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2 

ABSTRACT: 22 

 23 

Similarities and differences in the density, distribution and habitat associations of three 24 

species from the pomacentrid genus Parma (Parma mccullochi, Parma occidentalis, Parma 25 

victoriae) were identified across 2,000 kilometres of temperate coastline in Western 26 

Australia. For P. mccullochi, fine-scale habitat associations were also assessed using the 27 

position of individual fish as observation points. A fourth species, the endemic Parma bicolor 28 

was rarely encountered. Satellite derived sea surface temperature was a good predictor of the 29 

distribution of the three commonly encountered species over the survey area. P. occidentalis 30 

were northerly distributed in warmer waters, P. victoriae southerly distributed in cooler 31 

waters, while P. mccullochi were cosmopolitan over the survey area, with the highest 32 

densities recorded towards the centre of the study area. These findings suggest that eco-33 

physiological theory may be applicable to describing the distribution of these, and similar, 34 

species. Similar habitat associations were observed for the three commonly encountered 35 

species, and in the case of P. mccullochi at a range of spatial scales. All species were 36 

associated with vertical or overhanging rock walls, and avoided areas of continuous algal 37 

canopy. P. occidentalis and P. mccullochi were associated with turfing and understorey algal 38 

forms. As the species use similar habitats, we suggest that where their distributions overlap 39 

they will experience niche overlap and resource competition. While each species may occupy 40 

different fundamental niches defined by different sea surface temperature requirements, 41 

further study may reveal that competition for resources between these species leads to 42 

competitive displacement on both local and geographical scales. 43 

  44 
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INTRODUCTION 45 

 46 

Large-bodied territorial damselfish species are an abundant and prominent part of the fish 47 

assemblage on rocky reefs in temperate Australian waters. This group is dominated by the 48 

genus Parma. The genus is made up of 10 species, and is confined to Australasian waters 49 

(Allen 1987). Damselfish species from the genus Parma are territorial and herbivorous 50 

(Moran & Sale 1977, Jones 1999). In tropical systems the role of damselfish as agents of 51 

biological disturbance is well documented (Hixon & Brostoff 1983, Lewis 1997, Ceccarelli et 52 

al. 2001, Hata & Kato 2004, Ceccarelli et al. 2005). Many tropical damselfishes use and 53 

defend algae within their territories as a food resource (Ceccarelli et al. 2001). The 54 

composition of these food resources is variable, from small monocultural algal farms, to large 55 

species rich assemblages (Montgomery 1980, Hixon & Brostoff 1983, Hixon & Brostoff 56 

1996, Hata & Kato 2002). While research to assess the role of Parma in maintaining food 57 

resources, and thus habitat heterogeneity in temperate Australasia is continuing, previous 58 

studies have shown only limited effects of herbivory by territorial Parma on the algal 59 

assemblage (Jones & Andrew 1990, Jones 1992). However, substantial small scale effects of 60 

Parma victoriae and Parma mccullochi in the maintenance of spawning sites consisting of 61 

short algal turf have been reported (Jones and Andrew 1990, Saunders et al. 2013). 62 

 63 

The geographical distribution of species is influenced by their physiological tolerance along 64 

environmental gradients such as water temperature (Pörtner et al. 2010, Langlois et al. 2012), 65 

as well as oceanographic and recruitment processes. However, on smaller scales the 66 

distribution of site-associated species such as territorial damselfish, may be more heavily 67 

influenced by discrete local habitat variables (Galaiduk et al. 2013), such as the reef 68 

topography, the algal community, or disturbance events. Individual damselfish species can 69 
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exhibit strong habitat preferences within their latitudinal range (Kingsford 1999, Galaiduk et 70 

al. 2013). The habitat associations of territorial damselfish are likely to relate to their dietary 71 

needs, their requirement for shelter and for a suitable substrate on which to lay eggs 72 

(Tzioumis & Kingsford 1995). The requirement for shelter and suitable substrate upon which 73 

to lay eggs should lead to an association with complex reef environments. Indeed, Parma 74 

mccullochi have previously been shown to be more abundant on high relief reefs than low 75 

relief reefs (Harman et al. 2003), and Parma microlepis, a species endemic to New South 76 

Wales, were more abundant when shelter sites of 30cm or greater height were available 77 

(Moran & Sale 1977). As a result of this need for shelter, substrate upon which to spawn and 78 

their dietary requirements, another limiting factor in the distribution of temperate damselfish 79 

species is likely to be macroalgal cover. Many damselfish species are herbivorous, preferring 80 

to consume filamentous red algae (see review by Ceccarelli et al. 2001). Elsewhere in 81 

Australasia Parma have been shown to be associated with small filamentous and foliose algal 82 

patches on reefs (Moran & Sale 1977, Norman & Jones 1984, Jones 1992, Shepherd et al. 83 

2008, Buckle & Booth 2009), or sea urchin barrens habitat (Anderson & Millar 2004, 84 

Galaiduk et al. 2013). However, in temperate Western Australia reefs are dominated by 85 

canopy forming algae (Wernberg et al. 2003, Toohey et al. 2007, Smale et al. 2010). Algal 86 

canopies physically restrict feeding access to more palatable understory algae, and affect the 87 

species composition and biomass of the associated understorey algae (Kennelly 1987b, 88 

Kendrick et al. 1999, Wernberg et al. 2005). As a result, temperate damselfish may avoid reef 89 

dominated by algal canopy. As examples, the abundance of Parma mccullochi on low relief 90 

limestone reefs was higher when canopy forming algae Ecklonia radiata and Sargassum spp. 91 

were not abundant (Harman et al. 2003). Western Australian Parma species might respond in 92 

a similar fashion to their congeners elsewhere in Australasia by inhabiting patches in the 93 

canopy caused by physical disturbance or other processes. An integrated sampling program 94 
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that measures the abundance patterns of Parma and considers both continuous environmental 95 

variables and discrete habitat variables together may allow us to identify habitat associations, 96 

and limiting resources for Parma. 97 

 98 

Langlois et al. (2012) proposed the notion that the south-western Australian coastal waters 99 

are an old, climatically buffered, infertile seascape (OCBIS), the marine equivalent of the 100 

terrestrial area of old, climatically buffered, infertile landscapes (OCBILs) in south-western 101 

Australia described by Hopper (2009). Langlois et al. (2012) suggested that the OCBIS of 102 

south-western Australia provided a simple model system in which to test predictive models. 103 

They modelled the distributions of 20 abundant fish species over the south-west of Australia, 104 

however did not investigate the abundance distributions of Parma. The ranges of the four 105 

species of Parma present in Western Australia have been described previously (Allen & 106 

Hoese 1975, Hutchins 1994, Hutchins 2001), and the abundances across their range estimated 107 

using a rapid census technique. Previous studies though, have been limited through the use of 108 

qualitative abundance estimates or presence absence recording. As such, the density of 109 

populations of species of Parma, and their habitat associations on Western Australian reefs 110 

remains relatively unknown. To begin to evaluate the ecological function of Parma in 111 

temperate Australia, it is important to investigate the patterns in distribution and density of 112 

the temperate damselfish genus Parma, with emphasis on their relationship to habitat, at a 113 

range of spatial scales. In this study broad scale geographical patterns in the density of each 114 

species along a water temperature gradient from mid/south-western to south-eastern Western 115 

Australia were investigated. Parma mccullochi was anticipated to be the most abundant and 116 

widely distributed species (Hutchins 1994, 2001), so fine scale habitat correlations were 117 

investigated in the area where this species was most abundant. 118 

 119 
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This study aimed to identify similarities and differences in the habitat associations of each 120 

species of Parma across the biogeographic scale of temperate Western Australia. Using the 121 

most abundant of the study species, Parma mccullochi, the habitat associations of each 122 

recorded fish were assessed at a single location. In addressing these aims we: 123 

1) Describe the distribution and density of Parma species on shallow rocky reefs in temperate 124 

Western Australia. 125 

2) Quantify the correlations between discrete abiotic and biotic habitat variables and sea 126 

surface temperature (as a proxy for water temperature) with geographical patterns in densities 127 

of Parma spp. 128 

3) Perform fine scale analyses to determine whether the habitat associations of individual P. 129 

mccullochi are random or whether the fish ‘select’ for specific habitats. 130 

 131 

MATERIALS AND METHODS 132 

 133 

Survey design 134 

 135 

This survey targeted shallow complex rocky reefs of between 4 and 12 metres depth, along 136 

Western Australia’s warm temperate coastline. Surveys were performed between November 137 

of 2005 and June of 2006. A nested hierarchical survey design was used, with seven 138 

geographical regions (Figure 1). Within each region four locations were chosen and within 139 

these four locations four different reef sites were selected. Twelve replicate 25 by 5 metre 140 

belt transects were carried out at each reef site. Distance between samples varied on a 141 

hierarchical spatial scale with regions being separated by thousands of kilometres to tens of 142 

kilometres, locations within regions being separated by tens of kilometres to kilometres, reef 143 

sites within locations being separated by kilometres to hundreds of metres and transects 144 
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within reef sites being separated by at least ten metres. Geographical regions and locations 145 

within regions were positioned along a temperature gradient following the coastline of south-146 

western Australia (Figure 1). This design resulted in a total of 7 regions, 28 locations, 112 147 

reef sites and 1344 transects, and spanned almost seven degrees of latitude and ten degrees of 148 

longitude, or approximately 2000 kilometres of coastline.  149 

 150 

Survey Method 151 

 152 

Diver-operated stereo-video, as originally described in Harvey and Shortis (1995), was used 153 

to swim transects of dimensions 5 by 25 metres (sample area 125 m
2
), with a 10 metre 154 

spacing between transects. All surveys were recorded in visibility of 7 metres or greater. A 25 155 

metre transect length was selected due to the patchy nature of the complex reefs targeted by 156 

this survey. By selecting a short transect length, each transect could be completed within the 157 

target habitat type. Transects were swum by teams of two SCUBA divers. The first diver 158 

swam the stereo-video system, while the second measured the transect length. The two divers 159 

were separated by a 10 m rope. The rope allowed communication between the divers, 160 

meaning that only one diver was present at the cameras, and so reduced the effects of diver 161 

presence on the fish assemblages that were captured on the video. The effects of SCUBA 162 

diver presence on the recorded fish abundance can be variable and species specific, possibly 163 

attracting or repelling fish (see Watson & Harvey 2007). Each transect was as linear as 164 

possible within the target habitat, and the 10 m distance between transects was measured 165 

using the 10 m rope between divers. The stereo-video system allows accurate and precise 166 

measurements of the length of fish, and the range and angle of a fish from the camera system 167 

(Harvey & Shortis 1998, Harvey et al. 2001). This allowed us to exclude fish that were 168 

outside the transect area. The video recording created a permanent record of each transect, 169 
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which allowed ex situ habitat analysis. The benefits of using this type of system for 170 

measuring fish densities and lengths have been discussed elsewhere (Harvey et al. 2001, 171 

2002, Harvey et al. 2004, Langlois et al. 2010, Watson et al. 2005). 172 

 173 

The stereo-video system used in this survey consisted of two Sony TRV 900 digital video 174 

cameras in underwater housings. The cameras and housings were securely mounted 70 cm 175 

apart onto a base bar and inwardly converged at an angle of eight degrees. A synchronisation 176 

diode was positioned on a fixed bar one metre in front of the cameras where it was within the 177 

field of view of both cameras. This diode allowed the synchronisation of the stereo images, 178 

so that accurate range and angle measurements could be obtained. The cameras were 179 

calibrated using the software package Vision Measurement System (Robson et al. 2006) 180 

before and after each field trip. This allowed us to calculate consistently accurate length and 181 

range measurements by accounting for any changes in the position of the cameras during 182 

transportation or use. 183 

 184 

Image processing 185 

 186 

The video from the left and right cameras for each transect was captured onto a PC as an 187 

audio video interlaced (.avi) file. The software package Vision Measurement System (VMS, 188 

Robson et al. 2006) was used to measure fork length of each fish, and also the three 189 

dimensional positions of fish relative to the camera system. These three dimensional 190 

positions were used to exclude fish that were further than 7 m from the camera system (7 m 191 

was the minimum usable visibility), or more than 2.5 m from the centre of the transect line. 192 

This allowed standardisation of the field of view used to the minimum visibility (Harvey et 193 

al. 2004) and control of the transect area to 125 m
2
. Fish that were within the sample area, yet 194 
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were visible in only one camera as they were hidden by benthos or rugose substrate, could 195 

not be measured, but were still counted and included in the density data.  196 

 197 

Broad scale habitat quantification 198 

 199 

Habitat analysis was undertaken from the video footage using a visual basic program in 200 

Microsoft Excel. This program was modified from Holmes (2005). Five estimates of habitat 201 

were made for each twenty five metre transect. The video file was split into five equal non-202 

overlapping sections and a frame from each section selected for analysis haphazardly, but at a 203 

point where the field of view encompassed a wide view of the habitat. Therefore, the 204 

categorisation of the habitat was done on a horizontal image, with a depth of field of 205 

approximately five metres. Rather than to quantify percentage cover absolutely as is possible 206 

with downward facing images with a consistent scale, we chose to categorise each 207 

observation into percentage cover or reef height / slope bins, or by recording the presence / 208 

absence of difficult to classify habitat variables. This approach was chosen to reduce any bias 209 

associated with the horizontally facing image. 210 

 211 

At each observation point the reef height and slope were estimated from the field of view and 212 

assigned categorical values. The reef or outcrop height was ranked from one to four 213 

according to the following categories: 1) Platform reef, 2) small outcrops (boulders or 214 

outcrops less than 1 m in height), 3) large outcrops (boulders or outcrops greater than 1 m but 215 

less than 3 m), and 4) massive outcrops (outcrops greater than 3 m in height). Slope was 216 

estimated and assigned to one of the following categories: 1) Less than 30
°
 (gentle slope), 2) 217 

30
°
 to 70

°
 (steep slope), 3) 70

°
 to 110

°
 (vertical wall), 4) greater than 110

°
 (overhanging wall), 218 

and 5) overhead overhanging reef or cave. Benthic biota cover was estimated at each 219 
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observation point for the following variables; sessile invertebrates, Ecklonia radiata (kelp) 220 

canopy, non-Ecklonia canopy forming algae (fucalean species), and understorey algae, which 221 

included fucalean, foliose, and turfing alga where a canopy was not present. These were 222 

assigned a rank from zero to six according to the following estimated percentage cover 223 

categories: 0) nil, 1) <1%, 2) 1-10%, 3) 10-25%, 4) 25-50%, 5) 50-75%, and 6) >75% cover. 224 

The understorey algae category was further divided into three groups; foliose algae, turf 225 

algae, and seagrass, the presence or absence of each of these three groups at each observation 226 

point were recorded. For geographical analysis these categorical observations were averaged 227 

to give measures of mean habitat at the reef site level (60 measurements, 1500 m
-2

). 228 

 229 

As this survey encompassed both the warm and cold extremes of range for different Parma 230 

species mean water temperature throughout the year was used instead of winter temperature. 231 

Sea surface temperature (SST) data derived from the Moderate Resolution Imaging 232 

Spectroradiometer (MODIS) instrument was obtained from ocean color web 233 

(oceancolor.gsfc.nasa.gov). A level 3 product, annual mean SST was obtained for two 234 

adjacent 9 km pixels at each location. The mean of these two pixels was calculated for each 235 

of 5 years (2002 to 2006 inclusive). These were then averaged across the 5 years to give a 5 236 

year mean sea surface temperature for each location. The 5 year mean SST was used as it 237 

represented the historical record of water temperatures on a scale that was thought to be 238 

relevant to long-lived, site-associated species such as those of the genus Parma. 239 

 240 

Fine scale habitat quantification 241 

 242 

Parma mccullochi have been reported as the most abundant and widely spread of the Parma 243 

species in Western Australia (Hutchins 1994, 2001), so they were selected for habitat analysis 244 
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on a finer scale. This analysis was carried out using data from one location in region 3 245 

(Marmion Lagoon, Perth) because densities of this species were found to be highest there. 246 

Rather than averaging habitat observations to the site level, the data from each of the five 247 

individual habitat observation points on each transect were used. These were compared to 248 

similar observation points made where each P. mccullochi was encountered. These 249 

observations were made from a single video frame, at the point in time where the fish was 250 

measured. The habitat visible in the entire field of view at that frame was characterised 251 

following the procedure described above. 252 

 253 

Statistical Analysis 254 

 255 

Geographical patterns in density and range 256 

Total number of fish per reef site (1500 m
2
) for each Parma species at each of the seven 257 

geographical regions were calculated and represented graphically. Univariate ANOVA 258 

analysis were performed using MINITAB release 13 on square root transformed densities of 259 

each species, using a three factor (Region, Location and Site) hierarchical nested model. 260 

Region was a fixed factor with seven levels. The factor location had four levels and was 261 

nested within region. The factor reef site also had four levels and was nested within location. 262 

A square root transformation was applied as this resulted in the data most closely fitting a 263 

normal distribution as tested using Anderson-Darling normality tests.  264 

 265 

The distribution patterns for each species of Parma were plotted against sea surface 266 

temperature. Following the method outlined in Langlois et al. (2012), quantile regression 267 

spline models (Koenker & Bassett 1978) were used to fit 95
th
 percentile splines of the density 268 

of each species to mean sea surface temperature (after Anderson 2008). Models were fitted 269 



12 

using the function rq() (part of the ‘quantreg’ package, Koenker 2010) combined with the 270 

function bs() in the ‘splines’ package in the R computer programming language (R Core 271 

Team 2012). The appropriate degree of the polynomial for each spline was determined from a 272 

set of models having polynomial of degree 1, 2, 3 or 4 using the corrected AIC selection 273 

criteria (AICc). The quantile regression sandwich formula and Hall–Sheather bandwidth rule 274 

were used to estimate goodness of fit and calculate P-values for each polynomial degree to 275 

assess the polynomial degree that was selected using the AICc (after Cade et al. 2005).  276 

 277 

Geographical relationship of density to SST and habitat 278 

In order to elucidate the role of environmental variables in determining the distribution and 279 

community structure of the three Parma species over the survey area a distance based linear 280 

model (DistLM) was calculated using the PERMANOVA+ (Anderson et al. 2008) package in 281 

PRIMER 6 (Clarke & Gorley 2006). This analysis selects the environmental variables that 282 

best explain the variation in the density of the three Parma species over the entire survey 283 

area. A resemblance matrix of the densities per reef site (1500 m
2
) of each of the three Parma 284 

species was constructed from square root transformed data using the zero-adjusted Bray-285 

Curtis coefficient (Clarke et al. 2006). The Bray-Curtis coefficient was selected as it has the 286 

property of independence of joint absences. However, this property results in an undefined 287 

value where samples contain no individuals at all. To avoid this difficulty the zero-adjusted 288 

Bray-Curtis includes a dummy species of value one in all samples. Habitat predictor variable 289 

data were not transformed. Where habitat variables were strongly correlated (> ± 80 %) one 290 

variable was excluded. Sand cover was negatively correlated to reef cover so was excluded 291 

from analysis. Mean sea surface temperature data was also included in the model. No 292 

environmental variables were strongly correlated with sea surface temperature. DistLM was 293 

performed using the best selection procedure and the AICc. AICc was originally proposed by 294 
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Sugiura (1978) to reduce bias in linear regression models. It has since been shown to also 295 

greatly improve model selection with small sample sizes (Hurvich & Tsai 1989, Hurvich et 296 

al. 1990). For these reasons it was selected for use in our analysis. The variables selected to 297 

make up the model were then plotted using distance based Redundancy Analysis (dbRDA). 298 

Spearman rank correlations of the densities of each Parma species to the dbRDA axis were 299 

calculated. 300 

 301 

Habitat associations of each species 302 

While the analysis above considered the three common species together, we also wanted to 303 

assess the habitat associations of each species individually. For this analysis DistLM using 304 

the best selection procedure and AICc criterion was used to model the distributions of each of 305 

the three species individually using the environmental variables described above. Marginal 306 

tests were used to identify the environmental variables that explained a significant portion of 307 

the variation in the densities of each of these species. For Parma mccullochi DistLM and 308 

marginal tests were performed across all seven regions as this species was ubiquitous. For 309 

Parma occidentalis and Parma victoriae this analysis was carried out only using data from 310 

the one region where they were most abundant (regions 1 and 7 respectively). This was to 311 

reduce the likelihood of detecting spurious relationships with habitat, as these species were 312 

rare in other regions. 313 

 314 

Fine scale habitat associations 315 

Fine scale habitat analysis for Parma mccullochi was performed at one location in region 3 316 

(Marmion Lagoon, Perth). This analysis was designed to determine whether the distribution 317 

of P. mccullochi along a transect was random or whether the fish were ‘selecting’ for specific 318 

habitats. Observations of habitat were recorded from the point on the video where each P. 319 
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mccullochi was measured. These observations were compared to the available habitat, which 320 

was calculated from five haphazard observations along each transect, as described previously. 321 

The percentage of observations where each category of habitat variable was recorded was 322 

plotted for the expected habitat and observed habitat when P. mccullochi were present. Chi-323 

square goodness of fit tests were calculated to test a hypothesised difference between 324 

expected and observed observations. Categories where the expected values were very low 325 

were summed together to allow testing.  326 

 327 

RESULTS 328 

 329 

Geographical patterns in density and range 330 

 331 

Over the entire survey area only one Parma bicolor individual was recorded, in region 3 at 332 

Rottnest Island. This species has been omitted from analysis due to its extreme rarity. 333 

Differences in the densities of the three commonly observed Parma species per reef site 334 

sampled (1500m
2
) were observed throughout the survey area (Figure 2). Significant 335 

differences at α = 0.05 in densities of all Parma species were observed between regions 336 

(Table 1). While these were significant for each species, significant results were also returned 337 

for locations within regions and reef sites within locations. There is a high degree of 338 

variability expressed in the sums of squares at all levels of the ANOVA design. This 339 

variability reflects the patchily distributed nature of these three species. 340 

 341 

Parma mccullochi reached a maximum density of 96 individuals 1500 m
-2

 (Figure 2) at a reef 342 

site in region 3 (Wanneroo Reef, Marmion Lagoon, Perth). Parma occidentalis also reached 343 

its maximum density of 21 individuals 1500m
-2

 (Figure 2) at a site in region 3 (Cow Rocks, 344 
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Marmion Lagoon, Perth). Away from the Marmion Lagoon P. occidentalis was absent from 345 

reefs surveyed in region 3, as a result of which the mean density per reef (3.3 ± 0.7 SE, n = 346 

16) is highest in region 1 (Port Gregory to Geraldton) where it was consistently present. 347 

Parma victoriae was found to reach its maximum density of 23 individuals 1500 m
-2

 in 348 

region 7 (Esperance) at Cull Island (Figure 2). 349 

 350 

P. mccullochi showed a unimodal distribution across the geographical range studied here, 351 

with high densities at both region 3 and region 5 (Perth and Albany, Figure 2). At both the 352 

northern and south-eastern extremes of the survey area the mean density of P. mccullochi was 353 

very low, less than two and four individuals on average per 1500 m
2
 respectively (region 1, 354 

1.6 ± 0.5 SE, n = 16; region 7, 3.3 ± 0.9 SE, n = 16). The extremes of the survey area are 355 

likely to be close to the range limits of P. mccullochi. Parma occidentalis was present only in 356 

the three northernmost regions (Figure 2). It reached the highest mean density (3.3 ± 0.7 SE, 357 

n = 16) in region 1 (Port Gregory to Geraldton). Region 3 (Perth) was the southern range 358 

limit of P. occidentalis on shallow coastal reef (Figure 2). Parma victoriae was present at 359 

five of the seven regions sampled, from region 3 (Perth), and along the south coast to region 360 

7 (Esperance). With the exception of region 6 (Bremer Bay), where only two individuals 361 

were recorded, the density of P. victoriae was found to increase south and eastward from 362 

region 3 to a maximum mean density of 5.1 fish 1500 m
-2

 (± 1.5 SE, n = 16) at region 7 363 

(Esperance). Region 3 (Perth) was the northern range limit for this species on shallow coastal 364 

rocky reef in Western Australia.  365 

 366 

Geographical relationship of density to SST and habitat  367 

 368 
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A model using five predictor variables to explain 33% of the variation in the population of 369 

Parma densities was generated from the DistLM procedure (R
2
 = 0.33, AICc = 737.83). The 370 

environmental variables were: sea surface temperature, height of reef or rocky outcrop above 371 

sea bottom, presence of vertical walls and overhangs, presence of turfs and cover of the kelp 372 

Ecklonia radiata (Figure 3). Marginal tests identified sea surface temperature and the 373 

presence of turfing algae as the two most important predictor variables, accounting for 16% 374 

and 10% of the variability in densities of the Parma assemblage respectively (P<0.001). The 375 

first two dbRDA axis accounted for 55% and 42% of the variation in the fitted model 376 

respectively, and together accounted for 32% of the total variation in Parma density data 377 

(Figure 3). Parma occidentalis and Parma victoriae densities were positively and negatively 378 

correlated respectively, to the first dbRDA axis. Sea surface temperature was strongly 379 

correlated to this axis. The southern and northern extremes respectively of these species were 380 

encompassed by the survey, at region 3. At this region from 2002 to 2006 the yearly mean 381 

sea surface temperature ranged between 17.6
°
C and 20.7

°
C with a mean of 19.9

°
C 382 

(oceancolor.gsfc.nasa.gov). Parma mccullochi density was negatively correlated to the 383 

second dbRDA axis, as was turfing algae presence. Other predictor variables included in the 384 

model, may play some role in explaining variation in Parma densities (Figure 3). Yet these 385 

were not strongly correlated to the first two dbRDA axes which accounted for so much of the 386 

variation in the fitted model (Table 2). On a smaller scale these variables showed greater 387 

predictive power (Table 3). The variables associated with more complex reef, such as Reef / 388 

outcrop height, and increasing cover of Ecklonia radiata, were correlated with P. occidentalis 389 

density (Figure 3). The correlation vector for P. victoriae increased in the opposite direction, 390 

and P. victoriae appeared negatively correlated with E. radiata cover (Figure 3). Across the 391 

geographical range surveyed reef site scale patterns in densities of Parma were most strongly 392 

correlated to sea surface temperature and the presence of turfing algae.  393 
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 394 

Habitat associations of each species 395 

Further modelling of each species of Parma individually using the environmental variables 396 

revealed that vertical or overhanging walls explained a large proportion of the patterns in 397 

density of all species (Table 3). Turf algae presence, overhead reef or cave, overhanging wall, 398 

and reef or outcrop height above the seabed were selected by the model to best predict the 399 

abundance of Parma mccullochi (Table 3). Turf algae presence, other algae cover and 400 

overhead reef or cave, and overhanging wall explained the largest proportions of the variation 401 

in the density of P. mccullochi across the whole survey area (Table 3). Marginal tests showed 402 

that these relationships were statistically significant (Table 3). Turf algae presence and 403 

overhanging wall were selected by the model to best predict the abundance of Parma 404 

occidentalis at region 1 (Table 3). Hard coral cover, turf algae presence and overhanging wall 405 

all explained greater than 10% of the variation in P. occidentalis densities at region 1. 406 

However, none of these relationships were statistically significant (Table 3). In the case of 407 

Parma victoriae, the explanatory variables vertical wall and seagrass presence were selected 408 

by the model to best explain the abundance of this species at Region 7 (Table 3). Vertical 409 

wall and overhanging wall explained large and statistically significant proportion of the 410 

variation in the densities of P. victoriae at region 7 at 34% and 31% respectively (Table 3). 411 

Seagrass presence, non-Ecklonia canopy cover and hard coral cover all explained greater than 412 

10% of the variation yet the relationships were not significant (Table 3). The inclusion of the 413 

variable seagrass presence in the model suggests that P. victoriae are associated with the 414 

edges of reef habitat, near soft seabed where seagrass beds are established. 415 

 416 

Fine scale habitat correlations with Parma mccullochi 417 

 418 
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At the fine scale there was evidence of association of Parma mccullochi to certain habitat 419 

types. All χ
2
 comparisons of expected and observed habitat observations proved significant at 420 

α = 0.05 (Table 4). An association of individual Parma mccullochi with reef or outcrop 421 

greater than 3 metres in height was apparent (Figure 4a). Greater than 45 % of fish were 422 

observed here, while this habitat accounted for only 8 % of expected observations. A trend of 423 

association with reef of increasing height was demonstrated by P. mccullochi. P. mccullochi 424 

also demonstrated a clear association with reef classed as vertical wall. 43 % of fish of this 425 

species were observed on vertical walls, while this accounted for only 19 % of expected 426 

observations. P. mccullochi also demonstrated an association with low to medium (1-25 %) 427 

Ecklonia radiata cover and areas with nil or with low non-Ecklonia canopy cover (Figure 428 

4d). P. mccullochi were most often recorded where higher covers of understorey macroalgae 429 

were recorded (Figure 4e).  430 

 431 

Length frequency distributions 432 

 433 

The fork length frequency distributions of Parma mccullochi were broadly similar in shape 434 

(Figure 5), although at region 3 the median length classes were more evenly populated than at 435 

other regions. The length frequency distribution at region 3 differed significantly to those at 436 

regions 2, 4, 5, and 6 (two sample Kolmogorov-Smirnov tests; all P < 0.014). At regions 2, 3, 437 

and 4 the range of lengths recorded was similar, whilst at regions 1, 5, 6, and 7 fewer very 438 

large or very small P. mccullochi were recorded (Figure 5). Statistical comparisons of length 439 

frequency distributions were not conducted at regions 1 or 7 due to the low number of lengths 440 

measured at these regions. Similarly, statistical tests of the length frequency distributions of 441 

Parma occidentalis and Parma victoriae were not conducted due to low numbers of length 442 

measurements. The length frequency distributions for Parma occidentalis generally covered a 443 

similar range to those of P. mccullochi, however the maximum fork length recorded for P. 444 
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occidentalis was 299 mm, compared to 346 mm for P. mccullochi. P. victoriae were 445 

generally smaller than the other two common species. The maximum fork length recorded for 446 

Parma victoriae was 262 mm.  447 

 448 

DISCUSSION 449 

Our study described the distributions of three congeneric pomacentrid species throughout 450 

temperate south-western Australia. The fourth species, Parma bicolor, is endemic to Western 451 

Australia (Hutchins 2001). However, in our survey only one individual was recorded. This 452 

species is often observed on deeper reefs along the south coast of Western Australia, with a 453 

preferred depth range of 30 metres or greater (Hutchins 1994). This depth range was beyond 454 

the scope of this survey. It may be that P. bicolor inhabits similar habitat to other Parma 455 

species, simply shifted to a deeper water environment, possibly as a result of competition 456 

with con-generics in the shallow complex rocky reefs. Identification of the ecological niches 457 

of coexisting species aids in the detection and discussion of any interspecific competition 458 

(Sale 1974, Ebersole 1985, Huston 1999). The three common species were found to have 459 

overlapping distributions, Parma occidentalis was northerly (warm water) distributed, Parma 460 

mccullochi was found across the survey area, and Parma victoriae was southerly (cool water) 461 

distributed.  462 

 463 

Sampling occurred over 7 months (November of 2005 until June of 2006, the Austral summer 464 

and autumn) encompassing the main recruitment period for these fishes (Saunders et al. 465 

2013). While it is possible that the density patterns may have been affected by seasonal 466 

recruitment, our length information shows no evidence of a seasonal increase in the number 467 

of recruits. Very few recruits were counted. Only eleven P. mccullochi and one P. 468 

occidentalis were measured at less than 100 mm in length. The smallest P. victoriae was 469 
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measured at 109 mm in length. Very small recruits of these species are cryptic and find 470 

refuge in small cracks in the reef. Therefore, they may not have been detected by our video 471 

based sampling method. 472 

 473 

Sea surface temperature decreased from north to south-east over the survey area. Our 474 

geographical scale modelling found that sea surface temperature was an important predictor 475 

for both Parma occidentalis and Parma victoriae densities over the survey area. However, 476 

some components of the pattern in density in our survey suggest that local habitat variables 477 

may be just as important as water temperature in determining the density of these species. For 478 

example, P. occidentalis is a sub-tropical / warm temperate species that has been suggested to 479 

be expanding southward in response to warming trends (Wernberg et al 2013). Yet the 480 

maximum density of this species was at a site in region 3. This region also encompassed the 481 

southern range limit of this species. Another example is evident in the density of P. victoriae 482 

in region 6. The density of this species was high at region 5 to the west and region 7 to the 483 

east, but only two individuals were recorded at region 6. A similar importance of local habitat 484 

over water temperature in determining the abundance of Parma was suggested by Galaiduk et 485 

al. (2013). However, on broad geographical scales SST was a good predictor of the density of 486 

Parma in south-western Australia. Temperature changes can increase stress levels and inhibit 487 

growth rates in fishes (Wendelaar Bonga 1997) including pomacentrids (for example see; 488 

Nakano et al. 2004, Figueira et al. 2009). The southern and northern extremes of range of P. 489 

occidentalis and P. victoriae respectively were found around region 3. The range in sea 490 

surface temperature at this region may encompass the minimum and maximum temperature 491 

respectively that allows successful population processes for these species. Highest densities 492 

of Parma mccullochi were found at region 3, although P. mccullochi was cosmopolitan over 493 

the survey area. Density of P. mccullochi was generally high over the survey area, but did 494 
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decrease quickly at the warm and cool extremes of the survey range. This pattern is broadly 495 

similar to the abundant centre distribution of this species which was described by Tuya et al. 496 

(2008). The abundant centre hypothesis has been a common assumption in ecology (Austin 497 

1987, Cox & Moore 1993, Sagarin & Gaines 2002). However, the generality of this 498 

hypothesis in real world applications has been increasingly questioned (Austin 1987, Sagarin 499 

& Gaines 2002, Sagarin et al. 2006, Tuya et al. 2008, Langlois et al. 2012). An abundant 500 

centre distribution was described in only 39% of literature that was reviewed by Sagarin and 501 

Gaines (2002). Langlois et al. (2012) modelled the distributions of 20 abundant fish species 502 

over the south-west of Australia, and demonstrated that 15 of the 20 had unimodal 503 

distributions, while four had ramped distributions. Over our survey area, P. mccullochi had a 504 

unimodal distribution, P. victoriae a ramped distribution favouring cooler waters, and P. 505 

occidentalis were more abundant in warmer waters. Langlois et al. (2012) conclude that eco-506 

physiological theory (Pauly, 2010; Pörtner et al., 2010) is appropriate for application to 507 

predictive models of the abundance distribution of marine species, and our observations 508 

support this conclusion, at least over broad geographical scales in Western Australia.  509 

 510 

In addition to possible physiological effects, sea surface temperature may be a proxy for 511 

physical and biological oceanographic processes. Such patterns could influence survivorship 512 

of fish larvae and the feeding of reef fish (Kingsford 1989) which may in turn influence 513 

patterns of reef fish assemblages. While sea surface temperature appears to separate Parma 514 

victoriae from other species on the south coast of W.A. other environmental factors may be at 515 

play. For example, the dominance of the canopy algae Ecklonia radiata decreases along the 516 

south coast as it is replaced by other fucalean canopy species (Wernberg et al. 2003). This 517 

pattern may be reflected in the correlation of E. radiata in a similar direction to P. 518 

occidentalis. Rather than indicating a causal relationship, this correlation may simply be due 519 
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to P. occidentalis only being recorded on the west coast, where E. radiata canopy is more 520 

dominant.  521 

 522 

Regional scale modelling of the habitat to each species separately revealed similarities in 523 

habitat associations between species. All three species were associated with vertical or 524 

overhanging rock walls. Fine scale observations showed that Parma mccullochi were 525 

associated with complex reef habitat, typified by a reef height greater than three metres and 526 

with a vertical reef face. These observations are supported by (Harman et al. 2003) who 527 

found similar patterns for this species. 528 

 529 

In modelling the relationships of Parma to environmental variables over the survey area, we 530 

found that the presence of turfing algae predicted the density of Parma mccullochi well. 531 

Regional scale modelling of the species separately also outlined associations of Parma to 532 

certain algal morphologies. P. mccullochi and Parma occidentalis were both associated with 533 

turf algae presence and understorey algal cover. In addition, our fine scale habitat 534 

observations for P. mccullochi revealed an association with high understorey algae cover and 535 

low canopy cover (both Ecklonia radiata and otherwise). While little published information 536 

is available on P. mccullochi and P. occidentalis, as territorial herbivores (Jones 1999) they 537 

are likely to eat turfing algae and understorey algal species. Published information is 538 

available for P. victoriae, which has a strong preference for red algal understorey species 539 

such as from the genera Champia and Rhodoglossum (Jones 1999). Other Parma species 540 

have been shown to feed on red understorey algae, or within breaks in algae canopy within 541 

their territories (Norman & Jones 1984, Jones & Norman 1986, Andrew & Jones 1990, Jones 542 

& Andrew 1990, Jones 1992, Shepherd et al. 2008). Additionally, the maintenance of turfing 543 

algae (usually red, polysiphonious algae) as a food resource has been recorded in many 544 
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tropical herbivorous pomacentrids (Hixon & Brostoff 1983, Ceccarelli et al. 2001, Hata & 545 

Kato 2004, Barneche et al. 2009). In addition to food, both P. mccullochi and P. victoriae 546 

have been shown to maintain small patches of turfing algae as nest sites (Jones & Andrew 547 

1990, Saunders et al. 2013), this may be another driver for the association with turf algae that 548 

we observed. Our observed association of Parma with understorey algae may be due to 549 

Parma taking advantage of breaks in the algal canopy. A similar pattern has been reported for 550 

Parma species in New Zealand, that inhabit breaks in algal canopy caused by sea urchins 551 

(urchin barrens) (Anderson & Millar 2004). Breaks in the algal canopy are rarely caused by 552 

sea urchins in south-western Australia (Vanderklift & Kendrick 2005), probably due to low 553 

sea urchin abundances (Fowler-Walker & Connell 2002, Vanderklift & Kendrick 2004). 554 

However, breaks can occur as a result of storm disturbance (Kennelly 1987a).  555 

 556 

Similar habitat use suggests that where the distributions of the three common species of 557 

Parma in south-western Australia overlap, they can be considered to occupy a similar post-558 

interaction ecological niche. In areas where the species co-occurred they were often recorded 559 

on the same transect. On a fine scale, the biogeographic density patterns are likely to be 560 

directed by local scale processes such as recruitment, or by the availability of resources, 561 

territorial interactions and competition for use of these resources (Chase & Myers 2011, 562 

Wiens 2011). In addition, species competition should be considered in connection with the 563 

niche concept, since some similarity and overlap in niches is a prerequisite of competition 564 

(Alley 1982). Where the distributions and habitat use of Parma species overlap, competition 565 

for resources is likely to be important in determining their realised niches. Indirect evidence 566 

of such processes is suggested by our study. Earlier in this discussion we have highlighted the 567 

importance of local scale habitat variables in determining the density of Parma in south-568 

western Australia. Such small scale habitat variation may lead to interspecific competition for 569 
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resources. For example, at regions 5 and 6 the density of P. mccullochi was high, while the 570 

density of P. victoriae was comparatively low. By contrast at both the northern and southern 571 

adjacent regions (regions 4 and 7) this pattern was reversed. While these density patterns 572 

were undoubtedly influenced by other factors, such as recruitment and oceanographic 573 

processes, and habitat variation, they suggest interspecific interactions and competition. To 574 

tease out the separate influences of these processes would require well designed targeted 575 

research. Further investigation of Parma spp. behaviour and resource utilisation may clarify 576 

any niche overlap or resource competition between species. 577 

 578 

This study reveals similarities in the habitat use of three related species of territorial 579 

pomacentrid. We propose that increased reef complexity results in greater availability of 580 

shelter sites, and that the association of Parma mccullochi and Parma occidentalis with 581 

turfing algae and low or absent canopy cover is due to the use of turfing and understorey 582 

algae as food and nesting resources in a similar fashion to many other pomacentrids. The 583 

species however were found to have different geographical distributions. It is likely that 584 

competition for resources between these species leads to competitive displacement on both 585 

local and geographical scales. In comparison to elsewhere, both globally and nationally, the 586 

south-western Australian marine environment has been geologically stable and isolated, and 587 

free of glaciation events and mass extinctions throughout the Cainozoic era (see Phillips 2001 588 

and Langlois et al. 2012 for review). The marine environment has been moderated by the 589 

warm Leeuwin current for 40 million years (McGowran et al. 1997), and this stability, in 590 

combination with its switching on and off periodically (McGowran et al. 1997), may have 591 

contributed to the high diversity and degree of endemism in south-western Australia (Phillips 592 

2001). In this environment our three common Parma species may have evolved over time to 593 



25 

occupy differing fundamental niches, as sea surface temperature is strongly correlated to the 594 

distribution of these species over the geographical area surveyed.  595 

  596 
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 798 

Figure 1. Survey design illustrating the seven geographical regions surveyed. Within each region four 799 
locations are illustrated. From northernmost through south to easternmost the regions (bold) and 800 
locations are: 1 Port Gregory to Geraldton locations were; Port Gregory North, Port Gregory South, 801 
Drummond Cove and Geraldton. 2 Jurien Bay locations were; Leeman, Green Head, Jurien Bay and Cervantes. 802 
3 Perth and Rottnest Island locations were; Marmion Lagoon, Rottnest Island, Carnac Island and Shoalwater 803 
Islands Marine Park. 4 South-West Capes locations were; Geographe Bay, Cape Freycinet, Hamelin Bay and 804 
Flinders Bay: 5 Albany locations were; Cosy Corner, Albany, Two Peoples Bay West and Two Peoples Bay 805 
East. 6 Bremer Bay locations were; Dillon Bay, Point Henry, Back Beach Bommie and Peppermint Beach. 7 806 
Esperance and inshore islands of the Recherché Archipelago locations were; Observatory Island, Cull and 807 
Black Islands, Thomas and Woody Islands, and Cape Le Grand. 808 
  809 
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 810 

Figure 2. Abundance (fish 1500m
-2

) and 95th percentile regression spline models for each Parma species 811 
and the mean SST at each location. P values for the fit of the polynomials are overlaid.  812 
  813 
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Table 1. Results of a three factor fully nested analysis of variance on square root transformed densities of 814 
three Parma species across seven regions. Region is a fixed factor 815 
 816 

Parma mccullochi 

 DF SS MS F P 

Region 6 133.17 22.20 4.45 0.005 

Location (Region) 21 104.69 4.99 3.37 <0.001 

Reef site (Location (Region)) 84 124.27 1.48 4.12 <0.001 

Error 1232 442.32 0.36   

Total 1343 804.45    

      

Parma occidentalis 

 DF SS MS F P 

Region 6 8.88 1.48 4.633 0.004 

Location (Region) 21 6.71 0.32 2.232 0.005 

Reef site (Location (Region)) 84 12.02 0.14 2.504 <0.001 

Error 1232 70.41 0.06   

Total 1343 98.02    

      

Parma victoriae 

 DF SS MS F P 

Region 6 16.98 2.83 8.09 <0.001 

Location (Region) 21 7.35 0.35 1.68 0.051 

Reef site (Location (Region)) 84 17.51 0.21 3.70 <0.001 

Error 1232 69.34 0.06   

Total 1343 111.18    

 817 
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 819 
Figure 3. Distance based RDA ordination of first and second fitted axis relating environmental variables 820 
to Parma density across the entire survey area. Vectors plotted show the strength and direction of 821 
multiple partial correlations of the environmental variables and Spearman rank correlations of Parma 822 
density to the first and second RDA axis. The first and second dbRDA axis explained 55% and 42% of the 823 
variation in the fitted model respectively 824 
  825 
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Table 2. Correlations to the first and second dbRDA axis (Figure 3) of selected environmental variables 826 
and Parma densities per reef site (1500m

2
) 827 

 
Multiple partial correlation  

Variable dbRDA1 dbRDA2 

Turf Presence 0.02 -0.92 

Sea Surface Temperature 0.91 -0.02 

Ecklonia Cover 0.37 0.16 

Constant Overhang 0.10 -0.34 

Reef / outcrop height 0.17 0.08 

   

Spearman rank correlation  

Variable dbRDA1 dbRDA2 

Parma mccullochi <0.01 -0.57 

Parma occidentalis 0.62 0.07 

Parma victoriae -0.55 0.09 
 

 828 

  829 
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Table 3 The five environmental variables that explained the greatest proportion of the variation in the 830 
densities of each of three species of Parma. The variables highlighted in bold were selected to best model 831 
the abundance of each species through DistLM using best selection procedure and AICc selection criteria 832 
(P. mccullochi includes a sixth variable which was selected by the model but had low predictive power by 833 
itself). 834 
 835 

P. mccullochi all regions AICc 87.5, R2 0.44 Number of variables: 4 

Variable SS(trace)  Pseudo-F P Proportion 

Turf Presence 105.23 39.64 <0.001 0.26 

Other Algae Cover 56.29 18.16 <0.001 0.14 

Overhead or cave 48.90 15.44 <0.001 0.12 

Overhanging wall 33.64 10.18 0.003 0.08 

Hard Coral Cover 13.79 3.95 0.048 0.03 

Reef / Outcrop Height 0.57 0.16 0.697 0.001 

     P. occidentalis region 1 AICc - 1.5, R2 0.29 Number of variables: 2 

Variable SS(trace)  Pseudo-F P Proportion 

Hard Coral Cover 2.20 3.00 0.114 0.18 

Turf Presence 2.01 2.69 0.125 0.16 

Overhanging wall 1.75 2.28 0.150 0.14 

Other Algae Cover 1.06 1.30 0.274 0.09 

Foliose Presence 1.02 1.24 0.279 0.08 

     P. victoriae region 7 AICc 3.0, R2 0.47 Number of variables: 2 

Variable SS(trace)  Pseudo-F P Proportion 

Vertical Wall 7.43 7.16 0.028 0.34 

Overhanging wall 6.83 6.31 0.034 0.31 

Seagrass Presence 4.78 3.90 0.090 0.22 

Non-Ecklonia Canopy 

Cover 
3.80 2.93 0.111 0.17 

Hard Coral Cover 2.46 1.77 0.211 0.11 

  836 
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 837 
 Figure 4. Plots showing percentage of observations for categories of each of five habitat classes recorded 838 
at Marmion Lagoon in region 3 (Perth). Observations are illustrated for: Randomly sampled habitat 839 
observations, calculated at five points along each of twelve transects, at each of four reef-sites (n = 240) 840 
and observed habitat where P. mccullochi were present, calculated at points where each P. mccullochi 841 
individual was observed (n = 221)   842 
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Table 4. Chi-square goodness of fit tests comparing observed frequencies of habitat at points where 843 
Parma mccullochi were present to the expected proportion of randomly sampled habitat observations 844 
calculated at five points along each transect, for each of  five habitat classes. Degrees of freedom are in 845 
parentheses. 846 
 847 

 

Observed frequencies of 

habitat where P. mccullochi 

were present 

Expected proportions of 

randomly sampled habitat 

observations 

Reef or outcrop height 

Platform reef 4 (1.81%) 20.4% 

0-1m 28 (12.67%) 7.9% 

1-3m 86 (38.91%) 62.9% 

>3m 103 (46.61%) 8.8% 

 

χ2 
(3) = 425.98, P<0.001 

 

Reef slope 

Gentle slope 19 (8.60%) 27.9% 

Steep slope 35 (15.84%) 15.4% 

Vertical wall 97 (43.89%) 19.2% 

Overhanging wall 47 (21.27%) 21.3% 

Overhead overhang/cave 23 (10.41%) 16.3% 

 

χ2 
(4) = 104.70, P<0.001 

 

Ecklonia radiata canopy cover 

<1% 88 (39.8%) 48.8% 

1-10% 36 (16.3%) 7.5% 

10-25% 41 (18.6%) 14.2% 

25-50% 28 (12.7%) 9.6% 

50-75% 21 (9.5%) 8.3% 

>75% 7 (3.2%) 11.7% 

 

χ2 
(5) = 45.62, P<0.001 

 

Non-Ecklonia canopy cover 

<10% 186 (84.2%) 61.3% 

10-25% 20 (9.1%) 8.3% 

25-50% 4 (1.8%) 6.7% 

50-75% 9 (4.1%) 5.8% 

>75% 2 (0.9%) 17.9% 

 

χ2 
(4) = 63.77, P<0.001 

 

Understorey algae cover 

<10% 15 (6.8%) 27.9% 

10-25% 15 (6.8%) 11.7% 

25-50% 41 (18.6%) 8.8% 

50-75% 50 (22.6%) 10.4% 

>75% 100 (45.3%) 41.3% 

 
χ2 

(4) = 96.59, P<0.001 

 848 
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 849 

Figure 5. Length percentage frequency histograms for each of the three common species of Parma at each 850 
region. ‘*’ indicates that only one individual was measured at this region, so 100% of length 851 
measurements were in this length bin. ‘n’ represents the number of lengths measured, and is not 852 
representative of the density of fish recorded. 853 
 854 


