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Abstract The purpose of this paper is two–fold: (1) to derive new exis-
tence results for tight contact structures on closed 3–manifolds presented
by integral surgery along knots in S3 , and (2) to introduce a new invariant
for transverse knots in contact 3–manifolds. Regarding (1), we extend our
previous existence results from surgeries along knots of genus g and maxi-
mal Thurston–Bennequin number 2g − 1 to surgeries along knots of genus
g and maximal self–linking number 2g − 1.
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1 Introduction

One of the motivating questions of 3–dimensional contact topology is to char-
acterize those (closed, oriented) 3–manifolds which admit (positive, cooriented)
tight contact structures. This question was answered recently for Seifert fibered
3–manifolds [21], but the general case is still wide open. A particular family of
3–manifolds is given by those which can be presented as surgery along a knot
in S3 . It seems reasonable to expect that the use of the invariant L̂(κ) for
Legendrian knots in S3 defined in [22] together with contact geometric con-
structions might provide a way to find tight examples on many such surgeries.
Some justification for such an expectation is provided by a result of Sahamie
[31], showing that if the Legendrian invariant L̂(κ) of a Legendrian knot κ
vanishes, then the contact Ozsváth–Szabó invariant c(ξ1(κ)) of the result of
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contact (+1)–surgery along κ is also zero. On the other hand, for a Legen-
drian knot κ in the standard contact S3 satisfying tb(κ) = 2gs(κ) − 1 > 0
(where gs(κ) denotes the smooth 4–ball genus of the knot type of κ) it was
shown in [20] that the result of contact (+1)–surgery has nonvanishing con-
tact Ozsváth–Szabó invariant, implying in particular tightness for the contact
structure. (The nonvanishing of this invariant implies tightness, while a contact
structure with vanishing invariant might be either tight or overtwisted.)

In this paper we extend this nonvanishing result to knots with other properties,
allowing contact surgeries with higher coefficients. Given a knot type K ⊂ S3 ,
let the maximal self–linking number of K be the largest self–linking number of
a transverse representative of K (with respect to the standard contact structure
ξst). Also, denote the Seifert genus of K by g(K).

Theorem 1.1 Let K ⊂ S3 be a knot type with maximal self–linking number

equal to 2g(K) − 1. Then, for r ≥ 2g(K) the 3–manifold S3
r (K) carries tight

contact structures.

Examples of knots satisfying the assumptions of the above theorem are provided
by strongly quasi-positive, fibered knots in S3 . In particular, iterated torus
knots K((p1, q1), . . . , (pk, qk)) with all pi, qi > 0 are such examples.

According to [10] the (2,3)–cable K2,3 of the (2,3) torus knot T2,3 provides an
example of a knot for which Theorem 1.1 applies while the previous result from
[20] does not: the maximal self–linking of K2,3 is equal to 7 (which is equal
to 2g(K2,3)− 1) while the maximal Thurston–Bennequin number of K2,3 is 6.
By taking the connected sum of n copies of this knot, the difference between
the maximal self–linking and the maximal Thurston–Bennequin number can be
made, in fact, arbitrarily large. Related, prime knot examples for the same
phenomenon are provided by (p, q)–cables (q > p ≥ 1) Kp,q of the (2,3) torus
knot T2,3 : according to [11] the maximal self-linking number of Kp,q (which
again coincides with 2g(Kp,q) − 1) is equal to pq + q − p, while the maximal
Thurston–Bennequin number of Kp,q is pq .

We found it convenient to organize the surgery theoretic information about
a Legendrian (and about a transverse) knot into an invariant which takes its
values in Heegaard Floer homology groups (and ultimately in the inverse limit
of some of these groups). Although the resulting surgery invariant c̃ shares
a number of properties with the Legendrian (and transverse) knot invariants
introduced in [22], we found a vanishing result for c̃ (given in Theorem 1.3)
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which is, according to a recent result of Vela-Vick [32], in sharp contrast with
the corresponding behaviour of the Legendrian invariant L̂ of [22].

In order to state our results we need some preliminary notation. Let Y be a
closed, oriented 3–manifold and K ⊂ Y a knot type. Let FK be the set of
framed isotopy classes of framed knots in the (unframed) knot type K . We will
follow the usual practice of referring to the elements of FK as to the “framings”
of K . Recall that for K null–homologous FK is an affine Z–space, and that
even if K is not null–homologous this is still true if Y is not of the form
Y ′#S1 × S2 [3, 18]. For k ∈ Z and f ∈ FK , we shall denote the result of k
acting on f by f + k . When FK is an affine Z–space, FK inherits a natural
linear order from Z: if f, g ∈ FK with f = g + k , k ∈ Z, then f ≥ g if and
only if k ≥ 0. We will denote by Yf (K) the 3–manifold resulting from surgery
on Y along K with framing f .

Given a contact 3–manifold (Y, ξ), a framed Legendrian knot in (Y, ξ) is a pair
(κ, f), where κ ⊂ (Y, ξ) is a Legendrian knot and f ∈ FK is a framing of the
topological type K of κ. A framed transverse knot in (Y, ξ) is a pair (τ, f),
where τ ⊂ (Y, ξ) is a transverse knot and f ∈ FK is a framing of the topological
type K of τ . Denote by T(Y, ξ,K, f) the set of transverse isotopy classes of
framed transverse knots (τ, f) in (Y, ξ) with τ in the topological type K . Let
Cont(Y ) be the set of isomorphism classes of contact structures on Y . Fix a
transverse knot τ ⊂ (Y, ξ) in the knot type K . By considering a Legendrian
approximation κ of τ , and by applying appropriate contact surgery along κ
(where the exact meaning of ’appropriate’ will be clarified in Subsection 3.1),
a contact structure Ĩ(ξ, τ, f) can be defined on the 3–manifold Yf (K).

Theorem 1.2 Let Y be a closed, oriented 3–manifold and K a knot type

in Y . Suppose that either K is null–homologous or Y is not of the form

Y ′#S1 × S2 . Given a contact structure ξ on Y and a framing f on K ⊂ Y ,

there is a well–defined map

T(Y, ξ,K, f) −→ Cont(Yf (K))

[(τ, f)] 7−→ Ĩ(ξ, τ, f)

In [28] Ozsváth and Szabó associated an element of the Heegaard Floer group

ĤF (−Y ) to every contact 3–manifold (Y, ξ). By fixing an identification be-
tween the diffeomorphic 3–manifolds Yf (τ) and Yf (K) we get a family of Hee-
gaard Floer elements

c̃(ξ, τ, f) := c(Ĩ(ξ, τ, f)) ∈ ĤF (−Yf (K)), f ∈ FK
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for every transverse knot τ ⊂ (Y, ξ) representing the knot type K . (In this
paper we always consider Heegaard Floer homology with Z/2Z coefficients).
The elements themselves might depend on the chosen identification of Yf (τ)
with Yf (K); their vanishing/nonvanishing properties, on the other hand, are
independent of this choice. Since in the following we will exclusively focus on
vanishing/nonvanishing questions, we shall not mention the above identification
again.

The invariant c̃ is non–trivial. In fact, in Example 3.7 we show, using the
main result of [20], that if τ is the link of an isolated curve singularity in the
standard contact 3–sphere (S3, ξst) then c̃(ξst, τ, fS + 2gs(K)) 6= 0, where fS
is the framing defined by a Seifert surface of K , and gs(K) is the slice genus
of K . In Section 3 we also show (Corollary 3.9) that if c̃(ξ, τ, f) 6= 0 then
c̃(ξ, τ, g) 6= 0 for every g ≥ f .

By using appropriate cobordisms and maps induced by them, an inverse limit
H(Y,K) of Heegaard Floer groups of results of surgeries of Y along K can be
defined, and we show that the family (c̃(ξ, τ, f))f∈FK

defines a single element
c̃(ξ, τ) in this limit (see Proposition 3.8). Notice that c̃ is defined for a trans-
verse knot τ through its Legendrian approximations, a feature similar to the
definition of the transverse invariant T̂ of [22] (resting on the corresponding
Legendrian invariant L̂). For c̃, however, we have the following vanishing re-
sult which shows, in particular, that c̃(ξ, τ) behaves quite differently from the
transverse invariant T̂ of [22].

Theorem 1.3 Let Σ be an oriented surface with boundary and φ : Σ → Σ
an orientation–preserving diffeomorphism which restricts to the identity on a

collar around ∂Σ. Let (Y, ξ(Σ,φ)) be the contact 3–manifold compatible with

the open book decomposition induced by (Σ, φ). Suppose that b1(Y ) = 0 and

c(ξ(Σ,φ)) = 0, and let τ ⊂ (Y, ξ(Σ,φ)) be a component of the boundary of Σ
viewed as the binding of the open book. Then, c̃(ξ(Σ,φ), τ) = 0.

Theorem 1.3 should be contrasted with the main result of [32], which says that
the transverse invariant T̂ of [22] is nonvanishing for a binding of an open book.
(See also [13] for the case of disconnected bindings.)

The following nonvanishing result provides the desired construction of tight
contact structures on certain surgered 3–manifolds, and will serve as the main
ingredient in the proof of Theorem 1.1.

Theorem 1.4 Suppose that the open book decomposition induced by (Σ, φ)
is compatible with the standard contact structure ξst on S3 . Let τ ⊂ S3 be a
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binding component of the open book decomposition having knot type K and

self–linking number sl(τ) = 2g(K) − 1, where g(K) is the Seifert genus of K .

Then, c̃(ξst, τ) 6= 0. In fact, if fS denotes the Seifert framing of τ , the Heegaard
Floer homology element c̃(ξst, τ, f) is nonzero for each f ≥ fS + 2g(K).

The paper is organized as follows. In Section 2 we establish the properties of
contact surgeries that we use to define the transverse invariants. In Section 3
we define the invariants, thus establishing Theorem 1.2, and we prove their
basic properties. In Section 4 we prove the vanishing Theorem 1.3 while in
Section 5 we give the proofs of the nonvanishing result given by Theorem 1.4
and ultimately we prove Theorem 1.1.

Acknowledgements: We would like to thank John Etnyre and Matt Hed-
den for stimulating discussions, and the anonymous referee for useful sugges-
tions which helped to improve the presentation. Part of this work was carried
out while the authors visited the Mathematical Sciences Research Institute,
Berkeley, as participants of the ‘Homology theories for knots and links’ special
semester. The present work is part of the authors’ activities within CAST, a
Research Network Program of the European Science Foundation. PL was par-
tially supported by PRIN 2007, MIUR. AS was partially supported by OTKA
Grant NK81203 and by the Lendület program.

2 Contact surgeries and stabilizations

In this section we establish the properties of certain contact surgeries which will
allow us to define the invariants and study their basic properties.

Let K ⊂ Y be a knot type in the closed 3–manifold Y . Let ξ be a contact
structure on Y and κ ⊂ (Y, ξ) a Legendrian knot belonging to K . Recall that,
given a non–zero rational number r ∈ Q, one can perform contact r–surgery
along κ to obtain a new contact 3–manifold (Y ′, ξ′) [4]. When r = ±1 the
contact structure ξ′ is uniquely determined, therefore in this case we can safely
use the notation ξ±1(κ) for ξ′ . In general, there are several possible choices for
ξ′ . According to [4, Proposition 7], for p

q
> 1 every contact p

q
–surgery on κ is

equivalent to a contact (+1)–surgery on κ followed by a contact p
q−p

–surgery
on a Legendrian pushoff copy of κ. Moreover, by [4, Proposition 3] (see [5] as
well) every contact r–surgery along κ ⊂ (Y, ξ) with r < 0 is equivalent to a
Legendrian (i.e. (−1)–) surgery along a Legendrian link L = ∪mi=0Li belonging
to a set determined via a simple algorithm by the Legendrian knot κ and the
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contact surgery coefficient r . The algorithm to obtain the set of L’s is the
following. Let

[a0, . . . , am] := a0 −
1

a1 −
1

. . . −
1

am

, a0, . . . am ≥ 2,

be the continued fraction expansion of 1 − r . To obtain L0 , stabilize a0 − 2
times a Legendrian push–off of κ in every possible way. Then, stabilize a1 − 2
times a Legendrian push–off of L0 in every possible way. Repeat the above
scheme for each of the remaining pivots of the continued fraction expansion.

We are interested in contact n–surgeries, where n is a positive integer. In this
case, since

1−
n

1− n
=

2n− 1

n− 1
= [3,

n−2︷ ︸︸ ︷
2, . . . , 2],

there are only two choices for the stabilizations of κ, because the choice of the
first one determines all the others. An orientation of κ allows one to specify
unambiguously such a choice, because it specifies the negative stabilization κ−
and the positive stabilization κ+ of κ. In a standard neighborhood R/Z×R2 of
κ with coordinates (θ, x, y) the contact structure is given by ξ = ker(dx+ydθ),
and the (θ, x)–projections of κ, κ− and κ+ are illustrated in Figure 1. From

x

κ

θ

x
κ−

θ

θ

x κ+

Figure 1: Negative and positive Legendrian stabilizations

now on we shall assume that every Legendrian knot κ is oriented.

Definition 2.1 We denote by ξ−n (κ) (respectively ξ+n (κ)) the contact struc-
ture corresponding to the choice of the negative stabilization κ− (respectively
the positive stabilization κ+ ) of the oriented Legendrian knot κ (see Figure 1).

Observe that κ+ and κ− inherit an orientation from κ in a natural way. We
shall always assume that κ+ and κ− are given the orientation induced by κ.
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Lemma 2.2 Let κ ⊂ (Y, ξ) be an oriented Legendrian knot. Then, for each

n > 0 we have

ξ+n (κ) = ξ−n (−κ).

Proof The statement follows from the definition of contact surgery together
with the easily checked fact that (−κ)− = −(κ+) for every oriented Legendrian
knot κ.

We want to study the contact structure ξ−n (κ) when κ is a stabilization. The
following lemma was proved in greater generality in [23] using the main result
of [17]. Here we give a simple and constructive proof.

Lemma 2.3 Let κ ⊂ (Y, ξ) be an oriented Legendrian knot. Then, ξ−n (κ+) is

an overtwisted contact structure for each n > 0.

Proof Ozbagci [23, Proposition 13] shows that for r > 0 any contact r–surgery
on a positive stabilization in which the Legendrian pushoffs are all negative
stabilizations is overtwisted, by constructing a non–right veering compatible
open book and appealing to the results of [17].

On the other hand, the lemma can be easily checked directly as follows. The
left–hand side of Figure 2 illustrates the contact surgery yielding ξ−n (κ+) in a
standard neighborhood of κ. The right–hand side of the picture shows how

+1 κ+

−1

−1

κ

+1
−1

−1

κ+

κ̃

Figure 2: The overtwisted disk in ξ−n (κ+). Notice that the knots labeled by
κ on the left and κ̃ on the right are not necessarily isotopic in the surgered
manifold. Nevertheless, κ+ and κ̃ provide the shaded annulus, which then
caps off to an overtwisted disk with boundary equal to κ̃.

the n− 1 push–offs of (κ+)− can be Legendrian isotoped until one can see the
shaded overtwisted disk.

The following proposition gives the key property of ξ−n (κ) which yields trans-
verse invariants.
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Proposition 2.4 Let κ− denote the negative Legendrian stabilization of the

oriented Legendrian knot κ ⊂ (Y, ξ). Then, for each n > 0 the contact struc-

tures ξ−n+1(κ−) and ξ−n (κ) are isomorphic.

Before proving the proposition we recall the lantern relation. Let A be a surface
with boundary homeomorphic to a twice punctured annulus. If we denote
by δi the positive Dehn twist along a curve parallel to the i–th boundary
component of A, and by δij the positive Dehn twist along a curve encircling the
boundary components i and j , the lantern relation reads δ1δ2δ3δ4 = δ12δ13δ23 .
In the proof of Proposition 2.4 we are going to use the equivalent relation
δ−1
12 δ1δ2δ3 = δ13δ23δ

−1
4 . Figure 3 provides a graphical representation of this

relation. In fact, whenever the twice punctured annulus embeds into a surface,
the Dehn twists corresponding to the images of the curves on the diagram satisfy
the lantern relation.

1 1

2 2

3 3

4 4

+
+ +

−

+
+

−

Figure 3: The relation δ−1
12 δ1δ2δ3 = δ13δ23δ

−1
4 . Signs on the curves indicate

whether right-handed (+) and left-handed (−) Dehn twists are to be performed.

Proof of Proposition 2.4 Consider an open book for ξ with a page which
contains κ and such that the page framing induced on κ is equal to the contact
framing of κ. After two Giroux stabilizations we can accomodate κ, κ− and
(κ−)− on the same page of the resulting open book, still with equal page and
contact framings (see eg [7]). After performing a negative Dehn twist along κ−
and positive Dehn twists along n parallel copies of (κ−)− we obtain an open
book for ξ−n+1(κ−), as illustrated in Figure 4a. In Figure 4b we see what happens
to the open book for ξ−n+1(κ−) when we apply the relation of Figure 3 inside
the twice punctured annulus visible in the picture. The dashed arc of Figure 4b
shows that the open book can be Giroux destabilized, yielding Figure 4c, which
is an open book for ξ−n (κ).
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 n

κ

κ−

(κ−)−

+ +

+

+ −
}

(a) Open book for ξ−n+1(κ−)

  

+

+

+

+
n− 1

−

}

(b) Open book for ξ−n+1(κ−) after applying the relation

 

+

+

+

n− 1

− κ

κ− }

(c) Open book for ξ−n (κ)

Figure 4: Isomorphism between ξ−n+1(κ−) and ξ−n (κ)

The following corollary can be viewed as a generalization of [8, Theorem 1].

Corollary 2.5 Let κ1, κ2 ⊂ (Y, ξ) be two Legendrian knots. If after negatively

stabilizing the same number of times κ1 and κ2 become Legendrian isotopic,

then ξ−n (κ1) is isomorphic to ξ−n (κ2) for each n > 0.
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Proof Suppose that κ′1 and κ′2 are Legendrian isotopic Legendrian knots ob-
tained by negatively stabilizing κ1 and κ2 m times. Then, for each n > 0, the
contact structure ξ−n+m(κ′1) is isotopic to ξ−n+m(κ′2). Applying Proposition 2.4
m times we conclude that ξ−n+m(κ′1) is isomorphic to ξ−n (κ1) and ξ−n+m(κ′2) is
isomorphic to ξ−n (κ2). Therefore ξ−n (κ1) and ξ−n (κ2) are isomorphic for each
n > 0.

Lemma 2.3 and Proposition 2.4 admit slight refinements and alternative proofs,
which potentially apply to more general situations (see Remark 2.7 below). We
provide the alternative proofs in the following proposition, which is not used in
the rest of the paper.

Proposition 2.6 Let κ− , respectively κ+ , denote the negative, respectively

positive, Legendrian stabilization of the oriented Legendrian knot κ ⊂ (Y, ξ).
Then, for each n > 0 we have:

(1) ξ−n+1(κ−) is isotopic to ξ−n (κ);

(2) ξ−n (κ+) is overtwisted.

Proof This simple proposition can be deduced using the foundational results of
Ko Honda from [16]. We refer the reader to [16] for the necessary background
in what follows. Let us quickly go over the details of the contact surgery
construction. The contact framing together with the orientation on κ determine
an oriented basis µ, λ of the first integral homology group of the boundary of
a standard neighborhood ν(κ) of κ. The basis determines identifications

∂(ν(κ)) ∼= R2/Z2, −∂(S3 \ ν(κ)) ∼= R2/Z2.

The surgery is determined by a gluing prescribed, with repect to the above
identifications, by the matrix

A =

(
n −1
1 0

)
.

The pull–back of the dividing set is determined by

A−1

(
0
1

)
=

(
1
n

)
,

so it has slope n on ∂(ν(κ)). Applying a diffeomorphism of the solid torus
ν(κ) this slope can be changed to n/(1 + nh) for any h ∈ Z. Therefore we can
normalized it to lie between −1 and −∞, obtaining slope −n/(n− 1). By [16]
there are exactly two choices of tight contact structures on the solid torus with
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this boundary slope, corresponding to the two possibile choices (positive or
negative) of a basic slice with boundary slopes −1 and −n/(n − 1). With our
conventions, choosing the negative basic slice gives rise to the contact structure
ξ−n . The knots κ+ and κ− can both be realized inside the neighborhood ν(κ). If
ν(κ±) ⊂ ν(κ) is a standard neighborhood of κ± , the (closure of the) difference
ν(κ) \ ν(κ±) is a basic slice, which is positive for κ+ and negative for κ− [16].
Moreover, its boundary slopes with respect to the basis µ, λ are −1 on ∂ν(κ±)
and ∞ on ∂ν(κ).

For each n ≥ 0, we can perform contact (n + 1)–surgery along κ± viewed as
a Legendrian knot inside ν(κ), obtaining another contact solid torus T with
convex boundary in standard form. H1(∂ν(κ−);Z) has a basis µ′ , λ′ such that,
with the obvious identifications, µ′ = µ and λ′ = λ−µ. Thus, since λ = µ′+λ′ ,
the identity (

n+ 1 −1
1 0

)−1(
0 1
1 1

)
=

(
1 1

n+ 1 n

)

implies that, up to applying a diffeomorphism of T, the slopes of ∂ν(κ) and
∂ν(κ±) can be assumed to be, respectively, −n/(n− 1) and −(n+ 1)/n. This
shows that T can be decomposed as

T = N ∪B,

where N is standard neighborhood of a Legendrian curve with slope −1, and
B ∼= T 2 × [0, 1] has boundary slopes −1 and −n/(n − 1) and can be written
as a union of two basic slices B = B1 ∪ B2 , where B1 has boundary slopes
(−1,−(n+1)/n) and B2 = ν(κ)\ν(κ±), with the boundary slopes given above.
Since B2 is a basic slice, B is a basic slice (i.e. it is tight) if and only if B1

and B2 have the same sign as basic classes [16]. By definition, ξ−n+1(κ±) is the
contact structure obtained by taking B1 to be a negative basic slice. Since B2

is positive for κ+ and negative for κ− , the analysis above proves simultaneously
(1) and (2) of the statement.

Remark 2.7 While the proof of Proposition 2.4 only holds, as written, for
closed contact 3–manifolds, both the statement and the proof of Proposition 2.6
can stay the same even if (Y, ξ) is open or has non–empty boundary. This allows
one, at least in principle, to apply the approach of this paper in situations which
are more general than the ones considered here. We hope to return to this issue
in a future paper.

Remark 2.8 Let ξ+n (κ) be the contact structure corresponding to the choice of
the positive stabilization κ+ of κ. Then, an argument analogous to that of the
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proof of Proposition 2.6 shows that ξ+n+1(κ+) is isotopic to ξ+n (κ) and ξ+n+1(κ−)
is overtwisted. Of course, this also follows from the fact that (−κ)− = −κ+
and Proposition 2.6. In fact,

ξ+n+1(κ+) = ξ−n+1(−κ+) = ξ−n+1((−κ)−) = ξ−n (−κ) = ξ+n (κ)

and
ξ+n+1(κ−) = ξ−n+1(−κ−) = ξ−n+1(κ+)

3 The invariants: definition and basic properties

In this section we define the invariants, we prove some of their properties and
present some examples.

3.1 Definition of the geometric invariant I(ξ, κ, f)

Let K be the knot type of a Legendrian knot κ ⊂ (Y, ξ), and let t := tb(κ) ∈ FK

be the Thurston–Bennequin invariant of κ, i.e. the contact framing of κ. Sup-
pose that either K is null–homologous or Y has no S1×S2–summand. For each
positive integer n, the contact structure ξ−n (κ) lives on the closed 3–manifold
Yt+n(K) obtained by performing topological surgery along K corresponding to
the framing t+ n.

Let (κ, f) be a framed, oriented Legendrian knot in the contact 3–manifold
(Y, ξ), and let κ′ ⊂ (Y, ξ) be a Legendrian knot obtained by negatively stabiliz-
ing κ sufficientely many times, so that tb(κ′) < f . In view of Proposition 2.4,
the isomorphism class of the contact structure ξ−

f−tb(κ′)(κ
′) on Yf (K) does not

depend on the choice of κ′ as long as tb(κ′) < f , therefore we can introduce
the following:

Definition 3.1 Assume that either the knot type K is null–homologous or Y
is not of the form Y ′#S1×S2 . Let (κ, f) be a framed, oriented Legendrian knot
in the contact 3–manifold (Y, ξ) such that κ has topological type K . Define
I(ξ, κ, f) to be the isomorphism class of the contact structure ξ−

f−tb(k′)(κ
′) on

Yf (K), where κ′ ⊂ (Y, ξ) is any negative stabilization of κ such that tb(κ′) < f .

Proposition 3.2 Assume that either K is null–homologous or Y is not of

the form Y ′#S1×S2 . Let (κ, f) be a framed, oriented Legendrian knot in the

contact 3–manifold (Y, ξ) such that κ has topological type K . Then, I(ξ, κ, f)
is overtwisted for each f ≤ tb(κ).
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Proof By definition, I(ξ, κ, f) is the isomorphism class of the contact struc-
ture ξ−

f−tb(κ′)(κ
′), where κ′ is any negative stabilization of κ such that tb(κ′) <

f . If f ≤ tb(κ) we can choose κ′ so that tb(κ′) = f − 1. We have κ′ = κ′′− for
some oriented Legendrian knot κ′′ . Then,

ξ−
f−tb(κ′)(κ

′) = ξ1(κ
′′
−) = ξ1(−(−κ

′′)+)

is overtwisted by Lemma 2.3.

Recall that transverse knots admit a preferred orientation and can be approxi-
mated, uniquely up to negative stabilization, by oriented Legendrian knots [6,
9]. Fix a transverse knot τ ⊂ (Y, ξ), and let κ be a Legendrian approximation
of τ . Then, by [6, 9], up to negative stabilizations the Legendrian knot κ only
depends on the transverse isotopy class of τ .

It follows immediately from Proposition 2.4 that if κ′ ⊂ (Y, ξ) is a negative
stabilization of the oriented Legendrian knot κ ⊂ (Y, ξ), then for each framing f
we have I(ξ, κ′, f) = I(ξ, κ, f). This observation allows us to give the following:

Definition 3.3 Assume that either K is null–homologous or Y is not of the
form Y ′#S1 × S2 . Let (τ, f) be a framed transverse knot in the contact
3–manifold (Y, ξ) such that τ has topological type K . Define Ĩ(ξ, τ, f) :=
I(ξ, κ, f), where κ is any Legendrian approximation of τ .

Proof of Theorem 1.2 Since the choice of κ is unique up to negative stabi-
lization, the repeated application of Proposition 2.4 verifies the result.

3.2 Heegaard Floer invariants

We now apply the Heegaard Floer contact invariant defined by Ozsváth and
Szabó [28].

Definition 3.4 Let Y be a closed, oriented 3–manifold, K ⊂ Y a knot type
and f ∈ FK . Assume that either K is null–homologous or Y is not of the form
Y ′#S1 × S2 . Given an oriented Legendrian knot κ ⊂ (Y, ξ), define

c(ξ, κ, f) := c(I(ξ, κ, f)) ∈ ĤF (−Yf (K)),

and given a transverse oriented knot τ ⊂ (Y, ξ), define

c̃(ξ, τ, f) := c(Ĩ(ξ, τ, f)) ∈ ĤF (−Yf (K)).
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Remarks 3.5 • It follows immediately from the definition, Lemma 2.3
and Proposition 2.4 that, for each f ∈ FK , c(ξ, κ−, f) = c(ξ, κ, f) and
c(ξ, κ+, f) = 0.

• It follows from Proposition 3.2 that c(ξ, κ, f) = 0 for each f ≤ tb(κ).

• If the complement of a Legendrian knot κ in (Y, ξ) is overtwisted or has
positive Giroux torsion, the same holds for ξ−n (κ

′) for some stabilization
κ′ of κ. Therefore, it follows from the results of [15, 28] that c(ξ, κ, f) = 0
for each f ∈ FK .

The following examples show that the invariant c(ξ, κ, f) is non–trivial.

Example 3.6 Consider the Legendrian unknot κ ⊂ (S3, ξst) with Thurston–
Bennequin number −1. (In this case κ = −κ, so we do not need to specify the
orientation). Since the result of contact (+1)–surgery is equal to the unique
Stein fillable contact structure on S1 × S2 , we get that c(ξst, κ, tb(κ) + 1) 6= 0
(cf. [19, Lemma 5]).

Example 3.7 Let κ ⊂ (S3, ξst) be an oriented Legendrian knot with knot
type K such that

tb(κ) = fS + 2gs(K)− 1 > 0, (3.1)

where fS is the framing defined by a Seifert surface of K , and gs(K) is the
slice genus of K . Then, by [20, Proof of Theorem 1.1] c(ξst, κ, tb(κ) + 1) 6= 0.
As remarked in [20], the knot types containing Legendrian knots which satisfy
Condition (3.1) include all non–trivial algebraic knots, i.e. non–trivial knots
which are links of isolated curve singularities, as well as negative twist knots.

3.3 The inverse limit construction

The invariants c̃(ξ, τ, f) can be conveniently organized as a single element in
the inverse limit of certain Heegaard Floer homology groups. In the rest of this
section we spell out the details of this construction.

Let Y be a closed, oriented 3–manifold and K a knot type in Y . To each
framing f ∈ FK one can naturally associate a triangle of 3–manifolds and
cobordisms (cf. [20, pp. 933–935]). Let Yf−1(K) be the 3–manifold resulting
from surgery along K with framing f − 1. The first manifold in the triangle is
Y , the second is Yf−1(K) and the third one is Yf (K). A cobordism Wf from
Yf−1(K) to Yf (K) can be given by considering a normal circle N to K in Y ,
equip if with framing fS − 1, and after the surgery on K with framing f − 1
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has been performed, attach a 4–dimensional 2–handle along N with the chosen
framing. Simple Kirby calculus shows that Wf is indeed a cobordism between
Yf−1(K) and Yf (K).

When viewed upside down, Wf induces a map

F̂W f
: ĤF (−Yf (K))→ ĤF (−Yf−1(K)).

Given framings f ≥ g , define ϕg,f to be the identity on ĤF (−Yf (K)) if f = g ,
and the composition

ĤF (−Yf (K))
F
Wf
−−−→ ĤF (−Yf−1(K)) −→ · · ·

F
Wg+1
−−−−→ ĤF (−Yg(K))

if f > g . Then, it is easy to check that the set
{(

ĤF (−Yf (K)), ϕg,f

)}

is an inverse system of Z/2Z–vector spaces and linear maps over the set FK ,
so we can form the inverse limit Z/2Z–vector space

H(Y,K) := lim
←−

ĤF (−Yf (K)),

which is the subspace

{(xf ) ∈
∏

f∈FK

ĤF (−Yf (K)) | xg = ϕg,f (xf ) for g ≤ f } ⊂
∏

f∈FK

ĤF (−Yf (K)).

We define c̃(ξ, τ) as the vector
(
c(Ĩ(ξ, τ, f))

)
f∈FK

, which is, a priori an element

of
∏

f∈FK
ĤF (−Yf (K)).

Proposition 3.8 The invariant c̃(ξ, τ) is in H(Y,K).

Proof Choose f ∈ FK and a negative stabilization κ′ of κ, with tb(κ′) <
f−1. By [4], performing contact (+1)–surgery on an extra push–off copy of κ′−
in the contact surgery presentation for ξ−

f−tb(κ′)(κ
′) gives ξ−

f−1−tb(κ′)(κ
′). The

corresponding 2–handle attachment gives an oriented 4–dimensional cobordism
from Yf (K) to Yf−1(K), and it is easy to check that reversing the orientation of
that cobordism gives exactly the oriented cobordism W f . By [28, Theorem 2.3]
(see also [20, Theorem 2.2]), we have

F̂W f
(c(ξ−

f−tb(κ′)(κ
′))) = c(ξ−

f−1−tb(κ′)(κ
′)),

i.e.
ϕf−1,f (c(I(ξ, κ, f))) = c(I(ξ, κ, f − 1)).
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Since this holds for each f ∈ FK , and for g ≤ f we have

ϕg,f = ϕg+1,g ◦ · · · ◦ ϕf−1,f ,

the statement is proved.

Proposition 3.8 immediately gives the following:

Corollary 3.9 If c(ξ, κ, g) 6= 0 then c(ξ, κ, f) 6= 0 for every f ≥ g .

4 Proof of Theorem 1.3

Let Σ be an oriented surface-with-boundary and φ : Σ → Σ an orientation–
preserving diffeomorphism which restricts to the identity on a collar around
∂Σ. Let (Y, ξ(Σ,φ)) be a contact 3–manifold compatible with the open book
decomposition induced by (Σ, φ). Let τ ⊂ (Y, ξ(Σ,φ)) be a component of the
boundary of Σ viewed as the binding of the open book and let fΣ be the framing
induced on τ by Σ.

Proposition 4.1 There exists a Legendrian approximation κ ⊂ (Y, ξ) to τ
such that tb(κ) = fΣ − 1 and, for each n > 0, the contact structure ξ−n (κ) ad-

mits a compatible open book with a binding component τ ′ having the following

properties:

• Capping–off τ ′ gives back the open book (Σ, φ);

• Let Z be the cobordism corresponding to capping–off τ ′ , and let Xκ,n

be the topological cobordism obtained by attaching a 4–dimensional 2–

handle along κ with framing tb(κ) + n. Then, Z = −Xκ,n , i.e. Z is

obtained from Xκ,n by viewing it upside–down and reversing its orienta-

tion.

Proof As shown in [32, Lemma 3.1], any open book decomposition can be
Giroux stabilized so that the page of the new open book (Σ′, φ′) contains a
Legendrian approximation κ of τ as a curve sitting on a page Σ′ and parallel
to (a component of) ∂Σ′ , with tb(κ) = fΣ′ = fΣ − 1. This is illustrated in
Figure 5a–b. As shown in Figure 5b–c, after a further Giroux stabilization both
κ and its negative stabilization κ− can be Legendrian realized on the page of an
open book (Σ′′, φ′′). The knot κ− is parallel on Σ′′ to a boundary component
which coincides with τ , as indicated in Figure 5c. Performing contact (+n)–
surgery along κ is equivalent to a contact (+1)–surgery along κ plus contact
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Σ′′

τ τ

τ

+

+ +

κ

κ

κ−

(a) (b)

(c)

Figure 5: Legendrian approximation of the binding. Once again, the signs ±
on the curves indicate whether right– or left–handed Dehn twists are to be
performed on the given curve.

(−1)–surgeries along n − 1 parallel copies of κ− . Therefore, the resulting
contact structure is supported by the open book obtained by composing φ′′

with a negative Dehn twist along the curve corresponding to κ, as well as
positive Dehn twists along n − 1 parallel copies of the curve corresponding to
κ− . This is illustrated in Figure 6a. As shown in Figure 6a–b, capping–off

 

}+

+
+ +

+

−

τ ′ n-1

Σ′

Σ′′

(a)

(b)

Figure 6: Contact n–surgery and capping–off.

the binding component denoted τ ′ in the picture yields the open book (Σ′, φ′).
(Notice the cancellation of the left–handed Dehn twist of Figure 6a after the
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capping–off.) This proves the first part of the statement.

In order to control what happens at the level of 4–dimensional 2–handles, we
represent the surgeries inside a standard Legendrian neighborhood of κ, as
illustrated in Figure 7a. The framing coefficients appearing in the picture

 

 

}n− 1

}n− 1

τ ′

τ ′

−2

−2
+1

0

−1

−1
+2

(a)

(b)

−1

Figure 7: Contact (+n)–surgery along κ in a standard neighborhood.

have the following significance. Observe that each curve isotopic to the core of
the solid torus has a canonical framing coming from the identification of the
solid torus with S1 ×D2 . We have chosen the identification of a neighborhood
of κ with S1 × D2 so that the canonical framing of the core corresponds to
the contact framing of κ. With this convention, the framing induced by Σ′′ on
τ ′ would be denoted by “ − 1” in Figure 7a. Figure 7b describes the surgery
when we change the solid torus identification by a “right–handed twist”. Then,
the cobordism Z corresponding to capping–off τ ′ is obtained by attaching a
4–dimensional 2–handle along τ ′ with framing 0, as shown in Figure 7b. After
sliding τ ′ over one of the (−1)–framed circles in Figure 7b, and then repeatedly
the (−1)–framed circles over each other, and finally blowing up the last two
curves, we arrive at Figure 8a. A handle slide, followed by a blow–down gives
Figure 8b, and further blow–downs give Figure 8c. Applying a “left–handed
twist” to the solid torus neighborhood (which just undoes the “right–handed
twist” we applied earlier) gives Figure 8d. This shows that Z can be viewed
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τ ′−2

−2
−2

−2

−2
−1

−1

−1

+1

+1

0 0

n n+ 1

(a) (b)

(c)(d)

Figure 8: Kirby moves in a standard neighborhood. In 8a there are n−2 small
(−2)–framed circles and a further long (−2)–framed circle. In 8b we have n−2
(−2)–framed circles.

as the cobordism obtained by attaching a 2–handle along a meridian to the
original curve κ, with framing 0 with respect to the meridian disk. The picture
shows that Z coincides precisely with −Xκ,n , where Xκ,n is the cobordism
obtained by attaching a 2–handle along κ with framing +n with respect to the
contact framing, the minus sign denotes orientation–reversal and the overline
bar means viewing the cobordism “up–side down”.

Proof of Theorem 1.3 By Baldwin’s theorem [2, Theorem 1.2], for each pos-
itive integer n there is a Spinc structure s0 on the cobordism Z such that

FZ,s0
(c(ξ)) = c(ξ−n (κ)).

This equation then clearly shows that if c(ξ) = 0 then c̃(ξ, τ, f) = 0 for each
f ≥ fΣ , verifying that the element c̃(ξ, τ) ∈ H(Y,K) has only vanishing com-
ponents, hence c̃(ξ, τ) = 0.
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5 Proofs of Theorem 1.1 and Theorem 1.4

Let Y be a closed, oriented rational homology 3–sphere, and let ξ be a contact
structure on Y . Let κ ⊂ (Y, ξ) be an oriented Legendrian knot. Suppose that
κ = ∂Σ, where Σ ⊂ Y is an embedded oriented surface.

Let X be the oriented 4–dimensional cobordism obtained by attaching a 4–
dimensional 2–handle H to Y along κ. Let [Σ ∪ D] ∈ H2(X;Z) denote the
homology class supported by the union of Σ and the core D of H .

Lemma 5.1 If s1 and s2 are Spinc structures on Xκ,n having the same re-

striction to Y and satisfying

〈c1(s1), [Σ ∪D]〉 = 〈c1(s2), [Σ ∪D]〉,

then s1 = s2 .

Proof The set of Spinc structures on X which restrict to Y as a fixed Spinc

structure is an affine space on H2(X,Y ) (with integral coefficients). Since Y
is a rational homology sphere and X is obtained up to homotopy by attaching
a 2–disk to Y , by excision we have H2(X,Y ) ∼= Z and H2(X,Y ) ∼= Z. The
exact homology sequence of the pair (X,Y ) shows that the map i∗ : H2(X)→
H2(X,Y ) is injective, and therefore H2(X) ∼= Z, with generator [Σ ∪D]. The
exact cohomology sequence shows that the restriction map i∗ : H2(X,Y ) →
H2(X) is injective, and the free part of H2(X) has rank 1. The evaluation
map

H2(X)→ Hom(H2(X);Z) ∼= Z, β 7→ 〈β, [Σ ∪D]〉

is surjective. Therefore, the composition of i∗ with the evaluation map is injec-
tive. If s1 , s2 are two Spinc structures on X with coinciding restriction to Y ,
then s1− s2 = α, where α belongs to the image of i∗ , and c1(s1)− c(s2) = 2α.
Therefore, if the evaluation map takes the same value on c1(s1) and c2(s2), it
follows that α = 0, hence s1 = s2 .

Let tb denote the Thurston–Bennequin number of κ with respect to Σ, and let
rot be the rotation number of κ with respect to Σ. Fix n > 0, and let Xκ,n be
the oriented 4–dimensional cobordism obtained by attaching a 4–dimensional
2–handle to Y along κ with framing tb+n.

Proposition 5.2 There exists a Spinc structure s on Xκ,n such that:

(1) s extends the Spinc structures induced on ∂Xκ,n by ξst and ξ−n (κ);
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(2) 1
4(c1(s)

2 − 3σ(Xκ,n)− 2χ(Xκ,n)) + 1 = d3(ξ
−
n (κ)) − d3(ξst);

(3) 〈c1(s), [Σ ∪D]〉 = rot+ n− 1.

Proof We can view Figure 7a (ignoring the knot τ ) as S3 union n 4–dimensional
2–handles. The sequence of Figures 8a, 8b and 8c shows that in fact Figure 7a

represents X̂κ,n := Xκ,n#(n− 1)CP
2
. By e.g. [5, Section 3], X̂κ,n#CP2 carries

an almost complex structure J inducing 2–plane fields homotopic to ξst and
ξ−n (κ) on its boundary. We define sJ to be the associated Spinc structure, and
s := sJ |Xκ,n . By construction, s extends the Spinc structures induced on ∂Xκ,n

by ξst and ξ−n (κ). This proves Part (1) of the statement. By [5] we have

1

4
(c1(sJ |X̂κ,n

)2 − 3σ(X̂κ,n)− 2χ(X̂κ,n)) + 1 = d3(ξ
−
n (κ)) − d3(ξst). (5.1)

Figure 7b gives a natural basis (β, x1, . . . , xn−1) of H2(Xκ,n;Z) satisfying β ·
x1 = 1 and xi ·xi+1 = 1 for i = 1, . . . , n−2. By construction and [5], the values
of c1(sJ ) on this basis are given by 〈c1(sJ ), β〉 =rot, 〈c1(sJ), xi〉 = rot−1,
i = 1, . . . , n− 1. We want to express the generator [Σ∪D] of H2(Xκ,n;Z) ∼= Z

in terms of β and x1, . . . , xn−1 . In Figure 8b, the classes represented by the
framed circles (except the −1–framed one corresponding to τ ) give us the new
basis (β, β −x1, x1− x2, . . . , xn−2− xn−1). If we define the classes e1, . . . , en−1

by setting

e1 := β − x1, ei+1 − ei := xi − xi+1, i = 1, . . . , n− 2,

it is easy to check that

[Σ ∪D] = β + e1 + . . . , en−1

and 〈c1(sJ), ei〉 = 1 for i = 1, . . . , n− 1. Thus,

〈c1(s), [Σ ∪D]〉 = 〈c1(sJ),Σ ∪D]〉 = rot + n− 1.

This proves Part (3) of the statement. Finally, the values 〈c1(sJ), ei〉 = 1 imply
that

c1(sJ |X̂κ,n
)2 − 3σ(X̂κ,n)− 2χ(X̂κ,n) = c1(s)

2 − 3σ(Xκ,n)− 2χ(Xκ,n).

Thus, Equation (5.1) implies Part (2) of the statement.

Proof of Theorem 1.4 Let Z be the cobordism of Proposition 4.1 corre-
sponding to an integer n. By [2, Theorem 1.2], there is a Spinc structure s0
on the cobordism Z such that

FZ,s0
(c(ξst)) = c(ξ−n (κ)), (5.2)
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where κ is the Legendrian approximation of τ described in Proposition 4.1.
Since c(ξst) 6= 0, we will prove that c̃(ξst, τ, fS + 2g(K)) 6= 0 by showing that
for an appropriate choice of n the map FZ,s0

is injective.

By Proposition 4.1, the cobordism Z is exactly the cobordism induced by −p–
surgery along the mirror image knot K , where p = tb(κ) + n. Now we choose
n so that p = 2g(K). Then, the assumption sl(τ) = tb(κ)− rot(κ) = 2g(K)−1
implies

rot(κ) + n− 1 = tb(κ)− 2g(K) + 1 + 2g(K) − tb(κ)− 1 = 0.

Therefore, the Spinc structure s of Proposition 5.2 satisfies c1(s) = 0.

By Equation (5.2) and the identification Z = −Xκ,n , the Spinc structure s0
satisfies

1

4
(c1(s0)

2 − 3σ(−Xκ,n)− 2χ(−Xκ,n)) = −d3(ξ
−
n (κ)) + d3(ξst) (5.3)

Since σ(−Xκ,n) = −σ(Xκ,n), Equation (5.3) together with Proposition 5.2(2)
imply c1(s0)

2 = −c1(s)
2 = 0, therefore c1(s0) = 0.

Let t0 denote the restriction of s0 to S3
−2g(K)(K). By [27, Theorem 9.19 and

Remark 9.20], there is a surjective map

Q : Spinc(S3
0(K))→ Spinc(S3

−2g(K)(K))

and an exact triangle

ĤF (S3) ĤF (S3
−2g(K)(K), t0)

ĤF (S3
0(K), [t0])

F

(5.4)

where

ĤF (S3
0(K), [t0]) := ⊕t∈Q−1(t0)ĤF (S3

0(K), t).

We claim that for each t ∈ Q−1(t0) ⊂ Spinc(S3
0(K)) we have

|〈c1(t), h〉| ≥ 2g(K),

where h is a homology class generating H2(S
3
0(K);Z). In fact, since s0 extends

t0 , by [25, Lemma 7.10],

0 = 〈c1(s0), [Σ ∪D]〉 ≡ −2g(K) + 〈c1(t), h〉 mod 4g(K),

which immediately implies the claim.
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Notice that h can be represented by a genus-g(K) surface (by adding the core of
the 2–handle to a Seifert surface of K ), therefore the adjunction formula of [27,

Theorem 7.1] implies ĤF (S3
0(K), [t0]) = {0}. This shows that the horizontal

map F of (5.4), is an isomorphism. Since c(ξst) generates ĤF (S3), we have
F (c(ξst)) 6= 0. In view of Equation (5.2), to prove that c̃(ξst, τ, fS+2g(K)) 6= 0
it suffices to show that F = FZ,s0

. From the general theory we know that

F =
∑

{s∈Spinc(Z) | s|
S3
−2g(K)

(K)
=t0}

FZ,s.

Since F is an isomorphism on ĤF (S3) = Z/2Z, all the Spinc structures con-
tributing nontrivially the sum have the same degree shift. Moreover, if s denotes
the Spinc structure conjugate to s, by [29, Theorem 3.6] we have

FZ,s(c(ξst)) = JFZ,s(c(ξst)),

where J is the identification between ĤF (Y, s) and ĤF (Y, s) defined in [26].
Since J preserves the absolute grading, this implies that each Spinc structure
s with s 6= s contributes trivially to F (c(ξst)). Finally, from c1(s0) = 0 we
know that s0 = s0 , therefore by Lemma 5.1 s0 is the only Spin structure
on Z which extends t0 . This implies F = FZ,s0

and proves c̃(ξst, τ, fS +
2g(K)) 6= 0. Applying Corollary 3.9 it follows that c̃(ξst, τ, f) 6= 0 for each
f ≥ fS + 2g(K).

Proof of Theorem 1.1 Let τ be a transverse knot in the knot type K with
sl(τ) = 2g(K) − 1. According to [1, Lemma 6.5] there is an open book de-
composition of S3 compatible with ξst having one binding component equal to
τ . Applying Theorem 1.4 the result follows for each integer surgery coefficient
n ≥ 2g(K). In particular, Theorem 1.4 gives a contact structure on S3

2g(K)(K)
with nonvanishing contact invariant. By the algorithm for contact surgeries de-
scribed in Section 2, for r ∈ Q with r ≥ 2g(K) a contact structure can be given
by performing an appropriate sequence of Legendrian surgeries on the contact
structure previously constructed on S3

2g(K)(K). Since under Legendrian surgery
the nonvanishing property of the contact invariant is preserved, the 3–manifolds
S3
r (K) with r ≥ 2g(K) all carry contact structures with nonvanishing contact

Ozsváth-Szabó invariants. Since c(Y, ξ) 6= 0 implies tightness for (Y, ξ), the
proof of the theorem is complete.
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