that there are four types of intersection points: the points of type A consist
of those intersection points which have coordinates near (ws, ws, wy, 21, 210); for type B
points this vector is (22, 23, 25, 27, 210), for type C points this vector is (we, w3, 21, 28, 29 ),
and finally for type D points this vector is (wy, ws, ws, 27, 29). The two possible coordi-
nates near a base point z; (or w;) will be distinguished based on the property whether it
is to the left or to the right from the edge corresponding to the base point (when using
the orientation opposite of the vertex). Near a w-type point the two choices will be
denoted by L and R, near a z-type point by [ and r. We also keep the order of listing
w’s first (with increasing indices) followed by z’s (also with increasing indices). For
example, the intersection point x; € T, N T indicated by the heavy dots in Figure 21
is represented by D(R, L, L,r,[), while the light dots y € T, N T4 in the same figure is
represented by B(l,7,1,1,1).

It is easy to see that changing L to R drops the N-grading by 1 and raises the
Alexander grading by 2, while a change of [ to r drops the N-grading by 1 and raises
the Alexander grading by 1. For example, the highest Alexander grading is attained
by the intersection point D(L, L, L, [, 1) while the lowest Alexander grading is taken by
A(R,R,R,r,T).

The above combinatorial computation shows that there are twenty intersection points
with Alexander grading 4, ten of which have (up to a suitable translation) Maslov
grading 2 and ten have Maslov grading 1.

Consider the following eleven intersection points: x; = D(R,L,L,r, 1) and xs =
B(l,7,1,1,1) (depicted in Figure 21 by the heavy and light circles), and also b; =
B(r,1,1,1,1),bg = B(l,1,7,1,1), by = B(l,1,1,7,1), bs = B(l,1,1,l,7),and ag = A(L, L, R, [, 1)
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(of Maslov grading 1); and Dy = D(L, R, L,7,1),D3 = D(L, L, R,r,l),Ds = D(L, R, L,l,r),
and D¢ = D(L,L,R,l,r) (of Maslov grading 2). (In this notation x; = D;, and
Xy = by.) There are nine nonnegative homotopy classes with n, = n, = 0 connect-
ing nine of the above eleven intersection points b; (i # 2), D; (j # 1) and a3 to the
remaining nine intersection points of Alexander grading 4. It is easy to see that the
contribution of each of these nine homotopy classes in the boundary map is equal to £1.
Next we will show that there are no more pairs of intersection points among the eleven
above with the property that a homotopy class connecting them with n, = ny = 0
exists. Clearly, this fact implies that there are no more boundary maps we should
take into account when computing HFS(K, 4), verifying that HFS(K,4) = F & F (with
F = 7Z/27), concluding our computation.

For the last claim about the nonexistence of further homotopy classes with n, =
nw = 0 we argue as follows. We find domains from x; to the other ten distinguished in-
tersection points {by, Xs, bs, by, bs, asz, Dy, D3, D5, Dg} (for example, the ones pictured
in Figure 22). Associate to each such domain D the corresponding 18-dimensional
vector (ng(D),nw(D)). (Recall that there are 12 points of type z and 6 of type
w.) This 18-dimensional vector space contains a subspace V' generated by the vectors
(n,(P), nw(P)), where P runs over all domains with boundary among the «; and f;.
Our claim amounts to showing that the original 10 vectors, together with the additional
zero vector, are distinct modulo V. To this end, consider functions Fy = wi—27 —z§ 423,
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FiGureE 22. Domains. We depict domains from x; to the other 10
distinguished generators (in order: by, x5, bs, by, bs, D5, Dg, Do, D3,
az). The generator x; is denoted by the black dots. Local multiplicities
are 0, —1 (denoted by hatchings in one direction), and +1 (hatchings in
the other direction).
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Fy = wi—25—211+20q, I3 = wy—25—25+2), Fy = wj—25—25+2y, I's = ws—25—25+25,
which can be easily shown to vanish on V. It is straightforward to verify that these five
functions take on 11 distinct values on the 11 vectors. (For the sake of completeness,
we list the vectors of our chosen domains connecting x; to the points in the obvious
basis of Z!'%, where the basis vectors are identified with the z;’s and the w;’s: for by
it iS (24 + 26 — 27 — 210), bg iS (26 — 27 — 210 + 211), b3 iS (—27 — 210 —+ 211 + 212), b4
iS (—25 — 210 —+ 211 —+ 212), b5 = —Zy — 27 + 211 -+ 212, D5 iS —R7 —+ 29 -+ w1, — Wy, DG iS
—Z7 -+ 29 —+ w1 — ws, D2 iS w1 — Wa, D3 iS w1 — w3, ag iS Z9 — 210.>

We conclude that HFS(K, 4) is generated by the two generators x; = D(R, L, L, r, 1)
and xo = B(l,r,1,1,1) depicted in Figure 21 by the heavy and light circles. Consequently
we see that -

HFS(K,4) 2FaF,

showing that the total rank of the Floer homology of HFS can exceed the absolute value
if its Euler characteristic. O

Note that a similar calculation can be performed for s = 1, showing that the corre-
sponding Floer homology group is also isomorphic to F & F.
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