
A finite word poset
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Abstract
Our word posets have finite words of bounded length as their elements, with

the words composed from a finite alphabet. Their partial ordering follows from the
inclusion of a word as a subsequence of another word. The elemental combinatorial
properties of such posets are established. Their automorphism groups are deter-
mined (along with similar result for the word poset studied by Burosch, Frank and
Röhl [4]) and a BLYM inequality is verified (via the normalized matching property).

AMS Classification: Primary - 06A07. Secondary - 06B25, 68R15.

1 Introduction

Combinatorics on words (or on finite sequences) is a well developed independent theory,
rooted in several branches of mathematics, such as group theory and probability, and ap-
plied in such areas as computer science and automata theory. It considers finite sequences
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from a finite alphabet, Γ = {1, 2, . . . , k}. These sequences form a partially ordered set
(or poset for short), with the ordering following from inclusion of one sequence as a sub-
sequence of another sequence. The Higman theorem establishes one of the most basic
properties of this infinite poset: it contains no infinite antichain (Higman, 1952, [9]). An
excellent introduction to this topic is due to M. Lothaire [13].

In this paper we study the finite version of this poset: let P(n) denote the set of
all sequences of lengths up to n—composed from the finite alphabet Γ—equipped with
the aforementioned sequence-subsequence partial ordering. This poset clearly has a rank
function (the rank of a sequence being its length); therefore, it is referred to as graded.

We denote the ith level of P(n) by P(n)
i , comprising all ki i-sequences, 0 ≤ i ≤ n.

Deleting elements occurring at given positions in a sequence yields a subsequence [3,
p. 569]. To be explicit, a subsequence retains no information about the original positions
of its elements. For example, the sequence 1211 yields the distinct 2-subsequences 11, 12,
and 21. Subsequences are elsewhere also called subwords, but we use only the notion of
subsequences in the sequel.

The posets P(n), on one hand, exhibit a lot of nice combinatorial properties: for in-
stance, as will be shown subsequently, they are Sperner, and they manifest the normalized
matching property. On the other hand, these posets have some peculiar properties as well:
for example, their Hasse diagrams, as graphs, are regular upward, but not regular down-
ward, and their automorphism group has very few elements (see Section 2). (In the sequel
we denote arbitrary posets by P.)

The motivation for these investigations involve error-correcting codes with the insertion-
deletion distance [10]. In fact, these are collections of n-sequences of letters from Γ, having
the property that the length of a subsequence common to any pair of codewords is at most
s < n. The paper is also related to the so-called longest common subsequence problem
and its link to similarity among biological sequences. A good introduction to the latter
problem is [7].

As we already mentioned, combinatorics on words has been almost exclusively concerned
with the infinite poset P(∞), comprising all finite sequences. There are very few results
about its finite sub-posets. Here we list those results most relevant to our aims.

Chase studied the number Si of different i-subsequences of a given sequence S and
proved:

Theorem 1 (Chase, [6]) (i) The Si, 0 ≤ i ≤ n simultaneously attain their maximum
possible values if and only if S is a repeated permutation of the alphabet, that is a sequence
with the form of (w1 . . . wk) . . . (w1 . . . wk)w1 . . . wl where l ≡ n (mod k) and w1 . . . wk is
a fixed permutation of Γ—or the reverse of such a sequence.
(ii) The numbers S0, . . . , S|S| are logarithmically concave.

Part (ii) is stated only for the sake of completeness. |S| is used herein to denote the
length of sequence S. Let Bk,n denote the ideal of P(n), generated by the maximal element
defined in Theorem 1 part (i), and equipped with the derived order.

The poset B2,n was extensively studied by Burosch, Franke and Röhl in [4]. They de-
termined, among other things, its automorphism group. However, their proof is somewhat
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lengthy. In Section 2 we give a short, new proof for their result and also determine the
automorphism group of P(n).

In [5], Burosch, Gronau and Laborde studied the basic combinatorial properties of the
poset Bk,n for general k. They determined its Whitney numbers and they conjectured that
this poset is Sperner and, even more, it is normal. In this paper we prove the analogous
results for P(n).

2 Automorphisms

In this section we study the automorphisms of P(n) and B2,n. We recall that a bijection
on the poset P is an automorphism if it preserves the order relations. Let Aut(P) be the
automorphism group of the poset P. It is obvious that every permutation π of the alphabet
Γ induces an automorphism σπ of P(n), with σπ(w1w2 . . . wt) = π(w1)π(w2) . . . π(wt). Let
Symk denote the automorphism group of P(n) generated by these σπ’s.

Let ρ denote the reversal of the order of the letters in all elements of P(n) (for example
ρ(abcd) = dcba); then ρ is an automorphism of P(n) and ρ−1 = ρ. Let Z2 denote the
automorphism group of P(n) generated by ρ. It is easy to see that ρ commutes with any
other automorphism of P(n).

In the case of n = 2, for every (unordered) pair {a, b} ⊂ Γ, let %ab denote a single-
operation map of P(2): the orders of these letters are interchanged whenever they both
occur in a 2-sequence. There are

(
k
2

)
such maps, and for all distinct (unordered) pairs

{a, b} and {c, d}, these automorphisms differ and commute. Therefore, the %’s and an

identity constitute a group of automorphisms of P(2), denoted Z
(k
2)

2 . The main result of
this section that any automorphism in P(n) can be derived as the product of one element

of Symk and one of either Z2 or Z
(k
2)

2 , respectively.

Theorem 2 (i) If n > 2, then Aut(P(n)) = Symk ⊗ Z2;

(ii) if n = 2, then Aut(P(n)) = Symk ⊗ Z
(k
2)

2 .

The main tool of proof is the following lemma, which is also of intrinsic interest.

Lemma 1 If 3 ≤ t, then every t-sequence in P(n)
t is uniquely determined by its set of

(distinct) (t − 1)-subsequences.

Note that if t = 2, then the statement is obviously false. It is easy to see that the
statement is true if our sequence is homogeneous of the form aa . . . a, or if there is no
letter occurring twice in the sequence. Thus, henceforth, we assume that our sequence
contains a letter a at least twice but that not all letters are the same. Let the sequence
w ∈ P(n)

t contain s copies of the letter a (where 2 ≤ s ≤ t − 1). Then w can be written
in the form w = w0aw1aw2a...ws−1aws where the wj are (possibly empty) a-excluding
maximal subsequences. Now any t− 1 subsequence contains precisely s− 1 or s copies of
a. Let Ws−1 and Ws denote the respective sets of distinct (t − 1)-subsequences.
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We distinguish cases based upon the numbers and lengths of the wj ’s. If there are at
least two non-empty wj’s in w, then one may recognize the i-th of these as the longest
subsequence occurring in any member of Ws—between the i-th and the (i +1)-th copy of
a, 1 ≤ i ≤ s − 1, and, for w0 and ws, to the left of the leftmost a or to the right of the
rightmost a, respectively.

If there is only one non-empty wi, denote it ŵ, and if it is at least two letters long,
then one may identify its position among the a’s from any (t − 1)-subsequence in Ws.
Furthermore, ŵ itself may be reconstructed from any (t − 1)-subsequence belonging to
Ws−1.

Finally, if the only non-empty wi, ŵ, is a single letter, then consider all the (t − 1)-
subsequences containing ŵ in Ws−1, and count the maximal number of copies of a to the
left (and to the right, resp.) of ŵ. Then w = a..aŵa..a, where the respective maximal
numbers determine the numbers of a’s on both sides. This proves Lemma 1.

Proof of Theorem 2: It is evident that Aut(P(n)) may only interchange sequences within
individual levels of the poset. Take an arbitrary automorphism σ0 ∈ Aut(P(n)), and

consider its action on P(n)
1 (i.e. on the sequences of length 1). Thus, this automorphism

constitutes a permutation on Γ. Take its inverse π−1 on Γ. This permutation induces an
automorphism σπ−1 of the entire poset P(n). Let σ = σ0σπ−1 . Then, by definition, σ is
the identity on P(n)

1 . The same is also true for every homogeneous sequence because the
length of any sequence w ∈ P(n) corresponds to the length of the longest chain below w,
which is invariant under any automorphism. Furthermore, any sequence w ∈ P(n) and its
image under σ plainly contain the same letters with the same multiplicities.

First suppose that n = 1. All 1-sequences are fixed by the automorphism σ. Now suppose
that n = 2. As before, all 1-sequences and all 2-sequences of form aa (a ∈ Γ) are fixed
by the automorphism σ. There is, however, some freedom with regard to the images of
the form σ(ab), where a 6= b ∈ Γ. (The letters a, b, c will subsequently denote different
elements of Γ.) One may independently prescribe for any (unordered) pair {a, b} whether
σ(ab) should equal ab or ba; note that σ(ba) will be determined by this prescription. This

invokes Z
(k
2)

2 and establishes (ii) of Theorem 2.

From now on we assume that n ≥ 3. We may suppose that σ fixes the particular two-
letter sequence ab. (If this is not the case then consider σρ where ρ, as above, reverses all
sequences in our poset P(n).) Since all 1-sequences are fixed it follows that σ(ba) = ba.
Now we can prove

Claim 1 All sequences of type bc are fixed under σ.

Let k ≥ 3 and suppose that σ(bc) = cb. (In the case k = 2, the claim would be void.)
Then σ(bac) = cba since the order ba is fixed; therefore, σ(ac) = ca. However, one could
not then define σ(bca). This proves the claim.

Now we know that σ is the identity on P(n)
1 and P(n)

2 . The application of Lemma 1

establishes the same for P(n)
3 and, using induction on i, also establishes the same for all

P(n)
i where i = 4, . . . , n. Theorem 2 is proved. 2
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Remark: It is natural to enquire whether every t-sequence is uniquely determined by
its `-subsequences, for any given ` with 1 < ` < t (and with a trivial lower bound on
t). In general, the answer is negative; the sequences anban and an+1ban−1 with ` = bt/2c
constitute a useful counterexample. On the other hand, the case ` = t−1 yields a positive
answer, from Lemma 1. Thus, the question may be taken to be: For given t, what is the
minimum value of ` yielding unique determination?

As we already mentioned in the Introduction, Burosch et al. in [4] studied the poset B2,n,
determining its automorphism group. Using our concepts and results, one can straight-
forwardly reprove their result.

We start with some notation and a remark. In the remainder of this Section, P(n)

denotes the poset with Γ = {1, 2}. Furthermore let Bt
2,n denote the set of all t-sequences

in B2,n. We remark that the posets P(n) and B2,n are locally isomorphic in the sense that
any element p of B2,n, formally, may be found in P(n), and the generated ideal < p > in
B2,n is isomorphic to the ideal < p > in P(n). Therefore, it is easy to verify that Lemma 1 is
also valid for the poset B2,n. Now we are ready to state and prove the theorem of Burosch
et al.

Theorem 3 (i) Consider the poset B2,2t+1 with 1212...121 as the top element. It has
a unique non-identity automorphism, ρ, which reverses the order of the letters in every
element of the poset.
(ii) Consider the poset B2,2t with 1212...12 as the top element. It has a unique non-identity
automorphism, ρπ2, which reverses the order of the letters in every element of the poset
and interchanges the 1’s and 2’s.

Proof: (i) It is easy to check that the map ρ is indeed an automorphism. Furthermore,
any automorphism σ on B2,2t+1 is the identity on the homogeneous subsequences of max-
imal length (since these two subsequences have different lengths: they are 1t+1 and 2t.)
Therefore σ also coincides with the identity on every homogeneous subsequence, including
the 1-letter subsequences as well.

Now let σ be a particular automorphism. There are two cases: σ(ab) could be ab or
ba. In the first case σ is the identity on the two lowest levels; therefore Lemma 1 ensures
that σ is the identity on the entire poset. In the second case σρ is the identity on the two
lowest levels; therefore (again due to Lemma 1) it is just the identity on the entire poset.
In this case σ = ρ−1 which is ρ itself. This proves Theorem 3 (i).

(ii) It is easy to see that the map ρπ2 is an automorphism and it is own inverse (that
is ρπ2ρπ2 = id). We claim that every automorphism should be the identity on the non-
homogeneous two-letter sequences 12 and 21. The maximum element 1212...12 of our
poset has exactly two subsequences (11..112 and 122...22) of length t + 1 having one 2-
long non-homogeneous subsequence only (this is 12), but no subsequence of length t + 1
having 21 as the only non-homogeneous 2-long subsequence; this way 12 and 21 can be
distinguished, and they cannot be interchanged by an automorphism.

For an arbitrary automorphism σ of B2,2t there are two possibilities for the image
of σ(11). On one hand, if σ(11) = 11, then σ is the identity on the two lowest levels,
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and Lemma 1 proves that σ is the identity on the entire poset. On the other hand, if
σ(11) = 22, then σ(1) = 2 and therefore σρπ2 is the identity on the two lowest levels.
From Lemma 1, it is also true for the entire poset. Since ρπ2 is its own inverse, we have
σ = ρπ2, establishing Theorem 3. 2

3 Shades and shadows

From now on we turn our attention to some purely combinatorial properties of P(n). In
the sequel we consider only finite posets. We recall that our poset P(n) is a graded one
with the sequence length as its rank function. As usual, the rank of any graded poset is
the maximum rank of its members (in the case of our poset P(n), this is n). Now let P
denote a graded poset with minimum rank 0, and let A be a set of sequences all having
rank `.

Definition 1 The i-shadow ∆iA; 0 ≤ i < `; is the subset of the rank-i members of P
whose elements are comparable to one or more element of A. If i = `− 1, then we simply
say shadow and denote it with ∆A. Analogously, the i-shade ∇iA; ` < i ≤ rank(P);
is the subset of the rank-i members of P whose elements are comparable to one or more
element of A. If i = ` + 1, then we simply say shade, denoted by ∇A.

Using these notions, we note that the shadows of elements of the same rank may
have different cardinalities. However, our posets behave very regularly upward: any two
elements of P of the same rank have the same i-shade cardinality. To prove it we need
some further notations. Let ξ ∈ P(n) be a fixed sequence α1α2 · · ·α|ξ|, and let j be an
integer such that |ξ| ≤ j ≤ n. Denote N(j, ξ; k) the number of j-sequences, with letters
from Γ = {1, 2, . . . , k}, containing the given sequence ξ as a subsequence. Similarly denote
N̄(j, ξ; k) the number of j-sequences not containing our fixed ξ. In these terms we have

Theorem 4

N̄(j, ξ; k) =
|ξ|−1∑
i=0

(
j

i

)
(k − 1)(j−i). (1)

Proof: To establish the result, it will suffice to provide an interpretation which verifies each
summand. As illustration, we describe the case i = 2, assuming that 2 < |ξ|. Consider
the number of j-sequences with the leftmost occurrence of α1 at position g1, the leftmost
subsequent occurrence of α2 at position g2, and no subsequent occurrence of α3, with
1 ≤ g1 < g2 ≤ j. To the left of position g1, there are g1 − 1 positions at which any digit
from Γ except for α1 may occur. Between g2 and g1 there are g2−g1−1 positions at which
any digit from Γ except for α2 may occur. To the right of g2 there are n− g2 positions at
which any digit from Γ except for α3 may occur. Thus, there are a total of j−2 positions
at which k − 1 digits may occur, and it follows that (k − 1)(j−2) different j-sequences are

feasible. As there are
(

j
2

)
locations for the first occurrence of α1 to occur before the first

occurrence of α2, there are
(

j
2

)
of the values (k − 1)(j−2). The same argument applies,
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essentially verbatim, to the other summands as well, with i specified digits in place of
two. All of the j-sequences enumerated in all summands are, clearly, distinct. There are
evidently no other j-sequences lacking ξ as a subsequence. This proves Theorem 4.

The previous result allows us to establish that any two sequences of the same rank have
i-shades of the same cardinality.

Corollary 1 Let ξ be a sequence and let j be an integer such that |ξ| ≤ j ≤ n. The
number of j-sequences containing ξ as a subsequence is

N(j, ξ; k) =
j−|ξ|∑
i=0

(
j

i

)
(k − 1)i.

This enumeration follows from (1), using the following “complementation” rule

N(j, ξ; k) = kj − N̄(j, ξ; k),

corroborating the result of Levenshtein [12].

4 Sperner property and LYM property

In this section we study the basic properties of the antichains of P(n).

Definition 2 A subset A of the poset P is called an antichain (or Sperner family) if no
two elements of A are comparable.

One of the most fundamental combinatorial properties of a poset is the cardinality of its
maximum antichains. The problem originated from the seminal paper of E. Sperner [16],
which states that the largest antichain in the Boolean lattice on n elements is formed
by the largest family of elements of the same rank (which is the family of all subsets of

cardinality bn/2c containing
(

n
bn/2c

)
elements.) The first theorem of this section addresses

this issue for P(n). While Theorem 8 generalizes the next result, the simplicity of the proof
of the special case warrants its separate statement.

The proof is based in the following ideas. A chain in the poset P is a totally ordered
subset of P. A chain cover of P is a collection of chains, such that every element of P
belongs to at least one chain. It is easy to see that no chain of the cover may contain
more then one element from an antichain.

Theorem 5 The cardinality of a maximum antichain of P(n) is kn.

Proof: We may easily construct a chain cover of cardinality kn in P(n). For every n-
sequence α1α2...αn we define a chain consisting of the initial segments of that sequence:
α1, α1α2, and so on through α1α2...αn. It is easy to see that these chains really form a
chain cover, establishing the upper bound. On the other hand all n-sequences clearly form
an antichain, proving the statement. 2
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Let P be a graded poset with Whitney numbers Wi. As was proven independently by
Yamamoto [17], Meshalkin [15], Bollobas [2], and Lubell [14], a much stronger form of the
Sperner theorem also holds for the antichains in the Boolean algebra Bn on an n-element
underlying set:

Theorem 6 (BLYM inequality) Let A be an arbitrary antichain in the Boolean alge-
bra Bn. Then the following inequality holds:

∑
a∈A

1

Wrank(a)

≤ 1. (2)

It is a well known fact that all finite, graded, partially ordered sets satisfying an inequality
analogous to the one in Theorem 6 (in general it is called the poset LYM inequality) also
exhibit the Sperner property. As the following result of Harper and Kleitman (established
independently, see [8, 11]) demonstrates, a poset P satisfies the LYM-inequality if and
only if it satisfies the so called normalized matching property (3):

Theorem 7 ([1] Theorem 8.57) Any finite, graded poset P with Whitney numbers W0, . . . ,Wn

satisfies the LYM-inequality if and only if it satisfies

|A|
Wi

≤ |∇A|
Wi+1

(3)

for all subsets A of the ith level of P, and for all possible i.

Our poset P(n) has Whitney numbers Wi = ki. The next result establishes that P(n)

satisfies the normalized matching property:

Theorem 8 The normalized matching property holds for P(n): in this case, for any in-
teger i and any A ⊆ P(n)

i

k|A| ≤ |∇A|. (4)

Proof. The proposition is trivially true for A ⊆ P(n)
0 because k = |P(n)

1 |. Assume,
therefore, the truth of the proposition for level i, and the inductive proof is completed
by demonstrating that this is sufficient to establish the truth of the proposition for level
i + 1. Let A ⊆ P(n)

i+1, and partition the elements of A according to their last digit:

A = A1 ∪ A2 ∪ . . . ∪ Ak;

Aj = {sj = (α1 · · ·αi+1) ∈ A : αi+1 = j}; 1 ≤ j ≤ k.

Let

A|j
def
= {s|j = (α1 · · ·αi) : (α1 · · ·αi j) ∈ Aj}; 1 ≤ j ≤ k.

We have,
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k|A| = k
k∑

j=1

|Aj| = k
k∑

j=1

|A|j| ≤
k∑

j=1

|∇A|j| ≤ |∇A|.

The central equality arises from the one-to-one correspondence between the members of
Aj and A|j , for all j. The left inequality is a consequence of the induction hypothesis.
The right inequality is not difficult to establish as follows.

First, define a j-lifting Lj(B) of a set B ⊆ P(n)
i+1:

Lj(B) = {Lj(b) = (α1α2 · · ·αi+1 j) : b = (α1α2 · · ·αi+1) ∈ B}; 1 ≤ j ≤ k.

That is, a j-lifting the sequences of B suffixes them with the digit j. If a sequence covering
s|j = (α1 · · ·αi) ∈ A|j is suffixed by j, then a sequence covering sj = (α1 · · ·αij) ∈ Aj is,
obtained. Therefore,

∑k
j=1 |∇A|j| =

∑k
j=1 |Lj(∇A|j)| ≤ |∇A|. This completes the proof

of Theorem 8. 2

As we mentioned earlier, this result implies the following one:

Corollary 2 Our poset P(n) satisfies the LYM-inequality: let A ⊂ P(n) be an antichain.
Then ∑

a∈A

1

krank(a)
≤ 1.

Furthermore, Theorem 5 is also a consequence of Theorem 8.
The authors are indebted to the unknown referees. One of them pointed out several

insufficiently clear points in our manuscript. The other referee formulated the problem
described in the Remark after Theorem 2.
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