
©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195642002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Conjoint Data Mining of Structured and Semi-
structured Data

Qi H. Pan, Fedja Hadzic, Tharam S. Dillon
Digital Ecosystems and Business Intelligence Institute, Curtin University of Technology, Perth, Australia

{helen.pan, f.hadzic, t.dillon}@cbs.curtin.edu.au

Abstract— With the knowledge management requirement
growing, enterprises are becoming increasingly aware of
the significance of interlinking business information
across structured and semi-structured data sources. This
problem has become more important with the growing
amount of semi-structured data often found in XML
repositories, web logs, biological databases, etc. Effectively
creating links between semi-structured and structured
data is a challenging and unresolved problem. Once an
optimized method has been formulated, the process of
data mining can be implemented in a conjoint manner.
This paper investigates a way in which this challenging
problem can be tackled. The proposed method is
experimentally evaluated using a real world database and
the effectiveness and the potential in discovering collective
information is demonstrated.

I. INTRODUCTION
Currently, information is gathered and stored by enterprises

in three forms: structured, unstructured and semi-structured.
In structured or relational data, the information is represented
in a two-dimensional table called a relation. The information
is well structured and the schema or structure of the data is
fixed and known beforehand. Unstructured data has no
schema that describes the underlying structure of the data, or
the form of structure is not helpful for the desired processing
task. Examples of unstructured data may include audio, video
and text. Processing such unstructured data is very
challenging using the currently available data mining
methods. Fortunately, semi-structured data refers to an
intermediate between the two forms above wherein “tags” or
“structure” are associated or embedded within unstructured
data. Semi-structured data may not have a fixed structure or
schema for a precise description of concept attributes and
their relationships. A semi-structured document can be
composed of data from several heterogeneous sources each
structured in a different way. Semi-structured data if often
found in XML databases, RDF databases, molecular
databases, graph databases etc. According to [1], in 2003,
only 15% of information in enterprises is in form of structured
data. More recent studies presented in [2], confirm that 10%-
15% of information is in structured form in 1990’s, while in
the period 2006–2010, this number is expected to reduce well
below 5%.

Frequent pattern mining is the most important and difficult
task when the aim is to discover useful associations between
data objects in a database (i.e. association rule mining) [3]. It
consists of finding all the frequent sub-patterns that occur at
least as many times as the user supplied minimum occurrence
threshold. Semi-structured documents such as XML possess a
hierarchical document structure, where an XML element may
contain further embedded elements, and each element can
have a number of attributes attached to it. It is therefore
frequently modeled using a labeled ordered tree. In this
scenario, the frequent pattern mining problem becomes that of
frequent subtree mining, and depending on the application
different types of subtrees are mined and/or different support
definitions are used [4, 8]. An induced subtree preserves the
parent-child relationships from the original tree while in an
embedded subtree the parent-child relationship are allowed to
be ancestor-descendant relationships in the original tree. The
subtrees can be further distinguished based upon the ordering
among the sibling nodes. In an ordered subtree the left-to
right order among the sibling nodes needs to be preserved
while in an unordered subtree the order of the sibling nodes
(and the subtrees rooted at those nodes) can be exchanged and
the resulting subtree is still considered the same. For an
extensive overview of the frequent subtree mining we refer
the interested reader to [4], where different approaches and
various implementation issues are discussed in detail.

Currently, there are many well developed techniques for
data mining on structured data [3, 5, 6] or semi-structured
data [4, 7, 8] on their own, but not for data mining on the
combination of both types conjointly. While some work has
gone towards schema matching and data integration of
structured and semi-structured data, the focus was placed on
querying and other knowledge management related tasks,
rather than data mining of the merged data [9, 10, 11]. This
work is aiming to develop an effective framework and method
to carry out the data mining technology on the structured and
semi-structured data sources conjointly. A real world example
is used to demonstrate the effectiveness of the proposed
approach, and to show how additional information can be
obtained by mining of the merged data source.

II. MOTIVATING EXAMPLE

Consider the following problem: A credit card provider
wants to find out the common characters in the profiles of

Fourth International Conference on Semantics, Knowledge and Grid

978-0-7695-3401-5/08 $25.00 © 2008 IEEE

DOI 10.1109/SKG.2008.57

87

those clients who are likely to discontinue the use of the credit
card service after three complaints have been received about
transactions involving amounts greater than $100?

Fequently, customers’profiles can be easily obtained from
Relational Database, such as ‘salary’, ‘age’, ‘address’ and so
on. But the reasons why they discontinue the use of a
particular bank service are more likely to be found in the
XML docuements format, because there are more
opportunities for customers lodging complaints through
customer contact centres, sending emails, filling survey forms
or putting in their opinions through website forums for
customers’ feedback. These contents can be easily processed
into XML format rather than Relational Database format.
Currently, many companies are finding it difficult to extract
meaningful information from plain text. Customers may make
complaints for different reasons, such as ‘Fee charged‘, ‘Bad
service’, ‘Faulty Transactions’ and so on. This type of
information is not easily categorized into relational database
without any information being lost. For example, when
transferring the contents of a complaint into a well-structured
relational database, one will usually extract some keywords or
related information from the original contents that will fit
within the relational schema. However, the rest of the textual
information cannot be represented within the schema and
hence some infromation is being lost. These reasons increase
the difficulties of storing information from textual content
into a Relational Database. A detailed example will be
presented as follows:

Fig. 1 Example of the Relational Database Schema of a Bank System

We assume that there is a Relational Database which is a
typical example of structured data running in the Bank
Information System, and separately there is a customer
service system collecting and processing the email documents

of customer’s complaints in XML format which is semi-
structured data type. Fig. 1 presents a simple Relational
Database Schema of bank system where one can find
information such as age, salary (‘Customer’ table), and the
credit card information (‘CreditCard’ table). However, one
cannot discover any information related to customer
complaints from the Relational Database.

Fig. 2 Example of the XML Schema of Email

A customer service system is collecting and processing the
emails of customer’s complaints in XML format (eg. Fig. 2).

Because not all the customers send email with their detail
profiles or bank account details, we cannot assume that all the
emails will definitely include those key information which can
be easily linked to the related records or information in the
RDB. Only, when the information from both data sources is
linked and integrated, can the example query be answered.
The existing data mining methods can only mine structured or
semi-structured data sources separately, and hence a new
method capable of mining both data sources in a conjoint
manner is needed.

III. PROPOSED METHOD

Fig. 3 displays the general steps of the proposed method,
namely Data Pre-processing, Data Linking and Data Mining.
We first explain each of these steps at a high level of
abstraction and we then go into more detail about the aspects
of the Data Linking process.

Data Pre-processing includes data extraction, data
cleaning and data generalization. The goal of data extraction
is to populate the data from the raw database so that the
processed data will be more relevant to the user’s
requirement.

88

D ata P re -p rocess M ode l

R e la tiona l
D a tabase

X M L
D ocum ent

S truc tu red and S em i-struc tured D a ta L inkage M ode l

D ata M in ing M ode l

R esu lt

S chem a
A lignm ent

S chem a
M atch ing

S chem a
A ugm ent

Instance
M atch ing

D ata
M erg ing

Fig. 3 General steps of the proposed method

Structured and Semi-structured Data Linking aims to
link the relevant data between RDB and XML, and is
comprised of 5 sub-steps. Shown in the Structured and Semi-
structured Data Linkage Model in Fig. 3, it is important to
realize that in each of those steps, for example, Schema
Matching, we mean matching between the schema for the
structured database and the XML schema. This is different
from just matching two relational schemas. Schema Alignment
aims to align the XML schema with the RDB schema so that
individual document instances from the XML repository can
be aligned with individual records from the structured
database. In the whole alignment process, we have 2 different
levels at which matching can occur, i.e. logical and instance
level. Schema Matching is working on the logical level, where
the semantic meaning of the tags and attributes in the XML
and RDB schema is compared and similar ones are linked
together. For this purpose we aim to utilize some of the
existing concept matching techniques [11, 12], which can
match the concepts using a combination of name similarity,
online dictionaries and thesauruses, and descriptive
information found in the schema. One may need to consider
one-to-one as well as complex matching, as it may be the case
that the same aspect of a domain is described by different
number of concepts in different data sources. The purpose of
Schema Augment process is to augment the original XML
schema by appending the attributes found in the RDB, that
have not been matched to any of the attributes in the XML
schema. Instance Matching can then be performed to find the

values matched from two data sources at the instance level. It
may be possible to find multiple instances and record pairs
with exactly the same values on both data sources. In this
case, for each pair a weight will be calculated depending on
the similarity of the original instance and record pair
occurring in the data sources. After getting the maximum
weight, we can find the best matched instance and record
pairs. In fact, this step is also very helpful when there are no
matching attributes or tags found from the schemas of both
data souces in previous steps. In this case, one can extract
some values of crucial attributes in one record from one data
source, and use these vaules as keywords to search the
contents of the other data source. If a matching attribute from
relational schema cannot be found in the XML schema, then
one can search for that particular attribute in the textual
content of an XML document. For example, if a customer
complaint is stored in textual format embedded in the XML
document, there is a possibility that some account information
may be mentioned in the text and this can reveal which
particular customer record from the relational database can be
linked to this complaint. This search may produce more than
one record whose contents are partially mached with those
keywords. This problem can be solved by setting a weight for
each candidate record, and determining the best matching
record as the record with the highest weight. This involves a
process of fuzzy instance matching. The instance matching
step enables Data Merging to occur where specific records
from the RDB are aligned with the corresponding instances in

89

the XML Document. A new augmented XML database is
created by merging the records from the original XML DB
with the RDB instances, as defined by the Schema Augment
process.

Data Mining step is concerned with applying a frequent
subtree mining algorithm to extract the potentially useful
patterns from the augmented XML document obtained from
the previous step. Once the set of frequent subtree patterns
has been extracted the association rules can be easily formed
according to user specifications.

In what follows we formalize the main aspects of the Data
Linking process which is comprised of five steps. We assume
that the XML schema and Relational schema will be provided
with the XML documents and Relational Database,
respectively.

Step 1: XML Schema Alignment
Our current research is to investigate a model to deal with

the data mining problem based on RDB and an ideal XML
documents which only have simple structure, such as the one
displayed in Fig. 2. We can have some definition as follows:

1) Let T be a set of tags of XML Schema and n be the
number of tags in XML Schema, then

T = { t1, t2, …, ti, …, tn } where 1 <= i <= n

2) Let A be a set of attributes of Relational Schema and m
be the number of attributes in the Relational Schema, then

A = { a1, a2, …, aj, …, am } where 1 <= j <= m

3) Let D be the set of instance values and q be the number
of instances in the XML document, then

D = { d1, d2, …, dp, …, dq } where 1 <= p <= q

Let dp be the set of values for each tags of the XML
schema for the pth instance in XML document and n be the
number of tags in XML Schema, then

dp = { dp (t1), dp (t2), …, dp (ti), …, dp (tn) } where 1 <= i
<= n

4) Let V be the set of record values and t be the number of
records in the Relational Database, then

V = { v1, v2, …, vs, …, vt } where 1 <= s <= t

Let vs be the set of values for each attributes of the
Relational schema for the sth record in the Relational Database
and m be the number of attributes in the Relational Schema,
then

vs = { vs (a1), vs (a2), …,vs (aj), …, vs (am) } where 1 <=
j <= m

Step 2: Schema Matching
With the aligned XML schema and Relational schema, we

can match some of the elements and attributes from respective

data sources and link them. For the ease of explanation, we
currently only consider one-to-one mapping from the tags set
T to the attributes set A. During the mapping process, we can
utilize the schema matching techniques [11] to find the
element and attribute matching with the similar terminology.
Additionally, the data type is also concerned with the
similarity of elements and attributes.

After matching, there will be two subsets: T’ and A’ which
present the matched tags and attributes from the XML schema
and Relational schema. Both subsets have the same size and
they are in ordered projection, which means each element in
T’ has one-to-one projection to each element in A’ in
sequence.

5) Let T’ be the set of matched tags found in T and l be the
number of matched tags in T’, then

T’= { t’1, t’2, …, t’k, …, t’l } where 1 <= k <= l, and T’
T

6) Let A’ be the set of matched attributes found in A and l
be the number of matched tags in A’, then

A’= { a’1, a’2, …, a’k, …., a’l } and A’ A

In T’ and A’, t’k has one-to-one projection to a’k, which
presents like t’k -> a’k, where 1 <= k <= l

Step 3: Schema Augment
With the subset A’, we can find the rest of elements in set

A, which haven’t one-to-one projection to the elements in set
T. Then, we can append those attributes as new tags to the
original XML schema. So, a new XML schema with
augments, T’’, has been constructed.

7) Let T’’ be the set of tags of the augmented XML
schema which is composed of the original XML schema and
the unmatched attributes found in the Relational schema, then

TT ''

'A where 'A

'A A
So, the new schema T’’ combines the original XML

schema, T, with

'A .

'A = {“age", “salary", “occupation", “mobile", “status",

“canceldate", “trans_no"}

Step 4: Instances Matching
With the subset T’ and A’, we can extract the

corresponding values from XML documents and Relational
database. Sets D’ and V’ are composed by the values of the
tags and attributes which are defined in subset T’ and A’ from
all the instances in XML documents and records in Relational
DB. It may be the case that we will find multiple instances
and record pairs with exactly the same values on both data

90

sources. In this case, for each pair a weight will be calculated
depending on the similarity of the original instance and record
pair occurring in the data sources. After getting the maximum
weight, we can find the best matched instance and record
pairs.

8) Let D’ be the set of instance values responding to the
tags in T’ and q be the number of instances in the XML
document, then

D’= { d’1, d’2, …, d’p, …, d’q} where 1 <= p <= q

Let dp (t’k) be the value of tag t’k on pth instance in the
XML document and d’p be the set of values of each tags in T’
for the pth instance in the XML document and l be the number
of tags in T’, then

d’p = { dp (t’1), dp (t’2), …, dp (t’k), …., dp (t’l) } where 1
<= k <= l, and d’p dp (d’p is a subset of dp)

9) Let V’ be the set of record values responding to the
attributes in A’ and t be the number of records in the
Relational Database, then

V’ = { v’1, v’2, …, v’s, …, v’t } where 1 <= s <= t

Let v’s be the set of values for each attributes in A’ for the
sth records in the Relational Database and l be the number of
attributes in A’, then

v’s = { vs (a’1), vs (a’2), …, vs (a’k), …, vs (a’l) } where
1 <= k <= l , and v’s vs (v’s is a subset of vs)

10) If d’x = v’y where 1 <= x <= p and 1 <= y <= p, then
we can find dx and vy from set D and V which represent the
original XML document and Relational DB respectively. If
the values are nominal, exact matches will be necessary. If the
values are continuously numerical, there will be a range value
(e) for limiting the difference of two values (|d’x – v’y| < e
which e is a small number).

Step 5: Data Merging
By having a set of best matched instance and record pairs

with different values, it is easy to locate the original instance
in the XML document and the paired record in the Relational
database. As we mentioned in step 3, a new XML schema has
been constructed and it can be used to merge those values in
XML instances and paired Relational database records.

With dx and vy, d’x and v’y where d’x = v’y, we can find

'yv
 where yyy vvv

''

With the augmented XML schema T’’, we can migrate dx

and

'yv

 into the T’’.

The step 4 is repeated until all the related information from
the data sources has been merged.

IV. EXPERIMENTAL EVALUATION

The purpose of this section is to indicate how additional
interesting information can be obtained by mining the
information contained in a relational and semi structured
database in a collective manner. More specifically the aim is
to show that the patterns extracted from the augmented
document could not be found if each of the data sources was
mined separately. At this preliminary stage of our research,
the system uses keyword based matching between the
concepts rather than the more complex semantic matching. It
is common that due to the variety of designs or naming habits
of individuals, schemas may be totally different even though
they are built for the same concepts or domain. To recognize
diverse labels in schemas with similar meanings and make
them consistent, semantic matching will be part of our future
work where we will in addition utilize online dictionaries or
thesauruses, structural information and schema constraints, to
enable a more semantic approach (e.g. Gazettes). To solve the
problem of how to match the relation or structure of different
data sources, we will apply ontology techniques to link
structured and semi-structured data by matching not only the
concepts but also the relations or structures of the attributes
from both kinds of data. The expressiveness, consistency and
correctness after schema and data merging has occurred is
another aspect that will need to be validated.

In addition, there are some XML documents containing a
large amount of unstructured text as the value of one element,
such as text from email, survey, complaint, and so on. This
may reduce the effectiveness of the currently proposed
method, because a large amount of useful information may be
found in this part of documents. To solve this problem, we
will search the text content and find out the interesting
keywords which can be matched with the data in the
Relational Database. A detailed discussion of this process and
its evaluation is left for our future work.

The data source used is a publicly available datasets
obtained from XML Data Repository
(http://www.cs.washington.edu/research/projects/xmltk/xmlda
ta/www/repository.html). We choose the data of TPC-H
Relational Database Benchmark from Transaction Processing
Performance Council (TPC), because there is some common
information among the data files. One XML document
(Lineitem.xml) is selected as the XML data source, while the
rest is transferred into a relational database as is shown in Fig.
4. Lineitem.xml contains 15 elements and the XML schema is
shown in Fig. 5.

The criteria used detect the element “ORDER_ID” and
“ORDERKEY” as the keyword pair to connect the XML
document and the RDB. Hence, the XML document is
matched with the data in the RDB, and combined into a new
augmented XML document. The schema of the augmented
XML document is shown in Fig. 6.

91

Fig. 4 Relational Database Relationship View

Fig. 5 XML Schema of Lineitem.xml

Fig. 6 Augmented XML Document Schema

Prior to mining the augmented XML, some data pre-
processing takes place in order to obtain simpler and more
meaningful results. Duplicate attributes are discarded, eg.
“CUST_ID” and “CUST_NAME” come from RDB, but can
be seen as redundant in the patterns obtained from the
augmented document, and would only make the patterns more
complicated and larger in number while there is no additional
meaning implicated by them. Furthermore, the values of the
continuous attributes such as ‘QTY’ and ‘AMT’ are grouped
into ranges (discretized) in order to reduce the number of
diverse values. Otherwise it is very unlikely that any
association can be made with continuous attributes, as they
would have so many different values that they would not
occur in the extracted frequent subtree set.

92

Fig. 7 Number of frequent patterns extracted from different documents

To mine the RDB we use the Apriori [3] implementation by
Bodon [6], while for mining of XML documents we use the
IMB3-Miner algorithm [4] for mining of ordered induced
subtrees. Ordered induced subtrees preserve the left-to-right
ordering among the sibling nodes and preserve all the parent-
child relationships in the mined tree database. This type of
subtree is sufficient to capture the interesting relationships
among the data objects. All the documents consist of 60175
records and the number of frequent patterns (itemsets for
RDB, subtrees for XML) detected for varying support
thresholds (displayed in the percentages of the database
records) are displayed in Fig. 7. The reason for choosing such
small support thresholds is that in this particular example the
RDB does not contain many frequently occurring patterns,
and for the frequent patterns from the RDB to contain
reasonable long patterns, the support threshold had to be quite
low. Even the patterns that occur in at least 0.8% of the
database do not consist of more than 2 items. As is evident
from Fig. 6, many more patterns can be found when the RDB
and LineItem.xml are merged together and mined conjointly.

 When analysing the extracted pattern we have observed
that some associations found in the patterns from the
augmented document could not be detected from the patterns
found in each of the data sources separately. For example, at
support 0.7 we find that the only frequent 3-itemset in RDB

is: supp_nation(UNITED_STATES)_cust_region(AMERICA)
_supp_region(AMERICA), which itself does not contain any
useful information. When looking at the extracted frequent
pattern set from the LineItem.xml there is really no
information that can be linked with this pattern as may be the
case for lower support thresholds, when the common item
“SUPP_ID(x)” may be found. However, in the frequent pattern
set from the augmented document a 5-pattern is found:
cust_region(AMERICA)_supp_nation(UNITED_STATES)_sup
p_region(AMERICA)_return_flag(N)_line_status(O). Please
note that for the ease of comparison we have not included the
hierarchical organization of the pattern, but have just
highlighted the additional information obtained by mining the
augmented document.

These results are consistent among the different support
thresholds, in the sense that whatever pattern is obtainable
from RDB a longer version of it can be found in the
augmented document that contains additional associations.
This is particularly evident when the support threshold is even
further increased. For example when the support is set to
10%, there are only 4 frequent 1-itemset patterns extracted
from RDB which cannot be linked in any way to frequent
patterns from the Lineitem.xml. On the other hand, the
frequent patterns extracted from the augmented document are
always larger in number and length, and contain the collective
information and associations that could not be detected if each
of the data sources was mined separately. These results
indicate the importance of being able to link related
information across structured and semi-structured data
sources in order to detect collective knowledge patterns that
can potentially reveal further insights to the user.

V. CONCLUSION

The work presented in this paper has demonstrated the
importance of data mining structured and semi-strcutured data
in a conjoint manner. A framework was proposed to link the
related information among the data sources together, in order
to merge them into an augmented database that will contain
more complete and combined information. As experimentally
demonstrated, mining this merged database can reveal
patterns and associations that otherwise would not be
detected. In our future work the method will be accompanied
with semantic concept matching, to enable a more
sophisticated approach to data merging.

REFERENCES
[1] R. Blumberg & S. Atre, “The Problem with Unstructured Data. DM

Review Magazine, February, 2003
[2] M. L. Brodie, “Computer science 2.0: a new world of data

management”, In Proc. of the 33rd international Conference on Very
Large Data Bases, Vienna, Austria, September 23-27, 2007.

[3] R. Agrawal, T. Imielinski, A. Swami, “Mining association rules
between sets of items in large databases”, In Proc. of the ACM
SIGMOD Conference on Management of Data, Washington, DC, USA,
1993, pp. 207-216.

[4] H. Tan, F. Hadzic, T.S. Dillon, E. Chang, “State of the art of data
mining of tree structured information”, CSSE Journal, vol. 23, no 2,
March, 2008.

93

[5] R. Agrawal & R. Srikant, “Fast algorithm for mining association rules”,
In Proc. of VLDB Conf. 1994, Santiago de Chile, Chile, 1994, pp. 487-
499.

[6] F. Bodon, “A fast apriori implementation”, In Proc. of IEEE ICDM
Workshop on Frequent Itemset Mining Implementations, Florida, USA,
Nov 19-22, 2003.

[7] H. Tan, F. Hadzic, T.S. Dillon, L. Feng, E. Chang, “Tree Model
Guided Candidate Generation for Mining Frequent Subtrees from
XML”, ACM Transactions on Knowledge Discovery from Data,
Volume 2, Issue 2, July 2008.

[8] Y. Chi, S. Nijssen, R.R. Muntz, J.N. Kok, “Frequent Subtree Mining--
An Overview” Fundamenta Informaticae, Special Issue on Graph and
Tree Mining, vol. 66, No. 1-2, 2005, pp. 161-198.

[9] P. McBrien and A. Poulovassilis. “A Semantic Approach to Integrating
XML and Structured Data Sources”. In Proc. CAiSE'01, Interlaken,
June 2001. Springer-Verlag LNCS 2068, pp 330-345.

[10] C. Beeri and T. Milo. “Schemas for integration and translation of
structured and semi-structured data”. In Proc. of ICDT’99, 1999.

[11] H. Do and E. Rahm. “COMA: a system for flexible combination of
schema matching approaches”. In Proc. of the 28th VLDB, Hongkong,
China, 2002.

[12] P. Shvaiko & J. Euzenat. “A survey of schema-based matching
approaches”, Journal on Data Semantics IV, 2005.

94

