
©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195642328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An empirical approach for semantic Web services discovery

Chen Wu*, Elizabeth Chang*, Ashley Aitken*+
*Digital Ecosystems and Business Intelligence Institute

and +School of Information Systems
Curtin University of Technology, Perth 6845, Australia

{Chen.Wu, Ashley.Aitken, Elizabeth.Chang}@cbs.curtin.edu.au

Abstract

Component retrieval/discovery is a well-established

research direction in Software Engineering. With the
surge of Service-Oriented Architecture (SOA), service
discovery has become increasingly crucial. However,
the public UDDI Business Registry – the primary
service discovery mechanism over the Internet – has
been shut down permanently since 2006. Moreover,
keyword-based service discovery is insufficient in
coping with complex discovery requirements posed by
modern software developers.

In this paper, we propose an empirical semantic-
based Web service discovery approach. It provides an
automatic Web service discovery mechanism that can
locate relevant Web services based on concepts rather
than keywords. The major contribution of this paper is
three fold. First we articulate three requirements that
software developers often raise during the
component/service development and discovery process.
Next, we propose the application of Latent Semantic
Analysis into the area of Web services discovery. To
our best knowledge, little work has been done in this
area which leverages concept-based Information
Retrieval models in service discovery. Last, we
provide a proof-of-concept system prototype that can
suffice three specific requirements of semantic service
discovery.

1. Introduction

Semantics is the study of relations between the
system of symbols (e.g. words, phrases, and sentences)
and their meanings. Semantics play an important role
in the complete lifecycle of Web services as it is able
to help service development, improve service reuse and
discovery, significantly facilitate composition of Web
services and enable integration of legacy applications
as part of automatic business process integration.

Unfortunately, current Web Service Description
Language (WSDL) standard operates at the syntactic
level and lacks the semantic expressivity needed to
represent the requirements and capabilities of Web
Services. Moreover, industry standard UDDI only
supports keyword and taxonomy-based service
discovery, thus leaving out the semantics of Web
services either.

This has motivated a great deal of research efforts
towards the Semantic Web Services (SWS). Interested
readers can refer to [1] for a comprehensive
understanding of the SWS. The fundamental idea
underlying current SWS community is that in order to
achieve machine-to-machine integration, a markup
language (e.g. annotation) must be descriptive enough
that a computer can automatically determine its
meaning. Following this principle, many semantic
annotation markup languages for Web services have
come into existence and use such as OWL-S [2],
(formerly known as DAML-S [3]), and WSDL-S [4]
that have gained great momentum in recent years. The
main goal of both OWL-S and WSDL-S is to establish
a framework within which service descriptions are
made and shared.

The assumption of such an ontology-based markup
language approach is that every SWS user
(professional or end customer) is able to use a standard
ontology, consisting of a set of basic classes and
properties, for declaring and describing services. One
concern [5] about this descriptive annotation-driven
approach is its feasibility: since it would be much more
time-consuming to create and publish ontology-
annotated (WSDL) content as they would need to be
done by domain human experts and powerful editing
tools for common users. Other problems [6] might
occur when different groups of users and communities
want to manage the shared ontology. With this being
the case, it would be much less likely for industry
companies to adopt these practices as it would only
slow down their progress.

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.52

412

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.52

412

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.52

412

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.52

412

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 31, 2009 at 00:22 from IEEE Xplore. Restrictions apply.

In this paper, we propose a semantic-based service
retrieval solution using an empirical approach without
relying on ontology engineering. This is achieved
using the latent Semantic Analysis (LSA) method.
Moreover, we are currently seeking effective ways that
can convert some result in this paper – i.e. the higher-
order term associations and the WSDL clusters
semantic space – into lightweight ontology using some
semi-automatic ontology learning methods. In other
words, the approach proposed in this paper aims to
pave the way upon which ontology-based annotation
can be accomplished with less human involvement and
at a faster pace. First, we would like to introduce some
real development scenario that motivates the semantic-
based service discovery.

Suppose a software developer is looking for a Web
service offering basic arithmetic calculation for his
taxation application. To locate a suitable service, the
developer needs to provide with the search engine the
criteria against which the service retrieval can compare
with each indexed Web service. From a service
consumer’s perspective, the developer might try
looking for services with the keyword ‘calculator’,
which is perhaps the most straightforward term that
come up in his mind. On the other hand, consider a
service provider who has developed such a Web
service that can indeed perform arithmetic calculation.
To the understanding of this service provider, this
service is somehow attached with the name
“MathService” in its WSDL description, which also
encloses a number of useful WSDL operations that the
developer is actually after, such as “add”, “multiply”,
“getSquareRoot”, etc. Unfortunately, keyword-based
service discovery method, the software developer is
unable to find this service provided by the service
provider. Such a limitation caused by the keyword-
based matching requires service retrieval to measure
the meaning or concepts inferred by a Web service
rather than literal texts embedded in its WSDL
document.

Alternatively, the developer might keep trying other
related keywords when failing to find relevant Web
services under the keyword ‘calculator’. Even if he is
able to locate some Web services that he thinks are
relevant, he might still want to try some other terms
which might potentially bring more appropriate Web
services that suit his needs. This can repeat for several
rounds until he feels assured that what he has found so
far is the “best” result. It is clear that such a repetitive
process is sometimes tedious and can be frustrating for
many service consumers as the search engine is
working in a passive ‘request/response’ mode. In other
words, service consumers and brokers require the
service retrieval to be smart enough to proactively
provide some feedback or suggestion that can help the

service consumer to find desirable Web services
effectively and efficiently.

Finally, suppose the service retrieval has been
equipped with the “concept-based” searching
mechanism that seeks for the meaning instead of the
keywords. It is quite likely that numerous (e.g. 100)
Web services would appear in the result list when the
developer try ‘maths’ since any services related to
mathematics will be found out. It would be extremely
time-consuming for the developer to go through each
one of them and to choose the most appropriate one.
Moreover, the developer might want different types
Web services to solve a variety of maths problems. In
this case, a semantic-based service clustering would be
highly desirable for the developer to rapidly locate
relevant Web services for more refined service
retrieval requests. Indeed, such a service clustering
mechanism is one of the key added values that can
attract more service consumers to participate in the
domain syndication.

The rest of this paper is structured as follows.
Section 2 provides a review on the existing work.
Section 3 presents the architectural design of our
approach. Section 4 details the service discovery
approach. Evaluation results are presented Section 5.
The paper concludes in Section 6.

2. Related Work

Web services evolve from the concept of software
component [7, 8]. An influential direction in
component retrieval is the signature matching, where
component are discovered based on their interface
signatures. More specifically, signature matching
exploits the structure conveyed in the interface
definition of component as built-in information (i.e.
type) in order to facilitate component retrieval. An
advantage of signature-based component retrieval
method is that it does not rely on additional knowledge
(i.e. annotations, specifications, etc.) but the properties
of the component only. WSDL is an XML format for
describing Web services in terms of both logic
abstraction operation and concrete network bindings
[9]. Therefore, WSDL can be seen as an XML version
of the interface definition language for Web services.
This way, WSDL contains the important ‘signature’
information for Web services and thus can be used for
signature matching.

In the seminal work of signature matching, [10]
defined signature matching as “the process of
determining which library components match a query
signature”. The signature of a component refers to the
“type of a function or the interface of a module”. The
type here includes the list of types for the component’s

413413413413

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 31, 2009 at 00:22 from IEEE Xplore. Restrictions apply.

input/output parameters and possible exceptions. For
functional signature matching, [10] further defined two
types of signature matching – the exact matching and
the relaxed matching – in order to locate software
functions from a software library.

An simple application of signature matching in Web
services discovery can be found in [11], where the
authors approach the automated process of Web
services searching using the signature matching, i.e.
the Exact Match and Transformation Match.
Moreover, the authors also discussed a new signature
match criteria – the Contains Match, in which the
returned signature of WSDLs contain the types found
in the search string. The indexing and searching in this
work is based on the full-text searching mechanism, in
which all the type information in the WSDL signature
are pre-compiled (indexed) without considering their
internal structures.

Text-based method is the most straightforward way
to conduct Web service discovery. The most widely
used text-based is the keyword matching built in the
UDDI public registry. The UDDI API allows
developers to specify keywords of particular interests
and it then returns a list of Web services whose service
description contains those keywords. Beyond the literal
keyword matching, research in XML schema matching
([12]) has applied various string comparison
algorithms (e.g. prefix, suffix, edit distance) to match
those interchangeable keywords but with slightly
different spellings. This method is particularly useful
for scientific Web services where many special terms,
jargons, and acronyms are widely used in their service
descriptions. For example, a bioinformatics Web
service might have an operation called ‘DNACombo’,
which shall be relevant to a user search ‘DNA
Combination’. The literal keyword method cannot tell
the equivalence between Combo and Combination.

Similar to our work, several recent efforts have
utilised IR models for Web services discovery. Authors
in [6] used the Vector Space Model (VSM) to build a
Web service search engine. [13] has attempted to
leverage LSA, a variant of VSM, to facilitate web
services discovery. However, both [6] and [13] rely on
existing UDDI public registries. Hence, our work is
different in that we have implemented a focused Web
service crawling mechanism which does not
exclusively rely on UDDI registries. Therefore, our
experiment data set is purely obtained from the ‘Web’
with the public Web services nature. More
importantly, different from [6] and [13], the texts used
in our approach is extracted, analysed, and expanded
directly from WSDL elements rather than service
description written in natural languages. Unlike natural
languages, WSDL is far more structural and compact.
Towards that end, the VSM-method in [14, 15] has

used the pattern of letter cases to split a long WSDL
element into separate tokens. However, we have found
such a heuristics is insufficient when facing a large
amount of irregular, non-word WSDL terms and
acronyms. Therefore, in our approach, we add a WSDL
Processor component dedicated to deal with language
and structural features of WSDL files.

The use of LSA for Web services can be traced
back to earlier component retrieval research. For
example, authors in [16] has built a Java reuse
repository using LSA for component retrieval.
Similarly, research in [17] proposed an active
component repository systems that support “reuse-
within-development” using real-time LSA component
retrieval.

3. The Overall Architecture

The architectural is illustrated in Figure 1. Initially,
service providers deploy WSDL files via the Internet.
Once deployed, service descriptions can be collected
by a number of Service Crawlers, which constantly
fetch WSDL files from the Internet. Crawlers hand
over retrieved WSDL files and associated HTML files
to the WSDL Preprocessor for further link analysis.
This yields a list of new URLs that may point to some
new WSDL files. These URLs are sent to the URL
Server, which in turn initialises/reconfigures a new/idle
Crawler for fetching the WSDL file referenced by each
newly identified URL. All retrieved raw WSDL files
are then passed to the WSDL Processor, which (1)
parses WSDL files and extracts important data (e.g.
operations, messages, data types, etc.), (2) analyses
these data using certain linguistic methods such as
tokenisation, lemmatisation, stopwords elimination,
etc. The WSDL Processor generates the classical IR
‘term document’ which contains separated words in a
flat structure. The term document is transferred to the
VSM Indexer, which takes as the input all the term
documents and generates as the output WSDL indices
representing the term-document matrices. The indexing
algorithm and VSM indices storage format has been
discussed in our previous work. Interested readers can
refer to [18] for an understanding of VSM-based
service discovery.

In this paper, we focus on the LSA indexer, which
takes as input the VSM indices and generates as output
the semantic space for service retrieval. It is the most
crucial component for semantic-based service retrieval.

414414414414

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 31, 2009 at 00:22 from IEEE Xplore. Restrictions apply.

Figure 1 The architectural design

4. The Semantic Discovery Approach

4.1. Build WSDL Corpus

Based on results collected from both crawling and

preprocessing [18], we have thus built the WSDL
corpus that can yield the preliminary Term-WSDL
matrix. According to the Zipf Law [19], a tiny amount
of the words in a language are distributionally random
and varied; the vast majority of words only occur in a
very limited set of contexts. If one considers this
WSDL corpus as a special language, and each WSDL
file represents a context, one can reasonably conjecture
that the Zipf Law applies in the WSDL corpus. Thus, it
is expected that only a small number of terms appear in
many contexts – WSDL documents; most terms only
occur once or twice within the whole WSDL corpus. In
order to verify this hypothesis, I have conducted a
statistical experiment on non-zero elements in the
conceptual term-WSDL original matrix.

In order to quantitatively verify the Zipf Law, we
have collected the frequency and the rank for all the
terms in the WSDL corpus and the results are shown in
Table 1. For each term, we calculate its raw frequency
in the whole WSDL corpus, i.e. how many times this
term has appeared in the corpus. Based on the value of
frequencies, we then sort terms in the descending
order. This provides the ranking for each term (the first
column). Note that in order to demonstrate the true

distribution of the corpus language features, Table 1
has included stop words (e.g. http, soap, etc.) that will
be eliminated during the linguistic analysis.

Table 1 Statistics for the term frequency and rank

Rank Frequency Terms
1 36033 get
2 11827 parameter
3 9540 soap
4 9347 http
5 6699 return
6 5915 body
7 5040 post

… … …
2093 12 academic
2094 12 sitename

… … …
6052 1 icalc
6053 1 depression

… … …

Using these two columns in Table 1, we generate

the Zipf ranked distribution, where the X-axis
represents the rank and the Y-axis depicts the
frequency as shown in Figure 2. The distribution
indicates mild concavity and a ranked exponent of 1:
Zipf law, which can be roughly formulated
as 1() ~freq r r− . Moreover, it is clear that a small
number of terms such as “get”, “parameter” are
extremely ‘popular’ in the WSDL corpus. Table 1
indicates that less than 1% of terms have taken up
more than 20% of all frequencies. Hence, based on our
experiments, one can reasonably argue that the WSDL
corpus crawled from the Internet follow the same
pattern as normal discourse and natural languages in
terms of the word distribution.

4.2. Construct WSDL Matrix

Indexing refers to the process of creating and

maintaining such a critical data structure, which allows
fast searching over large amounts of data. It takes as
inputs tokenised and lemmatised terms with their
associated occurrences information in each document
and generates as outputs the compiled data
arrangement with pre-aggregated information
optimised for fast searching. The data structure of
inverted index is consistent with the notion of term-
document matrix, which consists of term vectors as
matrix rows and document vectors as matrix columns.
When constructing such a matrix, the first question is
whether to normalise the WSDL vectors before
creating the matrix. In order to preserve cosine
similarities in the original space, one can length-

415415415415

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 31, 2009 at 00:22 from IEEE Xplore. Restrictions apply.

normalise the documents before conducting the
Singular Value Decomposition (SVD). However, some
research has shown that the additional use of the length
of LSA vectors to be useful. This is because the length
reflects how much was said about a concept rather than
how central the discourse was to the concept.
Therefore, we have made it a parameter in our
experiment prototype– WSDL normalisation, i.e.
whether or not to take into account the length of the
WSDL vector.

Figure 2 Zipf Distribution in the WSDL Corpus

In analysing the original matrix, we also provide a
visualisation of the non-zero elements in the original
sparse matrix as shown in Figure 3, where each nonzero
element is marked as a coloured dot. Darker colour
represents the larger value (i.e. the term weight) in the
matrix A’s entry. The figure shows that only 41,687
(less than 0.32%) entries are filled with nonzero values.
This means most terms occur in a very few WSDL
documents. In particular, several horizontal white
“bands” shown in Figure 3 characterise the nature of
the spare matrix A. Moreover, it can be seen from
Figure 3 that the number of vertical “coloured lines” are
much more than the number of horizontal “coloured
lines”. Indeed, vertical lines form several clusters of
coloured “bars”. This observation resonances the fact
that only a few words occur in many WSDL
documents (i.e. the horizontal lines), and most terms
appear only in limited set of WSDL files (i.e. the
vertical bars).

The result shown here also coincides with the
observation reported in [20], where the authors have
found only a few WSDL parameters (e.g. “license key”,
“password”) have been heavily used in many WSDL
files, most parameters appear just once. In their work,
only WSDL parameters (i.e. name attributes in “<types
/>” and “<part />”) are considered as terms and their
corpus contains only data source from [21]. However,
the Zipf law still applies even in the corpus (language)
with smaller words (all terms vs. parameters only) and
contexts (3577 vs. 670). As a result, the original matrix

A is a sparse matrix where most entries have zero as
their values.

When dealing with a matrix with thousands rows
and columns, the memory consumption can be huge if
the naive two dimensional arrays are used to represent
the matrix in the memory. Moreover, the Zipf
distribution indicates the matrix is very sparse as
shown in Figure 3. Therefore, we have employed the
Harwell-Boeing (HB) matrix [22] as a compressed
representation of the original matrix A. The HB sparse
matrix file format is used to store a sparse matrix in a
file. The space required to represent the matrix is
reduced by using a compressed column storage format.
If the matrix is read from the file into memory, it is
common to use the same compressed column storage
to represent the matrix in memory. This way, the total
memory consumption for SVD can be dramatically
reduced. For example, in our experiment, it costs
merely 900K RAM to store a 3671 3570× HB matrix.

4.3. Conduct Singular Value Decomposition

Traditional SVD algorithms that apply orthogonal
transformations directly to the sparse matrix A often
requires tremendous memory consumption, and hence
is not scalable when the terms and WSDL documents
become larger. This statement is supported during our
initial SVD experiment, where the JAMA (a Java
Matrix Package1) is used to process the SVD. The
JAMA library takes unacceptable long time (14 hours),
trying to solve the SVD for a 3671 (terms) × 3577
(WSDL) matrix before it eventually throws the “out of

1 http://math.nist.gov/javanumerics/jama/

Figure 3 Sparse matrix A (row: terms 3,671, column: WSDL

3,577, nonzero 41,687)

416416416416

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 31, 2009 at 00:22 from IEEE Xplore. Restrictions apply.

memory” exception given the maximum Java heap has
been manually set to one gigabytes.

In order to tackle this issue, we have used the large
scale sparse SVD method proposed in [23] as the SVD
algorithm in this paper for semantic service retrieval.
The basic idea is to convert the SVD problem into an
eigenvalues problem for a symmetric matrix, which
has been well studied and can be solved using
numerous canonical sparse symmetric eigenvalue
solutions. Formally, given a m n× matrix A, we aim to
construct a symmetric matrix B associated with A,
such that the SVD of A can be obtained from the
eigenvalues and eigenvectors of the matrix B. Berry
[23] has given two methods to construct such a matrix
B. In the first method, a () ()m n m n+ × + matrix B is
constructed as Equation 1. Cullum and Willoughby [24]
have proved that the SVD of A can be obtained from
the eigenvalues and eigenvectors of the matrix B in
Equation 1. The second method constructs a n n×
matrix B as shown in Equation 2. Berry [23] has also
demonstrated the fundamental relations between
eigenvalues of B (Equation 2) and the SVD of A. That is,
the singular values in S are the nonnegative square
roots of the n eigenvalues of TA A , and the first r
columns of S and T are orthonormalised eigenvectors

corresponding to the r nonzero eigenvalues of TAA

and
TA A respectively.

T

O A
B

A O

=

TB A A=

Equation 1 Equation 2
In this paper, we have chosen the second method to

conduct the SVD as it is easy to prove and understand
from the matrix theory that the singular values of the
real symmetric matrix B are the absolute values of its
nonzero eigenvalues (see [25] for a simple proof). The
eigenvalue problem is implemented using a variant (i.e.
“las2” [26]) of the single-vector Lanczos algorithm [27]
in order to adapt to the matrix B defined in Equation 2.
The basic idea of Lanczos algorithm is to generate a
series of tradiagonal matrices jT , such that the

extremal eigenvalues of each j j× , jT are
progressively better estimates of the eigenvalues

of T
B A A= . Once these sequence is generated, select

some kT and compute its eigenvalues, which are the
approximation of the eigenvalues of B, and hence the
singular values of A. The corresponding singular
vectors can be approximated by obtaining the
corresponding eigenvectors of these eigenvalues that

satisfy kT v vλ= . Detailed mathematics supporting this
algorithm can be found in [23].

4.4. Generate Index

Once the SVD and its truncation are achieved, the
result needs to be persisted on to the storage so that it
later on can be used by the retrieval process. This
process is defined as generating the SVD index. The
SVD index has to cater for the output of SVD
truncation result, which is written to the index.
Therefore, all data within the SVD result need to be
efficiently saved onto the storage. Next, the index is
served for service retrieval, thus the data shall be easily
read and captured by the retrieval process for various
purposes (e.g. similarity comparison). Last, the SVD
index data structure needs to be compatible with
existing VSM. This way, meta-data from VSM can be
easily referenced to and any changes made in VSM can
be timely updated in SVD index as well.

The output of SVD is can be re-written as the
dyadic decomposition form:

1

k
T

k i i i
i

A t s d
=

=∑ ,

Equation 3

where it and id are column vectors of T and D
respectively, and 1 ()k rank A r≤ < = . Therefore, the

output contains k sets of triplets{ , , }i i it s d , which are
to be kept onto the storage. This provides basic
requirements for “writing” part of the logic data
structure of the SVD index. In the meantime, row
vectors of T and D are also very important as they
determine the similarity between terms, documents
(WSDL), terms and documents. This can be considered
as the “reading” part of the SVD index. To stay
compatible with VSM, the SVD index “extends” the
data structure of VSM through referencing to two
entities.

Figure 4 illustrates the logic data structure of the
SVD index. The design places the “reading” as the first
priority since the ultimate goal of SVD indexing is to
serve the service retrieval. The time complexity of
service retrieval is thus more important than the one
for writing SVD result. In other words, the data
structure is optimised for efficient reading while
guaranteeing effective writing. The data structure
includes two parts – the VSM proxy (top) and the SVD
triple (bottom). The VSM proxy is the interface
between the VSM and the SVD in order to fulfil the
requirement of interoperating between VSM and SVD.
It contains a small set of VSM data attributes (e.g.

417417417417

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 31, 2009 at 00:22 from IEEE Xplore. Restrictions apply.

Term Value) copied from the original VSM data
structure and is referenced by SVD triples for meta-
data access. The VSM proxy contains two entities,
representing the VSM Term Vector and The VSM
WSDL Vector respectively. Processes that deal with
SVD might not be aware of the existence of VSM
indices as VSM proxy is the only external sources they
will start from and reference to.

The SVD triple contains three entities based on

Equation 3, where it and id are conceptually column
vectors. This requires the physical storage of their
vector components to be consistent with such a
column-based order. In a relational database, this can
be implemented as filling row values under a particular
column, e.g. the “f1_values” for all terms. In the file
system, this mechanism can be implemented as an
address pointer that jumps every k storage units to
allocate each value under each column. Such a
seemingly inefficient storage strategy however
increases the efficiency for service retrieval, where it is
the row vector that needs to be frequently compared
and is of great concern by most service retrieval
requirements. Therefore, all the row vectors
components are stored in a continuous manner in order
to suffice the “reading” requirement at the cost of
compromising the “writing” requirement. The singular
values are stored in a row for the quick access and
reference. It should be noted that, the logical data
structure illustrated in Figure 4 can be realised on
various physical storage such as file systems, RDBMS
or even the in-memory RAM.

4.5. Service Searching

Service searching is the basic mechanism by which
service consumers and brokers can find their desirable
Web services. Similar to VSM-based service
searching, service consumers submit their query via the
Web user interface and expect a ranked list of Web

services based on their relevance to the query. Unlike
VSM, in LSA-based service searching, this ranked list
is no longer a “list of occurrences”. It is the concept
(i.e. semantics) rather than the literal keyword that
determines their relevance and hence their ranking.
This is because the term-by-document matrix kA from
SVD has captured the higher-order association
between terms and WSDL documents. Each WSDL
document is projected onto a rank-reduced semantic
space, where only 101 (vs. 3671) dimensions are used
to ‘feature’ the characteristics of the WSDL document.
In this section, we will discuss the detailed searching
process based on the SVD indexing result – the
matrix kA .

The first question is to decide whether the WSDL
vector shall be normalised again. The normalisation
here is after SVD. This boils down to whether the
cosine or the inner product shall be used as the score
function. The score function computed in the reduced
dimensional space is normally the cosine between
vectors. Empirically, this measure tends to work well,
and there are some weak theoretical grounds for
favouring it [28, 29]. Therefore, we have decided to
use the cosine as the default similarity function to
measure the similarity between a query vector and a
WSDL vector. The second question is that whether the
query vector needs to be scaled by the singular values
before calculating the cosine similarity. The searching
process is illustrated in the pseudo code (see Table 2).

Table 2 Service Searching Pseudo Code

10. Input query : String
20. Output a ranked list of Web services based on

their relevance to the query
30.
40. qv : QueryVector = initialiseQV(k) //all

components are set to zero, k-dimensional
50. sv: SingularValues = readSingularValues(k)
60. FOR EACH term in query
70. termVector := readTermVector(term)
80. w := calculateWeight(term)
90. FOR EACH t in QueryVector
100. i := the index of t in termVector
110. t := t + (w * termVector[i] * 1 / sv[i])
120. queryNorm := qv.calculateNorm()
130.
140. rs : = new SearchResultSet(THRESHOLD)
150. FOR EACH wsdl in WSDLCorpus
160. wv := readWSDLVector(wsdlId)
170. wsdlNorm := wv.readNorm()
180. FOR (int k = 0; k < nfactor; k++)
190. sum := sum + wv[k] * qv[k]

Figure 4 Logic data structure of the SVD index

418418418418

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 31, 2009 at 00:22 from IEEE Xplore. Restrictions apply.

200. sim := sum / (queryNorm * wsdlNorm)
210. r := new Result(wsdlId, score)
220. rs.add(r)
230. rs.sort()
240. RETURN rs

The searching process consists of two parts – query
vector formation and the cosine similarity calculation.
The user query is first parsed into terms, each of which
has the associated weights that constitute the original
query vector components of tQ (Line 60 and 80).
Related term vectors in T are read (Line 10) from the
term vector entity stored in the SVD index. Similarly,
S is obtained from the singular value entity stored in
the SVD index (Line 50). The query vector value is
formed in Line 110. The final step of query vector
formation is to calculate the norm of the query vector
in order to compute the cosine. The second part, i.e. the
cosine similarity, is to obtain the cosine angle between
each WSDL vector and the query vector (Line 200).
For the performance consideration, the WSDL vector
norm is directly read from the SVD index since it is a
predetermined constant (Line 170). The final result is
sorted based on the cosine score in a descending order
(Line 230). Moreover, only those WSDL documents
whose similarity scores are greater than certain
threshold are added to the final result list (Line 140 and
220).

5. Evaluation

In this section, we provide the evaluation result

from our experiments in order to check whether the
three requirements stated in the introduction section
have been fulfilled by our prototype system – a Web
services search engine.

Figure 5 shows a screenshot of our prototype
system GUI – a typical search engine web page that
displays a list of Web services on the topic “calculator”,
which has been input in the search box. Our LSA-
based search engine has returned twenty Web services
that can do certain kind of ‘calculation’. Perusing the
first service in the ranking list,
(http://ausweb.scu.edu.au/aw02/papers/refereed/kelly/
MathService.wsdl), we are unable to find any
occurrences of string “calculator” in its WSDL file, or
in its URL. However, this service is ranked at the first
place when a service consumer needs a service such as
a ‘calculator’. Hence, LSA has automatically built a
hidden semantic association between ‘calculator’ and
‘maths’ even though they do not co-occur in any
WSDL files. Such a higher-order association cannot be
captured by the VSM model with the original term-by-

document matrix or any keyword-based service
searching mechanisms.

Figure 5 higher-order association between “Calculator” and

“Math”

Figure 6 term suggestion as the primary use of higher-order

association between terms

The primary use of higher-order association
captured LSA is the term suggestion during the service
searching. For example, a user who wanted to find
Web services that can do things like “search” can be
directed to find a Web services registry provided by the
well-known UDDI vendor “Systinet” and its online
Web services. Finding maths Web services, as another
example, can be converted to find particular arithmetic
operations such as multiply/substract/addition. The
prototype in Figure 6 has shown that when the term
“SMS” is typed, its associated twenty similar terms are
suggested by the system. A user can then easily follow
these terms to initiate another service searching request.

The higher-order associations between terms can
also provide a cost-effective approach to build a light-
weight ontology or taxonomy in a semi-automatic
manner. An interesting research direction is thus to
integrate these higher-order associations with end user
activities such as feedback, blogging, and tagging to
build and maintain a generic semantic space serving
the user-centred semantic Web services retrieval and
matching.

For the service clustering, we have employed the
hierarchical clustering, particularly the Hierarchical
Agglomerative Clustering (HAC) [30], to conduct the

Suggested
Terms

419419419419

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 31, 2009 at 00:22 from IEEE Xplore. Restrictions apply.

clustering analysis. Hierarchical clustering is a widely
used algorithm that works by grouping data into a tree
of clusters. It has been reported in the literature [31-33]
that hierarchical clustering algorithms generally yield
better results than flat algorithms. HAC is a similarity-
based bottom-up hierarchical clustering in which
initially each WSDL document forms a cluster of its
own as shown in the right part of Figure 7. HAC then
iterates over the step that merges the two remaining
most similar clusters into a larger cluster. The
similarity measured here is referred to as the
combination similarity between two clusters. A unique
feature of HAC is that the higher the tree level, the
lower the combination similarity is. As shown in Figure
7, at the leaf level of the tree, the combination
similarity is “1”, which assumes that each WSDL
document is 100% similar to itself. With the mergers
occur iteratively at higher levels, the similarity
decreases from 80% to 60%, to 40%, until it reaches
“0”, where all WSDL documents are grouped into one
cluster at the root level of the tree. The merging
iteration can be terminated artificially at some desired
combination similarity level (e.g. 0.2 in Figure 7) before
all WSDL documents are grouped into one cluster.

The similarity measure for two WSDL documents is
based on the inner product between two WSDL vectors
with reduced number (i.e. 101) dimensions (i.e. factors)
produced by SVD. For similarity between clusters (a
group of WSDL documents), the similarity/distance
measure is based on the average-linkage method [34],
where the distance between two clusters is the mean of
all pairwise distances between WSDL vectors
contained in these two clusters. Figure 7 visualises the
results for HAC-based service clustering using the Java
Treeview2, which includes three parts. The left most
part is the hierarchical clusters generated from the
HAC. The red circle represents a binary tree cluster
where the lowest combination similarity is 0.24. Thus,
the average similarities between all pairs of WSDL
vectors are 24%. The middle part is the visualised
semantic space, where the rows represent WSDL
vectors and the columns stand for 101 factors (singular
vectors). The red colour entry represents the positive
value, and the blue one depicts the negative value.
Entries with zero values are left blank. This middle
part can be seen as a visualised representation of the
raw data in Error! Reference source not found.. The
right part illustrates the detailed Web services
information in the corresponding cluster. The titles of
these Web services provide data regarding the nature
of this cluster – “address”-related Web services. The
most unique part of service clustering is that it relies on
the reduced semantic space Ak rather than the original

2 http://jtreeview.sourceforge.net

vector space A. Therefore, semantically similar Web
services are grouped together into hierarchical clusters.

Figure 7 Hierarchical Agglomerative Clustering for WSDL

corpus

6. Conclusion

Semantic-based service discovery requires: (1)

semantic service searching, where the service meaning
rather than texts are the focus of retrieval, (2) semantic
term suggestion, where conceptually relevant
suggestions are provided based upon service
consumer’s query terms, and (3) semantic service
clusters, where semantically close Web services are
grouped into hierarchical clusters for user friendly
browsing and navigating. In this paper, LSA-based
conceptual solution is proposed to deal with these three
challenges. In particular, a five-step approach is
presented to tackle the detailed technical issues, i.e.
sparse matrix analysis and compression, singular value
decomposition, cosine similarity calculation, term
space construction, and hierarchical clustering. The
prototype system of semantic-based service retrieval is
developed and presented as a proof-of-concept system.
For the future work, we would like to conduct
extensive test in order to explore more quantitative
experimental results for matchmaking performance.

7. References

[1] J. Cardoso and A. Sheth, "Semantic Web Services,
Processes and Applications," in Semantic Web and Beyond:
Computing for Human Experience, R. Jain and A. Sheth,
Eds.: Springer, 2006.
[2] D. Martin, "OWL-S: Semantic Markup for Web
Services," in Releases of DAML-S / OWL-S, 2004.
[3] M. Paolucci, K. Sycara, T. Nishimura, and N.
Srinivasan, "Using DAML-S for P2P Discovery,"
Proceedings of First International Conference on Web
Services, ICWS, 2003.

Semantic
Space for
WSDL

A Cluster
Sim = 0.24

420420420420

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 31, 2009 at 00:22 from IEEE Xplore. Restrictions apply.

[4] IBM and UGA, "Web Service Semantics," IBM
and UGA 2005.
[5] M. Bruno, G. Canfora, M. Di Penta, and R.
Scognamiglio, "An approach to support web services
classification and annotation," presented at International
Conference on e-Technology, e-Commerce and e-Service
(EEE-05), 2005.
[6] C. Platzer and S. Dustdar, "A vector space search
engine for Web services," presented at Third IEEE European
Conference on Web Services, Sweden, 2005.
[7] M. Stal, "Web Services: Beyond Component-based
Computing," Communication of the ACM, vol. 45, pp. 71 -
76, 2002.
[8] D. Karastoyanova and A. Buchmann,
"COMPONENTS, MIDDLEWARE AND WEB
SERVICES," Technische Universität Darmstadt, 2003.
[9] E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, "Web Services Description Language
(WSDL) 1.1," 2001.
[10] A. Zaremski and J. Wing, "Signature Matching: A
tool for using software libraries," ACM Transactions on
Software Engineering and Methodology, vol. 4, pp. 146 -
170, 1995.
[11] G. C. Gannod and S. Bhatia, "Facilitating
Automated Search for Web services," presented at IEEE
International Conferences on Web Services, 2004.
[12] H. H. Do and E. Rahm, "COMA - A system for
flexible combination of schema matching approaches,"
presented at 28th VLDB Conference, Hong Kong, China,
2002.
[13] A. Sajjanhar, J. Hou, and Y. Zhang, "Algorithm for
Web Services Matching," presented at APWeb, 2004.
[14] N. Kokash, W.-J. v. d. Heuvel, and D. A.
Vincenzo, "Leveraging Web Services Discovery with
Customizable Hybrid Matching," Technical Report,
University of Trento, vol. DIT-06-042, 2006.
[15] N. Kokash, "A Comparison of Web Service
Interface Similarity Measures," University of Trento 2006.
[16] M. Y. Lin, R. Amor, and E. Tempero, "A Java
reuse repository for Eclipse using LSI," presented at
Australian Software Engineering Conference, 2006.
[17] Y. Ye, "Supporting component-based software
development with active component retrieval systems," in
Computer Science: University of Colorado, 2001.
[18] C. Wu and E. Chang, "Searching services “on the
Web”: A public Web services discovery approach,"
presented at THE THIRD INTERNATIONAL
CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY &
INTERNET–BASED SYSTEMS, Shanghai, China, 2007.
[19] G. K. Zipf, Selected Studies of the Principle of
Relative Frequency in Language. Cambridge, MA.: Harvard
University Press, 1932.
[20] S. C. Oh, H. Kil, D. Lee, and S. R. T. Kumara,
"WSBen: A Web Services Discovery and Composition
Benchmark," presented at IEEE International Conference on
Web Services, 2006.
[21] J. Fan and S. Kambhampati, "A Snapshot of Public
Web Services," ACM SIGMOD Record, vol. 34, pp. 24 - 32,
2005.

[22] I. Duff, R. Grimes, and J. Lewis, "Sparse Matrix
Test Problems," ACM Transactions on Mathematical
Software, vol. 15, pp. 1-14, 1989.
[23] M. W. Berry, "Large scale singular value
computations," International Journal of Supercomputer
Applications, vol. 6, pp. 13 - 49, 1992.
[24] J. K. Cullum and R. A. Willoughby, Lanczos
Algorithm for Large Symmetric Eigenvalue Computations,
vol. 1. Boston: Birkhauser, 1985.
[25] J. L. Goldberg, Matrix Theory with Applications.
New York: McGraw-Hill, Inc., 1992.
[26] D. M. Berry, T. Do, G. W. O'Brien, V. Krishna,
and S. Varadhan, "SVDPACKC (Version 1.0) User's Guide,"
Computer Science Department, Univeristy of Tennessee
1993.
[27] B. N. Parlett and D. S. Scott, "The Lanczos
algorithm with selective reorthogonalization," Math. Comp.,
vol. 33, pp. 217 - 238, 1979.
[28] J. Caron, "Experiments with LSA Scoring: Optimal
Rank and Basis," Computer Science Department, University
of Colorado at Boulder 2000.
[29] M. W. Berry, Z. Drmac, and E. R. Jessup,
"Matrices, Vector Spaces, and Information Retrieval," SIAM
Review, vol. 41, pp. 335 - 362, 1999.
[30] W. Day and H. Edelsbrunner, "Efficient algorithms
for agglomerative hierarchical clustering methods," Journal
of Classification, vol. 1, 1984.
[31] A. K. Jain and R. C. Dubes, Algorithms for
Clustering Data. Englewood Cliffs, NJ: Prentice Hall, 1988.
[32] D. R. Cutting, J. O. Pedersen, D. Karger, and J. W.
Tukey, "Scatter/gather: A cluster-based approach to browsing
large document collections.," presented at ACM SIGIR
1992, 1992.
[33] B. Larsen and C. Aone, "Fast and effective
textmining using lineartime document clustering," presented
at The fifth ACM SIGKDD international conference on
Knowledge discovery and data mining, New York, NY,
USA, 1999.
[34] J. Han and M. Kamber, Data Mining - Concepts
and Techniques: Academic Press, 2000.

421421421421

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 31, 2009 at 00:22 from IEEE Xplore. Restrictions apply.

