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Abstract— With the knowledge management requirement 
growing, enterprises are becoming increasingly aware of 
the significance of interlinking business information 
across structured and semi-structured data sources. This 
problem has become more important with the growing 
amount of semi-structured data often found in XML 
repositories, web logs, biological databases, etc. Effectively 
creating links between semi-structured and structured 
data is a challenging and unresolved problem. Once an 
optimized method has been formulated, the process of 
data mining can be implemented in a conjoint manner. 
This paper investigates a way in which this challenging 
problem can be tackled. The proposed method is 
experimentally evaluated using a real world database and 
the effectiveness and the potential in discovering collective 
information is demonstrated.  

I. INTRODUCTION 
Currently, information is gathered and stored by enterprises 

in three forms: structured, unstructured and semi-structured. 
In structured or relational data, the information is represented 
in a two-dimensional table called a relation. The information 
is well structured and the schema or structure of the data is 
fixed and known beforehand. Unstructured data has no 
schema that describes the underlying structure of the data, or 
the form of structure is not helpful for the desired processing 
task. Examples of unstructured data may include audio, video 
and text. Processing such unstructured data is very 
challenging using the currently available data mining 
methods. Fortunately, semi-structured data refers to an 
intermediate between the two forms above wherein “tags” or 
“structure” are associated or embedded within unstructured 
data. Semi-structured data may not have a fixed structure or 
schema for a precise description of concept attributes and 
their relationships. A semi-structured document can be 
composed of data from several heterogeneous sources each 
structured in a different way. Semi-structured data if often 
found in XML databases, RDF databases, molecular 
databases, graph databases etc. According to [1], in 2003, 
only 15% of information in enterprises is in form of structured 
data. More recent studies presented in [2], confirm that 10%-
15% of information is in structured form in 1990’s, while in 
the period 2006–2010, this number is expected to reduce well 
below 5%.  

Frequent pattern mining is the most important and difficult 
task when the aim is to discover useful associations between 
data objects in a database (i.e. association rule mining) [3]. It 
consists of finding all the frequent sub-patterns that occur at 
least as many times as the user supplied minimum occurrence 
threshold. Semi-structured documents such as XML possess a 
hierarchical document structure, where an XML element may 
contain further embedded elements, and each element can 
have a number of attributes attached to it. It is therefore 
frequently modeled using a labeled ordered tree. In this 
scenario, the frequent pattern mining problem becomes that of 
frequent subtree mining, and depending on the application 
different types of subtrees are mined and/or different support 
definitions are used [4, 8]. An induced subtree preserves the 
parent-child relationships from the original tree while in an 
embedded subtree the parent-child relationship are allowed to 
be ancestor-descendant relationships in the original tree. The 
subtrees can be further distinguished based upon the ordering 
among the sibling nodes. In an ordered subtree the left-to 
right order among the sibling nodes needs to be preserved 
while in an unordered subtree the order of the sibling nodes 
(and the subtrees rooted at those nodes) can be exchanged and 
the resulting subtree is still considered the same. For an 
extensive overview of the frequent subtree mining we refer 
the interested reader to [4], where different approaches and 
various implementation issues are discussed in detail. 

Currently, there are many well developed techniques for 
data mining on structured data [3, 5, 6] or semi-structured 
data [4, 7, 8] on their own, but not for data mining on the 
combination of both types conjointly. While some work has 
gone towards schema matching and data integration of 
structured and semi-structured data, the focus was placed on 
querying and other knowledge management related tasks, 
rather than data mining of the merged data [9, 10, 11]. This 
work is aiming to develop an effective framework and method 
to carry out the data mining technology on the structured and 
semi-structured data sources conjointly. A real world example 
is used to demonstrate the effectiveness of the proposed 
approach, and to show how additional information can be 
obtained by mining of the merged data source.  

II. MOTIVATING EXAMPLE

Consider the following problem: A credit card provider 
wants to find out the common characters in the profiles of 
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those clients who are likely to discontinue the use of the credit 
card service after three complaints have been received about 
transactions involving amounts greater than $100?  

Fequently, customers’profiles can be easily obtained from 
Relational Database, such as ‘salary’, ‘age’, ‘address’ and so 
on. But the reasons why they discontinue the use of a 
particular bank service are more likely to be found in the 
XML docuements format, because there are more 
opportunities for customers lodging complaints through 
customer contact centres, sending emails, filling survey forms 
or putting in their opinions through website forums for 
customers’ feedback. These contents can be easily processed 
into XML format rather than Relational Database format. 
Currently, many companies are finding it difficult to extract 
meaningful information from plain text. Customers may make 
complaints for different reasons, such as ‘Fee charged‘, ‘Bad 
service’, ‘Faulty Transactions’ and so on. This type of 
information is not easily categorized into relational database 
without any information being lost. For example, when 
transferring the contents of a complaint into a well-structured 
relational database, one will usually extract some keywords or 
related information from the original contents that will fit 
within the relational schema. However, the rest of the textual 
information cannot be represented within the schema and 
hence some infromation is being lost. These reasons increase 
the difficulties of storing information from textual content 
into a Relational Database. A detailed example will be 
presented as follows: 

Fig. 1 Example of the Relational Database Schema of a Bank System 

We assume that there is a Relational Database which is a 
typical example of structured data running in the Bank 
Information System, and separately there is a customer 
service system collecting and processing the email documents 

of customer’s complaints in XML format which is semi-
structured data type. Fig. 1 presents a simple Relational 
Database Schema of bank system where one can find 
information such as age, salary (‘Customer’ table), and the 
credit card information (‘CreditCard’ table). However, one 
cannot discover any information related to customer 
complaints from the Relational Database.  

Fig. 2 Example of the XML Schema of Email 

A customer service system is collecting and processing the 
emails of customer’s complaints in XML format (eg. Fig. 2). 

Because not all the customers send email with their detail 
profiles or bank account details, we cannot assume that all the 
emails will definitely include those key information which can 
be easily linked to the related records or information in the 
RDB. Only, when the information from both data sources is 
linked and integrated, can the example query be answered. 
The existing data mining methods can only mine structured or 
semi-structured data sources separately, and hence a new 
method capable of mining both data sources in a conjoint 
manner is needed.  

III. PROPOSED METHOD

Fig. 3 displays the general steps of the proposed method, 
namely Data Pre-processing, Data Linking and Data Mining. 
We first explain each of these steps at a high level of 
abstraction and we then go into more detail about the aspects 
of the Data Linking process. 

Data Pre-processing includes data extraction, data 
cleaning and data generalization. The goal of data extraction 
is to populate the data from the raw database so that the 
processed data will be more relevant to the user’s 
requirement. 
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Fig. 3 General steps of the proposed method 

Structured and Semi-structured Data Linking aims to
link the relevant data between RDB and XML, and is 
comprised of 5 sub-steps. Shown in the Structured and Semi-
structured Data Linkage Model in Fig. 3, it is important to 
realize that in each of those steps, for example, Schema 
Matching, we mean matching between the schema for the 
structured database and the XML schema. This is different 
from just matching two relational schemas. Schema Alignment
aims to align the XML schema with the RDB schema so that 
individual document instances from the XML repository can 
be aligned with individual records from the structured 
database. In the whole alignment process, we have 2 different 
levels at which matching can occur, i.e. logical and instance 
level. Schema Matching is working on the logical level, where 
the semantic meaning of the tags and attributes in the XML 
and RDB schema is compared and similar ones are linked 
together. For this purpose we aim to utilize some of the 
existing concept matching techniques [11, 12], which can 
match the concepts using a combination of name similarity, 
online dictionaries and thesauruses, and descriptive 
information found in the schema. One may need to consider 
one-to-one as well as complex matching, as it may be the case 
that the same aspect of a domain is described by different 
number of concepts in different data sources. The purpose of 
Schema Augment process is to augment the original XML 
schema by appending the attributes found in the RDB, that 
have not been matched to any of the attributes in the XML 
schema. Instance Matching can then be performed to find the 

values matched from two data sources at the instance level. It 
may be possible to find multiple instances and record pairs 
with exactly the same values on both data sources. In this 
case, for each pair a weight will be calculated depending on 
the similarity of the original instance and record pair 
occurring in the data sources. After getting the maximum 
weight, we can find the best matched instance and record 
pairs. In fact, this step is also very helpful when there are no 
matching attributes or tags found from the schemas of both 
data souces in previous steps. In this case, one can extract 
some values of crucial attributes in one record from one data 
source, and use these vaules as keywords to search the 
contents of the other data source. If a matching attribute from 
relational schema cannot be found in the XML schema, then 
one can search for that particular attribute in the textual 
content of an XML document. For example, if a customer 
complaint is stored in textual format embedded in the XML 
document, there is a possibility that some account information 
may be mentioned in the text and this can reveal which 
particular customer record from the relational database can be 
linked to this complaint. This search may produce more than 
one record whose contents are partially mached with those 
keywords. This problem can be solved by setting a weight for 
each candidate record, and determining the best matching 
record as the record with the highest weight. This involves a 
process of fuzzy instance matching. The instance matching 
step enables Data Merging to occur where specific records 
from the RDB are aligned with the corresponding instances in 
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the XML Document. A new augmented XML database is 
created by merging the records from the original XML DB 
with the RDB instances, as defined by the Schema Augment 
process.  

Data Mining step is concerned with applying a frequent 
subtree mining algorithm to extract the potentially useful 
patterns from the augmented XML document obtained from 
the previous step. Once the set of frequent subtree patterns 
has been extracted the association rules can be easily formed 
according to user specifications. 

In what follows we formalize the main aspects of the Data 
Linking process which is comprised of five steps. We assume 
that the XML schema and Relational schema will be provided 
with the XML documents and Relational Database, 
respectively. 

Step 1: XML Schema Alignment 
Our current research is to investigate a model to deal with 

the data mining problem based on RDB and an ideal XML 
documents which only have simple structure, such as the one 
displayed in Fig. 2. We can have some definition as follows: 

1)  Let T be a set of tags of XML Schema and n be the 
number of tags in XML Schema, then

T = { t1, t2, …, ti, …, tn } where 1 <= i <= n  

2) Let A be a set of attributes of Relational Schema and m 
be the number of attributes in the Relational Schema, then 

A = { a1, a2, …, aj, …, am } where 1 <= j <= m 

3) Let D be the set of instance values and q be the number 
of instances in the XML document, then

D = { d1, d2, …, dp, …, dq } where 1 <= p <= q  

Let dp be the set of values for each tags of the XML 
schema for the pth instance in XML document and n be the 
number of tags in XML Schema, then 

dp = { dp ( t1 ), dp ( t2 ), …, dp ( ti ), …, dp ( tn ) } where 1 <= i 
<= n 

4) Let V be the set of record values and t be the number of 
records in the Relational Database, then  

V = { v1, v2, …, vs, …, vt } where 1 <= s <= t  

Let vs be the set of values for each attributes of the 
Relational schema for the sth record in the Relational Database 
and m be the number of attributes in the Relational Schema, 
then 

vs = { vs ( a1 ), vs ( a2 ), …,vs ( aj ), …, vs ( am ) } where 1 <= 
j <= m 

Step 2: Schema Matching  
With the aligned XML schema and Relational schema, we 

can match some of the elements and attributes from respective 

data sources and link them. For the ease of explanation, we 
currently only consider one-to-one mapping from the tags set 
T to the attributes set A. During the mapping process, we can 
utilize the schema matching techniques [11] to find the 
element and attribute matching with the similar terminology. 
Additionally, the data type is also concerned with the 
similarity of elements and attributes. 

After matching, there will be two subsets: T’ and A’ which 
present the matched tags and attributes from the XML schema 
and Relational schema. Both subsets have the same size and 
they are in ordered projection, which means each element in 
T’ has one-to-one projection to each element in A’ in 
sequence.  

5) Let T’ be the set of matched tags found in T and l be the 
number of matched tags in T’, then 

T’= { t’1, t’2, …, t’k, …, t’l } where 1 <= k <= l, and T’ 
T

6) Let A’ be the set of matched attributes found in A and l 
be the number of matched tags in A’, then

A’= { a’1, a’2, …, a’k, …., a’l } and A’  A 

In T’ and A’, t’k has one-to-one projection to a’k, which 
presents like t’k -> a’k, where 1 <= k <= l 

Step 3: Schema Augment 
With the subset A’, we can find the rest of elements in set 

A, which haven’t one-to-one projection to the elements in set 
T. Then, we can append those attributes as new tags to the 
original XML schema. So, a new XML schema with 
augments, T’’, has been constructed.  

7) Let T’’ be the set of tags of the augmented XML 
schema which is composed of the original XML schema and 
the unmatched attributes found in the Relational schema, then 

TT ''
___

'A  where 'A
___

'A A
So, the new schema T’’ combines the original XML 

schema, T, with
___

'A .

___
'A  = {“age", “salary", “occupation", “mobile", “status", 

“canceldate",  “trans_no"} 

Step 4: Instances Matching  
With the subset T’ and A’, we can extract the 

corresponding values from XML documents and Relational 
database. Sets D’ and V’ are composed by the values of the 
tags and attributes which are defined in subset T’ and A’ from 
all the instances in XML documents and records in Relational 
DB.  It may be the case that we will find multiple instances 
and record pairs with exactly the same values on both data 

90



sources. In this case, for each pair a weight will be calculated 
depending on the similarity of the original instance and record 
pair occurring in the data sources. After getting the maximum 
weight, we can find the best matched instance and record 
pairs.  

8) Let D’ be the set of instance values responding to the 
tags in T’ and q be the number of instances in the XML 
document, then

D’= { d’1, d’2, …, d’p, …, d’q} where 1 <= p <= q  

Let dp ( t’k ) be the value of tag t’k on pth instance in the 
XML document and d’p be the set of values of each tags in T’ 
for the pth instance in the XML document and l be the number 
of tags in T’, then 

d’p = { dp ( t’1 ), dp ( t’2 ), …, dp ( t’k ), …., dp ( t’l ) } where 1 
<= k <= l, and d’p dp  (d’p is a subset of dp)

9) Let V’ be the set of record values responding to the 
attributes in A’ and t be the number of records in the 
Relational Database, then  

V’ = { v’1, v’2, …, v’s, …, v’t } where 1 <= s <= t  

Let v’s be the set of values for each attributes in A’ for the 
sth records in the Relational Database and l be the number of 
attributes in A’, then 

v’s = { vs ( a’1 ), vs ( a’2 ), …, vs ( a’k ), …, vs ( a’l ) }  where 
1 <= k <= l , and v’s  vs  (v’s is a subset of vs)

10) If d’x = v’y  where 1 <= x <= p and 1 <= y <= p, then 
we can find dx and vy from set D and V which represent the 
original XML document and Relational DB respectively. If 
the values are nominal, exact matches will be necessary. If the 
values are continuously numerical, there will be a range value 
(e) for limiting the difference of two values (|d’x – v’y| < e 
which e is a small number).    

Step 5: Data Merging 
By having a set of best matched instance and record pairs 

with different values, it is easy to locate the original instance 
in the XML document and the paired record in the Relational 
database. As we mentioned in step 3, a new XML schema has 
been constructed and it can be used to merge those values in 
XML instances and paired Relational database records.  

With dx and vy, d’x and v’y where d’x = v’y, we can find 
____

'yv
 where yyy vvv

____
''

With the augmented XML schema T’’, we can migrate dx

and 

____
'yv

 into the T’’.  

The step 4 is repeated until all the related information from 
the data sources has been merged.  

IV. EXPERIMENTAL EVALUATION

The purpose of this section is to indicate how additional 
interesting information can be obtained by mining the 
information contained in a relational and semi structured 
database in a collective manner. More specifically the aim is 
to show that the patterns extracted from the augmented 
document could not be found if each of the data sources was 
mined separately. At this preliminary stage of our research, 
the system uses keyword based matching between the 
concepts rather than the more complex semantic matching. It 
is common that due to the variety of designs or naming habits 
of individuals, schemas may be totally different even though 
they are built for the same concepts or domain. To recognize 
diverse labels in schemas with similar meanings and make 
them consistent, semantic matching will be part of our future 
work where we will in addition utilize online dictionaries or 
thesauruses, structural information and schema constraints, to 
enable a more semantic approach (e.g. Gazettes). To solve the 
problem of how to match the relation or structure of different 
data sources, we will apply ontology techniques to link 
structured and semi-structured data by matching not only the 
concepts but also the relations or structures of the attributes 
from both kinds of data. The expressiveness, consistency and 
correctness after schema and data merging has occurred is 
another aspect that will need to be validated.   

In addition, there are some XML documents containing a 
large amount of unstructured text as the value of one element, 
such as text from email, survey, complaint, and so on. This 
may reduce the effectiveness of the currently proposed 
method, because a large amount of useful information may be 
found in this part of documents. To solve this problem, we 
will search the text content and find out the interesting 
keywords which can be matched with the data in the 
Relational Database. A detailed discussion of this process and 
its evaluation is left for our future work. 

The data source used is a publicly available datasets 
obtained from XML Data Repository 
(http://www.cs.washington.edu/research/projects/xmltk/xmlda
ta/www/repository.html). We choose the data of TPC-H 
Relational Database Benchmark from Transaction Processing 
Performance Council (TPC), because there is some common 
information among the data files. One XML document 
(Lineitem.xml) is selected as the XML data source, while the 
rest is transferred into a relational database as is shown in Fig. 
4. Lineitem.xml contains 15 elements and the XML schema is 
shown in Fig. 5.  

The criteria used detect the element “ORDER_ID” and 
“ORDERKEY” as the keyword pair to connect the XML 
document and the RDB. Hence, the XML document is 
matched with the data in the RDB, and combined into a new 
augmented XML document. The schema of the augmented 
XML document is shown in Fig. 6.  
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Fig. 4 Relational Database Relationship View 

Fig. 5 XML Schema of Lineitem.xml 

Fig. 6 Augmented XML Document Schema 

Prior to mining the augmented XML, some data pre- 
processing takes place in order to obtain simpler and more 
meaningful results. Duplicate attributes are discarded, eg. 
“CUST_ID” and “CUST_NAME” come from RDB, but can 
be seen as redundant in the patterns obtained from the 
augmented document, and would only make the patterns more 
complicated and larger in number while there is no additional 
meaning implicated by them. Furthermore, the values of the 
continuous attributes such as ‘QTY’ and ‘AMT’ are grouped 
into ranges (discretized) in order to reduce the number of 
diverse values. Otherwise it is very unlikely that any 
association can be made with continuous attributes, as they 
would have so many different values that they would not 
occur in the extracted frequent subtree set.    
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Fig. 7 Number of frequent patterns extracted from different documents 

To mine the RDB we use the Apriori [3] implementation by 
Bodon [6], while for mining of XML documents we use the 
IMB3-Miner algorithm [4] for mining of ordered induced 
subtrees. Ordered induced subtrees preserve the left-to-right 
ordering among the sibling nodes and preserve all the parent-
child relationships in the mined tree database. This type of 
subtree is sufficient to capture the interesting relationships 
among the data objects. All the documents consist of 60175 
records and the number of frequent patterns (itemsets for 
RDB, subtrees for XML) detected for varying support 
thresholds (displayed in the percentages of the database 
records) are displayed in Fig. 7. The reason for choosing such 
small support thresholds is that in this particular example the 
RDB does not contain many frequently occurring patterns, 
and for the frequent patterns from the RDB to contain 
reasonable long patterns, the support threshold had to be quite 
low. Even the patterns that occur in at least 0.8% of the 
database do not consist of more than 2 items. As is evident 
from Fig. 6, many more patterns can be found when the RDB 
and LineItem.xml are merged together and mined conjointly. 

 When analysing the extracted pattern we have observed 
that some associations found in the patterns from the 
augmented document could not be detected from the patterns 
found in each of the data sources separately. For example, at 
support 0.7 we find that the only frequent 3-itemset in RDB 

is: supp_nation(UNITED_STATES)_cust_region(AMERICA) 
_supp_region(AMERICA), which itself does not contain any 
useful information. When looking at the extracted frequent 
pattern set from the LineItem.xml there is really no 
information that can be linked with this pattern as may be the 
case for lower support thresholds, when the common item 
“SUPP_ID(x)” may be found. However, in the frequent pattern 
set from the augmented document a 5-pattern is found: 
cust_region(AMERICA)_supp_nation(UNITED_STATES)_sup
p_region(AMERICA)_return_flag(N)_line_status(O). Please
note that for the ease of comparison we have not included the 
hierarchical organization of the pattern, but have just 
highlighted the additional information obtained by mining the 
augmented document. 

These results are consistent among the different support 
thresholds, in the sense that whatever pattern is obtainable 
from RDB a longer version of it can be found in the 
augmented document that contains additional associations. 
This is particularly evident when the support threshold is even 
further increased. For example when the support is set to 
10%, there are only 4 frequent 1-itemset patterns extracted 
from RDB which cannot be linked in any way to frequent 
patterns from the Lineitem.xml. On the other hand, the 
frequent patterns extracted from the augmented document are 
always larger in number and length, and contain the collective 
information and associations that could not be detected if each 
of the data sources was mined separately. These results 
indicate the importance of being able to link related 
information across structured and semi-structured data 
sources in order to detect collective knowledge patterns that 
can potentially reveal further insights to the user. 

V. CONCLUSION

The work presented in this paper has demonstrated the 
importance of data mining structured and semi-strcutured data 
in a conjoint manner. A framework was proposed to link the 
related information among the data sources together, in order 
to merge them into an augmented database that will contain 
more complete and combined information. As experimentally 
demonstrated, mining this merged database can reveal 
patterns and associations that otherwise would not be 
detected. In our future work the method will be accompanied 
with semantic concept matching, to enable a more 
sophisticated approach to data merging.  
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