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Abstract 

 
Component retrieval/discovery is a well-established 

research direction in Software Engineering. With the 
surge of Service-Oriented Architecture (SOA), service 
discovery has become increasingly crucial. However, 
the public UDDI Business Registry – the primary 
service discovery mechanism over the Internet – has 
been shut down permanently since 2006.  Moreover, 
keyword-based service discovery is insufficient in 
coping with complex discovery requirements posed by 
modern software developers. 

In this paper, we propose an empirical semantic-
based Web service discovery approach. It provides an 
automatic Web service discovery mechanism that can 
locate relevant Web services based on concepts rather 
than keywords. The major contribution of this paper is 
three fold. First we articulate three requirements that 
software developers often raise during the 
component/service development and discovery process. 
Next, we propose the application of Latent Semantic 
Analysis into the area of Web services discovery. To 
our best knowledge, little work has been done in this 
area which leverages concept-based Information 
Retrieval models in service discovery. Last, we 
provide a proof-of-concept system prototype that can 
suffice three specific requirements of semantic service 
discovery. 

 
 
1. Introduction 
 

Semantics is the study of relations between the 
system of symbols (e.g. words, phrases, and sentences) 
and their meanings. Semantics play an important role 
in the complete lifecycle of Web services as it is able 
to help service development, improve service reuse and 
discovery, significantly facilitate composition of Web 
services and enable integration of legacy applications 
as part of automatic business process integration. 

Unfortunately, current Web Service Description 
Language (WSDL) standard operates at the syntactic 
level and lacks the semantic expressivity needed to 
represent the requirements and capabilities of Web 
Services. Moreover, industry standard UDDI only 
supports keyword and taxonomy-based service 
discovery, thus leaving out the semantics of Web 
services either. 

This has motivated a great deal of research efforts 
towards the Semantic Web Services (SWS). Interested 
readers can refer to [1] for a comprehensive 
understanding of the SWS. The fundamental idea 
underlying current SWS community is that in order to 
achieve machine-to-machine integration, a markup 
language (e.g. annotation) must be descriptive enough 
that a computer can automatically determine its 
meaning. Following this principle, many semantic 
annotation markup languages for Web services have 
come into existence and use such as OWL-S [2], 
(formerly known as DAML-S [3]), and WSDL-S [4] 
that have gained great momentum in recent years. The 
main goal of both OWL-S and WSDL-S is to establish 
a framework within which service descriptions are 
made and shared.  

The assumption of such an ontology-based markup 
language approach is that every SWS user 
(professional or end customer) is able to use a standard 
ontology, consisting of a set of basic classes and 
properties, for declaring and describing services. One 
concern [5] about this descriptive annotation-driven 
approach is its feasibility: since it would be much more 
time-consuming to create and publish ontology-
annotated (WSDL) content as they would need to be 
done by domain human experts and powerful editing 
tools for common users. Other problems [6] might 
occur when different groups of users and communities 
want to manage the shared ontology. With this being 
the case, it would be much less likely for industry 
companies to adopt these practices as it would only 
slow down their progress.  
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In this paper, we propose a semantic-based service 
retrieval solution using an empirical approach without 
relying on ontology engineering. This is achieved 
using the latent Semantic Analysis (LSA) method. 
Moreover, we are currently seeking effective ways that 
can convert some result in this paper – i.e. the higher-
order term associations and the WSDL clusters 
semantic space – into lightweight ontology using some 
semi-automatic ontology learning methods. In other 
words, the approach proposed in this paper aims to 
pave the way upon which ontology-based annotation 
can be accomplished with less human involvement and 
at a faster pace. First, we would like to introduce some 
real development scenario that motivates the semantic-
based service discovery.  

Suppose a software developer is looking for a Web 
service offering basic arithmetic calculation for his 
taxation application. To locate a suitable service, the 
developer needs to provide with the search engine the 
criteria against which the service retrieval can compare 
with each indexed Web service. From a service 
consumer’s perspective, the developer might try 
looking for services with the keyword ‘calculator’, 
which is perhaps the most straightforward term that 
come up in his mind. On the other hand, consider a 
service provider who has developed such a Web 
service that can indeed perform arithmetic calculation. 
To the understanding of this service provider, this 
service is somehow attached with the name 
“MathService” in its WSDL description, which also 
encloses a number of useful WSDL operations that the 
developer is actually after, such as “add”, “multiply”, 
“getSquareRoot”, etc. Unfortunately, keyword-based 
service discovery method, the software developer is 
unable to find this service provided by the service 
provider. Such a limitation caused by the keyword-
based matching requires service retrieval to measure 
the meaning or concepts inferred by a Web service 
rather than literal texts embedded in its WSDL 
document.  

Alternatively, the developer might keep trying other 
related keywords when failing to find relevant Web 
services under the keyword ‘calculator’. Even if he is 
able to locate some Web services that he thinks are 
relevant, he might still want to try some other terms 
which might potentially bring more appropriate Web 
services that suit his needs. This can repeat for several 
rounds until he feels assured that what he has found so 
far is the “best” result. It is clear that such a repetitive 
process is sometimes tedious and can be frustrating for 
many service consumers as the search engine is 
working in a passive ‘request/response’ mode. In other 
words, service consumers and brokers require the 
service retrieval to be smart enough to proactively 
provide some feedback or suggestion that can help the 

service consumer to find desirable Web services 
effectively and efficiently. 

Finally, suppose the service retrieval has been 
equipped with the “concept-based” searching 
mechanism that seeks for the meaning instead of the 
keywords. It is quite likely that numerous (e.g. 100) 
Web services would appear in the result list when the 
developer try ‘maths’ since any services related to 
mathematics will be found out. It would be extremely 
time-consuming for the developer to go through each 
one of them and to choose the most appropriate one. 
Moreover, the developer might want different types 
Web services to solve a variety of maths problems. In 
this case, a semantic-based service clustering would be 
highly desirable for the developer to rapidly locate 
relevant Web services for more refined service 
retrieval requests. Indeed, such a service clustering 
mechanism is one of the key added values that can 
attract more service consumers to participate in the 
domain syndication. 

The rest of this paper is structured as follows. 
Section 2 provides a review on the existing work. 
Section 3 presents the architectural design of our 
approach. Section 4 details the service discovery 
approach. Evaluation results are presented Section 5. 
The paper concludes in Section 6.  

 
2. Related Work 
 

Web services evolve from the concept of software 
component [7, 8]. An influential direction in 
component retrieval is the signature matching, where 
component are discovered based on their interface 
signatures. More specifically, signature matching 
exploits the structure conveyed in the interface 
definition of component as built-in information (i.e. 
type) in order to facilitate component retrieval. An 
advantage of signature-based component retrieval 
method is that it does not rely on additional knowledge 
(i.e. annotations, specifications, etc.) but the properties 
of the component only. WSDL is an XML format for 
describing Web services in terms of both logic 
abstraction operation and concrete network bindings 
[9]. Therefore, WSDL can be seen as an XML version 
of the interface definition language for Web services. 
This way, WSDL contains the important ‘signature’ 
information for Web services and thus can be used for 
signature matching.  

In the seminal work of signature matching, [10] 
defined signature matching as “the process of 
determining which library components match a query 
signature”. The signature of a component refers to the 
“type of a function or the interface of a module”. The 
type here includes the list of types for the component’s 
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input/output parameters and possible exceptions. For 
functional signature matching, [10] further defined two 
types of signature matching – the exact matching and 
the relaxed matching – in order to locate software 
functions from a software library. 

An simple application of signature matching in Web 
services discovery can be found in [11], where the 
authors approach the automated process of Web 
services searching using the signature matching, i.e. 
the Exact Match and Transformation Match. 
Moreover, the authors also discussed a new signature 
match criteria – the Contains Match, in which the 
returned signature of WSDLs contain the types found 
in the search string. The indexing and searching in this 
work is based on the full-text searching mechanism, in 
which all the type information in the WSDL signature 
are pre-compiled (indexed) without considering their 
internal structures. 

Text-based method is the most straightforward way 
to conduct Web service discovery. The most widely 
used text-based is the keyword matching built in the 
UDDI public registry. The UDDI API allows 
developers to specify keywords of particular interests 
and it then returns a list of Web services whose service 
description contains those keywords. Beyond the literal 
keyword matching, research in XML schema matching 
([12]) has applied various string comparison 
algorithms (e.g. prefix, suffix, edit distance) to match 
those interchangeable keywords but with slightly 
different spellings. This method is particularly useful 
for scientific Web services where many special terms, 
jargons, and acronyms are widely used in their service 
descriptions. For example, a bioinformatics Web 
service might have an operation called ‘DNACombo’, 
which shall be relevant to a user search ‘DNA 
Combination’. The literal keyword method cannot tell 
the equivalence between Combo and Combination.  

Similar to our work, several recent efforts have 
utilised IR models for Web services discovery. Authors 
in [6] used the Vector Space Model (VSM) to build a 
Web service search engine. [13] has attempted to 
leverage LSA, a variant of VSM, to facilitate web 
services discovery. However, both [6] and [13] rely on 
existing UDDI public registries. Hence, our work is 
different in that we have implemented a focused Web 
service crawling mechanism which does not 
exclusively rely on UDDI registries. Therefore, our 
experiment data set is purely obtained from the ‘Web’ 
with the public Web services nature.  More 
importantly, different from [6] and [13], the texts used 
in our approach is extracted, analysed, and expanded 
directly from WSDL elements rather than service 
description written in natural languages. Unlike natural 
languages, WSDL is far more structural and compact. 
Towards that end, the VSM-method in [14, 15] has 

used the pattern of letter cases to split a long WSDL 
element into separate tokens. However, we have found 
such a heuristics is insufficient when facing a large 
amount of irregular, non-word WSDL terms and 
acronyms. Therefore, in our approach, we add a WSDL 
Processor component dedicated to deal with language 
and structural features of WSDL files. 

The use of LSA for Web services can be traced 
back to earlier component retrieval research. For 
example, authors in [16] has built a Java reuse 
repository using LSA for component retrieval. 
Similarly, research in [17] proposed an active 
component repository systems that support “reuse-
within-development” using real-time LSA component 
retrieval. 

 
3. The Overall Architecture 
 

The architectural is illustrated in Figure 1. Initially, 
service providers deploy WSDL files via the Internet. 
Once deployed, service descriptions can be collected 
by a number of Service Crawlers, which constantly 
fetch WSDL files from the Internet. Crawlers hand 
over retrieved WSDL files and associated HTML files 
to the WSDL Preprocessor for further link analysis. 
This yields a list of new URLs that may point to some 
new WSDL files. These URLs are sent to the URL 
Server, which in turn initialises/reconfigures a new/idle 
Crawler for fetching the WSDL file referenced by each 
newly identified URL. All retrieved raw WSDL files 
are then passed to the WSDL Processor, which (1) 
parses WSDL files and extracts important data (e.g. 
operations, messages, data types, etc.), (2) analyses 
these data using certain linguistic methods such as 
tokenisation, lemmatisation, stopwords elimination, 
etc. The WSDL Processor generates the classical IR 
‘term document’ which contains separated words in a 
flat structure. The term document is transferred to the 
VSM Indexer, which takes as the input all the term 
documents and generates as the output WSDL indices 
representing the term-document matrices. The indexing 
algorithm and VSM indices storage format has been 
discussed in our previous work. Interested readers can 
refer to [18] for an understanding of VSM-based 
service discovery.  

In this paper, we focus on the LSA indexer, which 
takes as input the VSM indices and generates as output 
the semantic space for service retrieval. It is the most 
crucial component for semantic-based service retrieval. 

  
 

414414414414

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 31, 2009 at 00:22 from IEEE Xplore.  Restrictions apply.



 
Figure 1 The architectural design 

 
 

4. The Semantic Discovery Approach 
 
4.1. Build WSDL Corpus 

 
Based on results collected from both crawling and 

preprocessing [18], we have thus built the WSDL 
corpus that can yield the preliminary Term-WSDL 
matrix. According to the Zipf Law [19], a tiny amount 
of the words in a language are distributionally random 
and varied; the vast majority of words only occur in a 
very limited set of contexts. If one considers this 
WSDL corpus as a special language, and each WSDL 
file represents a context, one can reasonably conjecture 
that the Zipf Law applies in the WSDL corpus. Thus, it 
is expected that only a small number of terms appear in 
many contexts – WSDL documents; most terms only 
occur once or twice within the whole WSDL corpus. In 
order to verify this hypothesis, I have conducted a 
statistical experiment on non-zero elements in the 
conceptual term-WSDL original matrix.  

In order to quantitatively verify the Zipf Law, we 
have collected the frequency and the rank for all the 
terms in the WSDL corpus and the results are shown in 
Table 1. For each term, we calculate its raw frequency 
in the whole WSDL corpus, i.e. how many times this 
term has appeared in the corpus. Based on the value of 
frequencies, we then sort terms in the descending 
order. This provides the ranking for each term (the first 
column). Note that in order to demonstrate the true 

distribution of the corpus language features, Table 1 
has included stop words (e.g. http, soap, etc.) that will 
be eliminated during the linguistic analysis. 

 
Table 1 Statistics for the term frequency and rank 

Rank Frequency Terms 
1 36033 get 
2 11827 parameter 
3 9540 soap 
4 9347 http 
5 6699 return 
6 5915 body 
7 5040 post 

… … … 
2093 12 academic 
2094 12 sitename 

… … … 
6052 1 icalc 
6053 1 depression 

… … … 
 
Using these two columns in Table 1, we generate 

the Zipf ranked distribution, where the X-axis 
represents the rank and the Y-axis depicts the 
frequency as shown in Figure 2. The distribution 
indicates mild concavity and a ranked exponent of 1: 
Zipf law, which can be roughly formulated 
as 1( ) ~freq r r− . Moreover, it is clear that a small 
number of terms such as “get”, “parameter” are 
extremely ‘popular’ in the WSDL corpus. Table 1 
indicates that less than 1% of terms have taken up 
more than 20% of all frequencies. Hence, based on our 
experiments, one can reasonably argue that the WSDL 
corpus crawled from the Internet follow the same 
pattern as normal discourse and natural languages in 
terms of the word distribution. 

 
4.2. Construct WSDL Matrix 

 
Indexing refers to the process of creating and 

maintaining such a critical data structure, which allows 
fast searching over large amounts of data. It takes as 
inputs tokenised and lemmatised terms with their 
associated occurrences information in each document 
and generates as outputs the compiled data 
arrangement with pre-aggregated information 
optimised for fast searching. The data structure of 
inverted index is consistent with the notion of term-
document matrix, which consists of term vectors as 
matrix rows and document vectors as matrix columns. 
When constructing such a matrix, the first question is 
whether to normalise the WSDL vectors before 
creating the matrix. In order to preserve cosine 
similarities in the original space, one can length-
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normalise the documents before conducting the 
Singular Value Decomposition (SVD). However, some 
research has shown that the additional use of the length 
of LSA vectors to be useful. This is because the length 
reflects how much was said about a concept rather than 
how central the discourse was to the concept. 
Therefore, we have made it a parameter in our 
experiment prototype– WSDL normalisation, i.e. 
whether or not to take into account the length of the 
WSDL vector. 

 
 

 
Figure 2 Zipf Distribution in the WSDL Corpus 

In analysing the original matrix, we also provide a 
visualisation of the non-zero elements in the original 
sparse matrix as shown in Figure 3, where each nonzero 
element is marked as a coloured dot. Darker colour 
represents the larger value (i.e. the term weight) in the 
matrix A’s entry. The figure shows that only 41,687 
(less than 0.32%) entries are filled with nonzero values. 
This means most terms occur in a very few WSDL 
documents. In particular, several horizontal white 
“bands” shown in Figure 3 characterise the nature of 
the spare matrix A. Moreover, it can be seen from 
Figure 3 that the number of vertical “coloured lines” are 
much more than the number of horizontal “coloured 
lines”. Indeed, vertical lines form several clusters of 
coloured “bars”. This observation resonances the fact 
that only a few words occur in many WSDL 
documents (i.e. the horizontal lines), and most terms 
appear only in limited set of WSDL files (i.e. the 
vertical bars). 

The result shown here also coincides with the 
observation reported in [20], where the authors have 
found only a few WSDL parameters (e.g. “license key”, 
“password”) have been heavily used in many WSDL 
files, most parameters appear just once. In their work, 
only WSDL parameters (i.e. name attributes in “<types 
/>” and “<part />”) are considered as terms and their 
corpus contains only data source from [21]. However, 
the Zipf law still applies even in the corpus (language) 
with smaller words (all terms vs. parameters only) and 
contexts (3577 vs. 670). As a result, the original matrix 

A is a sparse matrix where most entries have zero as 
their values.  

When dealing with a matrix with thousands rows 
and columns, the memory consumption can be huge if 
the naive two dimensional arrays are used to represent 
the matrix in the memory. Moreover, the Zipf 
distribution indicates the matrix is very sparse as 
shown in Figure 3. Therefore, we have employed the 
Harwell-Boeing (HB) matrix [22] as a compressed 
representation of the original matrix A. The HB sparse 
matrix file format is used to store a sparse matrix in a 
file. The space required to represent the matrix is 
reduced by using a compressed column storage format. 
If the matrix is read from the file into memory, it is 
common to use the same compressed column storage 
to represent the matrix in memory. This way, the total 
memory consumption for SVD can be dramatically 
reduced. For example, in our experiment, it costs 
merely 900K RAM to store a 3671 3570× HB matrix. 

 
4.3. Conduct Singular Value Decomposition 
 

Traditional SVD algorithms that apply orthogonal 
transformations directly to the sparse matrix A often 
requires tremendous memory consumption, and hence 
is not scalable when the terms and WSDL documents 
become larger. This statement is supported during our 
initial SVD experiment, where the JAMA (a Java 
Matrix Package1 ) is used to process the SVD. The 
JAMA library takes unacceptable long time (14 hours), 
trying to solve the SVD for a 3671 (terms) × 3577 
(WSDL) matrix before it eventually throws the “out of 

                                                        
1 http://math.nist.gov/javanumerics/jama/ 

 
Figure 3  Sparse matrix A (row: terms 3,671, column: WSDL 

3,577, nonzero 41,687) 
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memory” exception given the maximum Java heap has 
been manually set to one gigabytes.  

In order to tackle this issue, we have used the large 
scale sparse SVD method proposed in [23] as the SVD 
algorithm in this paper for semantic service retrieval. 
The basic idea is to convert the SVD problem into an 
eigenvalues problem for a symmetric matrix, which 
has been well studied and can be solved using 
numerous canonical sparse symmetric eigenvalue 
solutions. Formally, given a m n× matrix A, we aim to 
construct a symmetric matrix B associated with A, 
such that the SVD of A can be obtained from the 
eigenvalues and eigenvectors of the matrix B. Berry 
[23] has given two methods to construct such a matrix 
B. In the first method, a ( ) ( )m n m n+ × + matrix B is 
constructed as Equation 1. Cullum and Willoughby [24] 
have proved that the SVD of A can be obtained from 
the eigenvalues and eigenvectors of the matrix B in 
Equation 1. The second method constructs a n n×  
matrix B as shown in Equation 2. Berry [23] has also 
demonstrated the fundamental relations between 
eigenvalues of B (Equation 2) and the SVD of A. That is, 
the singular values in S are the nonnegative square 
roots of the n eigenvalues of TA A , and the first r 
columns of S and T are orthonormalised eigenvectors 

corresponding to the r nonzero eigenvalues of TAA  

and 
TA A  respectively. 

T

O A
B

A O
 

=  
   

TB A A=  

Equation 1 Equation 2 
In this paper, we have chosen the second method to 

conduct the SVD as it is easy to prove and understand 
from the matrix theory that the singular values of the 
real symmetric matrix B are the absolute values of its 
nonzero eigenvalues (see [25] for a simple proof). The 
eigenvalue problem is implemented using a variant (i.e. 
“las2” [26]) of the single-vector Lanczos algorithm [27] 
in order to adapt to the matrix B defined in Equation 2. 
The basic idea of Lanczos algorithm is to generate a 
series of tradiagonal matrices jT , such that the 

extremal eigenvalues of each j j× , jT  are 
progressively better estimates of the eigenvalues 

of T
B A A= . Once these sequence is generated, select 

some kT  and compute its eigenvalues, which are the 
approximation of the eigenvalues of B, and hence the 
singular values of A. The corresponding singular 
vectors can be approximated by obtaining the 
corresponding eigenvectors of these eigenvalues that 

satisfy kT v vλ= . Detailed mathematics supporting this 
algorithm can be found in [23]. 

 
4.4. Generate Index 
 

Once the SVD and its truncation are achieved, the 
result needs to be persisted on to the storage so that it 
later on can be used by the retrieval process. This 
process is defined as generating the SVD index. The 
SVD index has to cater for the output of SVD 
truncation result, which is written to the index. 
Therefore, all data within the SVD result need to be 
efficiently saved onto the storage. Next, the index is 
served for service retrieval, thus the data shall be easily 
read and captured by the retrieval process for various 
purposes (e.g. similarity comparison). Last, the SVD 
index data structure needs to be compatible with 
existing VSM. This way, meta-data from VSM can be 
easily referenced to and any changes made in VSM can 
be timely updated in SVD index as well. 

The output of SVD is can be re-written as the 
dyadic decomposition form: 

1

k
T

k i i i
i

A t s d
=

=∑ , 

Equation 3 

where it and id are column vectors of T and D 
respectively, and 1 ( )k rank A r≤ < = . Therefore, the 

output contains k sets of triplets{ , , }i i it s d , which are 
to be kept onto the storage. This provides basic 
requirements for “writing” part of the logic data 
structure of the SVD index. In the meantime, row 
vectors of T and D are also very important as they 
determine the similarity between terms, documents 
(WSDL), terms and documents. This can be considered 
as the “reading” part of the SVD index. To stay 
compatible with VSM, the SVD index “extends” the 
data structure of VSM through referencing to two 
entities.  

Figure 4 illustrates the logic data structure of the 
SVD index. The design places the “reading” as the first 
priority since the ultimate goal of SVD indexing is to 
serve the service retrieval. The time complexity of 
service retrieval is thus more important than the one 
for writing SVD result. In other words, the data 
structure is optimised for efficient reading while 
guaranteeing effective writing. The data structure 
includes two parts – the VSM proxy (top) and the SVD 
triple (bottom). The VSM proxy is the interface 
between the VSM and the SVD in order to fulfil the 
requirement of interoperating between VSM and SVD. 
It contains a small set of VSM data attributes (e.g. 

417417417417

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 31, 2009 at 00:22 from IEEE Xplore.  Restrictions apply.



Term Value) copied from the original VSM data 
structure and is referenced by SVD triples for meta-
data access. The VSM proxy contains two entities, 
representing the VSM Term Vector and The VSM 
WSDL Vector respectively. Processes that deal with 
SVD might not be aware of the existence of VSM 
indices as VSM proxy is the only external sources they 
will start from and reference to. 

 
The SVD triple contains three entities based on 

Equation 3, where it and id are conceptually column 
vectors. This requires the physical storage of their 
vector components to be consistent with such a 
column-based order. In a relational database, this can 
be implemented as filling row values under a particular 
column, e.g. the “f1_values” for all terms. In the file 
system, this mechanism can be implemented as an 
address pointer that jumps every k storage units to 
allocate each value under each column. Such a 
seemingly inefficient storage strategy however 
increases the efficiency for service retrieval, where it is 
the row vector that needs to be frequently compared 
and is of great concern by most service retrieval 
requirements. Therefore, all the row vectors 
components are stored in a continuous manner in order 
to suffice the “reading” requirement at the cost of 
compromising the “writing” requirement. The singular 
values are stored in a row for the quick access and 
reference. It should be noted that, the logical data 
structure illustrated in Figure 4 can be realised on 
various physical storage such as file systems, RDBMS 
or even the in-memory RAM. 

 
4.5. Service Searching 
 

Service searching is the basic mechanism by which 
service consumers and brokers can find their desirable 
Web services. Similar to VSM-based service 
searching, service consumers submit their query via the 
Web user interface and expect a ranked list of Web 

services based on their relevance to the query. Unlike 
VSM, in LSA-based service searching, this ranked list 
is no longer a “list of occurrences”. It is the concept 
(i.e. semantics) rather than the literal keyword that 
determines their relevance and hence their ranking. 
This is because the term-by-document matrix kA  from 
SVD has captured the higher-order association 
between terms and WSDL documents. Each WSDL 
document is projected onto a rank-reduced semantic 
space, where only 101 (vs. 3671) dimensions are used 
to ‘feature’ the characteristics of the WSDL document. 
In this section, we will discuss the detailed searching 
process based on the SVD indexing result – the 
matrix kA .  

The first question is to decide whether the WSDL 
vector shall be normalised again. The normalisation 
here is after SVD. This boils down to whether the 
cosine or the inner product shall be used as the score 
function. The score function computed in the reduced 
dimensional space is normally the cosine between 
vectors. Empirically, this measure tends to work well, 
and there are some weak theoretical grounds for 
favouring it [28, 29]. Therefore, we have decided to 
use the cosine as the default similarity function to 
measure the similarity between a query vector and a 
WSDL vector. The second question is that whether the 
query vector needs to be scaled by the singular values 
before calculating the cosine similarity. The searching 
process is illustrated in the pseudo code (see Table 2).  

 
Table 2 Service Searching Pseudo Code 

10. Input query : String 
20. Output a ranked list of Web services based on 

their relevance to the query 
30.  
40. qv : QueryVector = initialiseQV(k) //all 

components are set to zero, k-dimensional 
50. sv: SingularValues = readSingularValues(k) 
60. FOR EACH term in query  
70.   termVector := readTermVector(term) 
80.   w := calculateWeight(term) 
90.   FOR EACH t in QueryVector 
100.     i := the index of t in termVector 
110.     t := t + (w * termVector[i] * 1 / sv[i]) 
120. queryNorm := qv.calculateNorm() 
130.  
140. rs : = new SearchResultSet(THRESHOLD) 
150. FOR EACH wsdl in WSDLCorpus 
160.   wv := readWSDLVector(wsdlId) 
170.   wsdlNorm := wv.readNorm() 
180.   FOR (int k = 0; k < nfactor; k++) 
190.     sum := sum + wv[k] * qv[k] 

 
Figure 4   Logic data structure of the SVD index 
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200.   sim := sum / (queryNorm * wsdlNorm) 
210.   r := new Result(wsdlId, score) 
220.   rs.add(r) 
230. rs.sort()  
240. RETURN rs 
  

The searching process consists of two parts – query 
vector formation and the cosine similarity calculation. 
The user query is first parsed into terms, each of which 
has the associated weights that constitute the original 
query vector components of tQ  (Line 60 and 80). 
Related term vectors in T are read (Line 10) from the 
term vector entity stored in the SVD index. Similarly, 
S is obtained from the singular value entity stored in 
the SVD index (Line 50). The query vector value is 
formed in Line 110. The final step of query vector 
formation is to calculate the norm of the query vector 
in order to compute the cosine. The second part, i.e. the 
cosine similarity, is to obtain the cosine angle between 
each WSDL vector and the query vector (Line 200). 
For the performance consideration, the WSDL vector 
norm is directly read from the SVD index since it is a 
predetermined constant (Line 170). The final result is 
sorted based on the cosine score in a descending order 
(Line 230). Moreover, only those WSDL documents 
whose similarity scores are greater than certain 
threshold are added to the final result list (Line 140 and 
220). 

 
5. Evaluation 

 
In this section, we provide the evaluation result 

from our experiments in order to check whether the 
three requirements stated in the introduction section 
have been fulfilled by our prototype system – a Web 
services search engine. 

Figure 5 shows a screenshot of our prototype 
system GUI – a typical search engine web page that 
displays a list of Web services on the topic “calculator”, 
which has been input in the search box. Our LSA-
based search engine has returned twenty Web services 
that can do certain kind of ‘calculation’. Perusing the 
first service in the ranking list, 
(http://ausweb.scu.edu.au/aw02/papers/refereed/kelly/
MathService.wsdl), we are unable to find any 
occurrences of string “calculator” in its WSDL file, or 
in its URL. However, this service is ranked at the first 
place when a service consumer needs a service such as 
a ‘calculator’. Hence, LSA has automatically built a 
hidden semantic association between ‘calculator’ and 
‘maths’ even though they do not co-occur in any 
WSDL files. Such a higher-order association cannot be 
captured by the VSM model with the original term-by-

document matrix or any keyword-based service 
searching mechanisms. 

 
Figure 5  higher-order association between “Calculator” and 

“Math” 

 

 
Figure 6 term suggestion as the primary use of higher-order 

association between terms 

The primary use of higher-order association 
captured LSA is the term suggestion during the service 
searching. For example, a user who wanted to find 
Web services that can do things like “search” can be 
directed to find a Web services registry provided by the 
well-known UDDI vendor “Systinet” and its online 
Web services. Finding maths Web services, as another 
example, can be converted to find particular arithmetic 
operations such as multiply/substract/addition. The 
prototype in Figure 6 has shown that when the term 
“SMS” is typed, its associated twenty similar terms are 
suggested by the system. A user can then easily follow 
these terms to initiate another service searching request.  

The higher-order associations between terms can 
also provide a cost-effective approach to build a light-
weight ontology or taxonomy in a semi-automatic 
manner. An interesting research direction is thus to 
integrate these higher-order associations with end user 
activities such as feedback, blogging, and tagging to 
build and maintain a generic semantic space serving 
the user-centred semantic Web services retrieval and 
matching. 

For the service clustering, we have employed the 
hierarchical clustering, particularly the Hierarchical 
Agglomerative Clustering (HAC) [30], to conduct the 

Suggested 
Terms 
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clustering analysis. Hierarchical clustering is a widely 
used algorithm that works by grouping data into a tree 
of clusters. It has been reported in the literature [31-33] 
that hierarchical clustering algorithms generally yield 
better results than flat algorithms. HAC is a similarity-
based bottom-up hierarchical clustering in which 
initially each WSDL document forms a cluster of its 
own as shown in the right part of Figure 7. HAC then 
iterates over the step that merges the two remaining 
most similar clusters into a larger cluster. The 
similarity measured here is referred to as the 
combination similarity between two clusters. A unique 
feature of HAC is that the higher the tree level, the 
lower the combination similarity is. As shown in Figure 
7, at the leaf level of the tree, the combination 
similarity is “1”, which assumes that each WSDL 
document is 100% similar to itself. With the mergers 
occur iteratively at higher levels, the similarity 
decreases from 80% to 60%, to 40%, until it reaches 
“0”, where all WSDL documents are grouped into one 
cluster at the root level of the tree. The merging 
iteration can be terminated artificially at some desired 
combination similarity level (e.g. 0.2 in Figure 7) before 
all WSDL documents are grouped into one cluster.  

The similarity measure for two WSDL documents is 
based on the inner product between two WSDL vectors 
with reduced number (i.e. 101) dimensions (i.e. factors) 
produced by SVD. For similarity between clusters (a 
group of WSDL documents), the similarity/distance 
measure is based on the average-linkage method [34], 
where the distance between two clusters is the mean of 
all pairwise distances between WSDL vectors 
contained in these two clusters. Figure 7 visualises the 
results for HAC-based service clustering using the Java 
Treeview2, which includes three parts. The left most 
part is the hierarchical clusters generated from the 
HAC. The red circle represents a binary tree cluster 
where the lowest combination similarity is 0.24. Thus, 
the average similarities between all pairs of WSDL 
vectors are 24%. The middle part is the visualised 
semantic space, where the rows represent WSDL 
vectors and the columns stand for 101 factors (singular 
vectors). The red colour entry represents the positive 
value, and the blue one depicts the negative value. 
Entries with zero values are left blank. This middle 
part can be seen as a visualised representation of the 
raw data in Error! Reference source not found.. The 
right part illustrates the detailed Web services 
information in the corresponding cluster. The titles of 
these Web services provide data regarding the nature 
of this cluster – “address”-related Web services. The 
most unique part of service clustering is that it relies on 
the reduced semantic space Ak rather than the original 
                                                        
2 http://jtreeview.sourceforge.net 

vector space A. Therefore, semantically similar Web 
services are grouped together into hierarchical clusters. 

 

 
Figure 7 Hierarchical Agglomerative Clustering for WSDL 

corpus 

 
 
 
6. Conclusion 

 
Semantic-based service discovery requires: (1) 

semantic service searching, where the service meaning 
rather than texts are the focus of retrieval, (2) semantic 
term suggestion, where conceptually relevant 
suggestions are provided based upon service 
consumer’s query terms, and (3) semantic service 
clusters, where semantically close Web services are 
grouped into hierarchical clusters for user friendly 
browsing and navigating. In this paper, LSA-based 
conceptual solution is proposed to deal with these three 
challenges. In particular, a five-step approach is 
presented to tackle the detailed technical issues, i.e. 
sparse matrix analysis and compression, singular value 
decomposition, cosine similarity calculation, term 
space construction, and hierarchical clustering. The 
prototype system of semantic-based service retrieval is 
developed and presented as a proof-of-concept system. 
For the future work, we would like to conduct 
extensive test in order to explore more quantitative 
experimental results for matchmaking performance. 
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