
©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195641851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract— The agents or entities frequently require intelli-

gence in the form of Knowledge Based Systems(KBS) to sup-

port many of their functions. In this Paper we discuss how

these KBSs are conceptual are conceptually modeled as a first

step towards their development. In particular, we show to ef-

fectively model all the different knowledge constructs using an

extended definition of an Object. The notation used to express

this is UML [Booch 2005].

INTRODUCTION

Digital Ecosystems frequently require the agents involved to
possess intelligence. This intelligence can take several
forms, but a widely utilized form is the Knowledge Based
System or KBS. Knowledge Based Systems are used to
solve problems that normally:

• are solved by skilled human experts, who use their

expertise for solution of the problem.

• require human judgment rather than mere calcula-

tion, retrieval, collection or display of data. These
might precede the exercise of human judgment, but
they do not subsume or replace it.

• require experience that is gained over a long period
of time. This is normally acquired by the expert
through observation and interaction with a myriad
of different situations.

• involve a solution approach that cannot be directly
formulated into an algorithm or a mathematical
model.

• frequently require the manipulation of symbolic
rather than numerical information.

• could involve imprecise knowledge that is charac-
terized by uncertainty. This uncertainty could be
characterized by probability-based representations
or, alternatively, it could be of the subjective kind.
Subjective uncertainty could reflect subjective
judgments or a lack of precision in the concept.

The knowledge-based system seeks to capture an expert's

knowledge for solving a particular class of problem and to

represent that knowledge in a form that allows machine im-

plementation. This is sometimes referred to as knowledge

engineering. This process is, in fact, a particular form of

conceptual modeling. In this paper, we will further explore

the modeling aspect associated with knowledge-based sys-

tems particularly for their use in Digital Ecosystems. It be-

gins by a discussion of the modeling requirements of these

systems. In Digital Ecosystems these KBSs will frequently

be required to interoperate with databases.

In the Sections that follow, we will introduce the

structures that need to be added to the basic object-oriented
modeling constructs to permit one to model expert systems

using the object-oriented paradigm.
A KBS carries out symbolic processing and consists

of the following components:
1. Knowledge using heuristics or rules of thumb of the
problem domain. a knowledge base (and a working mem-
ory)
2. An inference engine
3. A user interface
4. Interfaces to other databases or systems.

MODELLING THE PROBLEM SOLVER AND THE

PROBLEM SPACE

As explained earlier, in a Knowledge Based System
one determines the way a domain expert solves problems
during the process of knowledge engineering and represents
this in an explicit form that is ultimately the basis of a ma-
chine implementation. In this case, in addition to modeling
the real-world problem space, one also needs to model the
manner in which the problem solver tackles the problem.
Thus, in an expert system one needs to model:

• the problem space;

• the problem solver.

Conceptual model

of the problem

space

Problem space

Problem space

Conceptual model

of the problem

space

Conceptual model

of the problem

solver

Conceptual model for

the expert system

Problem solver

(a)

(b)

Figure 1 (a) Traditional software application, (b)

Knowledge Based System application

Conceptual Modeling of Knowledge Based Systems

for Digital Ecosystems

 Darshan Dillon, Tharam.S. Dillon

Digital Ecosystems and Business Intelligence Institute, Curtin University of Technology

e-mail : {darshan.dillon, tharam.dillon} @cbs.curtin.edu.au

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

550

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 21:44 from IEEE Xplore. Restrictions apply.

The difference between the conceptual modeling car-
ried out for more traditional software applications and that
required for expert or knowledge-based systems is illus-
trated in Figure 1.

It is important here to emphasize that when considering

the model of the problem solver, again one focuses only on

aspects of the problem solver related to the specific problem

at hand. Indeed, it would not be possible with the current

state of the art to model all aspects of a problem solver.

One can distinguish the following types of knowl-
edge that are frequently employed by problem solvers:

• Heuristics or rules of thumb. These are normally
related to knowledge that the problem solver has
acquired by experience and frequently are empiri-
cally determined associations.

• Stereotypes that are used to designate typical ex-
amples of some objects or situations.

• Solution hierarchies that employ different levels
of looking at the problem. These are frequently
associated with the level of detail the problem
solver wishes to deal with at one time.

• Procedures that represent explicitly defined solu-
tion strategies and algorithms. The solution in
this case is defined as a sequence of actions that,
if carried out, leads to the required result. This

type of knowledge is close to that found in tradi-
tional software applications. However, one im-
portant difference is that a procedure may only be
called by the expert if it is needed or if something
changes that requires it.

• Pattern matching a given set of conditions with a
situation or the current state to see if the condi-
tions are satisfied.

• Qualitative or quantitative reasoning with a model
of the real-world phenomena. This frequently in-
volves obtaining a model of the phenomena and
then using it in a qualitative or quantitative simu-
lation.

• Reasoning with primary case material, where it is
not possible to reduce the knowledge involved to
a simple enough set of heuristics because of the

highly context-dependent nature of the knowl-
edge. This has recently been modellled using soft
computing approaches [Pal, Dillon and Yueng
2001] .

The important thing is that when one wishes to rep-

resent all these different kinds of knowledge that the prob-
lem solver uses, it may be necessary to provide additional
modeling constructs to those discussed in UML. [Booch,

2005]
A KBS system frequently involves an open world assump-

tion rather than a closed world assumption. The closed

world assumption is often associated with traditional soft-

ware and database systems. There are some fundamental

differences between the modeling required for traditional

software applications and for knowledge-based systems..

Hence additional constructs are necessary, in particular to

assist with modeling the problem solver's knowledge and

the imprecise and uncertain knowledge, and to permit the

construction of open world models.

3. MODELING HEURISTICS WITH PRODUCTION

RULES, STATES AND OBJECTS

One can effectively model heuristic knowledge

through production rules and facts. Heuristics can be effec-
tively represented by production rules which are condition-
action pairs are of the form:

IF P THEN Q
The condition or premise P is matched against the

working memory and if it is found to be true, the action Q is
carried out. The premise P may be composed of other sim-
pler premises P1, ..., Pn. In early versions (Buchanan &
Shortliffe 1984) of these production rules, the premises P1,
..., Pn were joined together by the connective AND. How-
ever, most Knowledge Based System tools now allow for
the premises to be joined together with the connectives
AND or OR and negated by NOT. Facts are assertions
about the state of the system and are used to fire the rules.
We note that attributes of objects are used to characterize
the state of the system can be used as storage for the facts
or state of the system and then to use them to trigger rules.
These objects or entities each have an entity name, attribute
names and attribute values. They do not include any meth-
ods or messages. The objects or entities, with their associ-
ated attribute names and attribute values, are then used as
the premises in the left-hand side or condition part of the
rule.
Thus, in these cases the rule would have the syntax:

IF entity A, attribute A1 = value V1

AND entity B, attribute A2 = value V2
THEN carry out (action Act1)

If the entity is the same in all the premises of a par-

ticular rule, it can simply be written as:

IF entity A, attribute A1 = value V1
AND attribute A3 = value V3
THEN carry out (action Act2)

This form of an object or entity within a rule is, of course,
much more limited than that used in object-oriented sys-
tems. However, the idea of having (object, attribute, value)
triples as premises of rules can be used in modeling and we
will use it in our extension of the object-oriented paradigm
to include knowledge bases.Thus, the rules used in our ex-
tension of the object-oriented paradigm have the form:

IF P1
$ P2
$ P3
.. ..
$ Pn
THEN carry out (action A)

where Pi has the syntax:
 Pi = (object name i, attribute name Ai, value Vi)
and $ denotes the connectives:
 AND, OR, AND NOT and OR NOT

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

551

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 21:44 from IEEE Xplore. Restrictions apply.

As the number of rules in the knowledge base be-

comes very large, the cognitive on the knowledge engineer
is unacceptable and an additional structuring facility must
be provided such as grouping of thematically consistent
rules or rules with a similar purpose into smaller chunks
known as a rule set or rule state. A rule state is analogous
to a function module. Each rule state has an agenda and a
control mechanism to fire the rules within the rule state or
to call another rule state. Each rule state can be called
dependently or independently, and in sequence or at ran-
dom.
The next extension is to associate a particular rule state with
a particular object. The rules in this rule state will be
largely restricted to using the attribute names and values of
its associated object. This approach allows one to achieve
some degree of encapsulation. In practice though, one fre-
quently needs to access the attributes of at least one other
object to obtain the desired goal state. However, some de-
gree of encapsulation has the advantage of making the mod-
eling clearer and making future maintenance and perhaps
re-use easier. The symbols used for a rule state and rules are
given in Figure 2. Note that the rule state (<<rule-state>>)
is a stereotype in UML [Booch, 2005] which represents the
collection of rules which reason using the facts in a class it
is attached to. It contains information such as the name of
the rule state as a whole. A stereotyped class for
rule (<<rule>>) is bound to the rule state in order to reflect
the fact that rules belong to a specific rule state and are part
of it. In our case the rule state is known as Rule_State_A
and the class whose instances represent specific rules is
known as Rule_State_A_Rule. An instance of the rule class
indicates a specific rule,
known as Rule_A1. Thus, if a specific rule state has 10
rules then there will be one instance of the rule state class
and 10 instances of the rule

class.

Figure 2 Symbols for a rule state and rules in an Ob-
ject-Property diagram

An illustration of the rule states attached to particular
objects is given in Figures 3.

We first begin by examining the stereotypes defined
in Figure 3. Note that there are 2 stereotypes which relate to

relationships. These include <<bind-rule-state>> which
binds the <<rule-state>> to the class that is using it to rea-
son. Note that the <<rule>> stereotyped class contains at-
tributes which specify the rule name and also the content.
The internal structure of each rule will be represented in a
string that will go in this attribute. A class such as
CAR_SEAT_COVER (we are using the car rental example)
may have a subset of the total rule base used to select a car
seat cover. For instance, there may be a total of a 1000 rules
in the system, but only 10 of them that relate to choosing a
car seat cover. Rather than going through the entire rule
base every time we try and choose a car seat cover, we iso-
late and restrict our attension to only the rules that focus on
the relevant goal. This is done by putting those 10 rules into
a rule state and attaching it to the CAR_SEAT_COVER
class. A stereotype <<bind-rule-state>> is built on the asso-
ciation relationship which will bind the rule state to the
method section of the CAR_SEAT_COVER class. Simil-
iarly there is a stereotype built on the composition relation-
ship (<<bind-rule>>) which will bind the class that repre-
sents individual rules to the rule state as a whole.

The above discussion applies equally to the CAR
class, rather than the CAR_SEAT_COVER.

Figure 3 Symbols for a rule state and rules in an Ob-
ject-Property diagram

It is important to notice in the above extension of the ob-

ject-oriented paradigm to include rules, that the objects cor-

respond to the conceptual model of the real world while the

attached rules and rule states correspond to the model of the

problem solver's heuristic knowledge.

 REPRESENTING STEREOTYPES AND

HIERARCHICAL KNOWLEDGE USING FRAMES

A representation that uses only production rules is
suitable for purely heuristic-oriented applications. How-
ever, not many applications are solely of this nature. There
are stereotyped items in the real world that participate in the
problem-solving process. Frames would be a more suitable
representation for these stereotyped items (Minsky 1975). A
frame is a prototypical structure that contains the features of
an object, item or event. It has a frame name and a number
of slots and fillers. The slots are analogous to field names
in records or attribute names in objects, while the fillers
represent the values.

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

552

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 21:44 from IEEE Xplore. Restrictions apply.

Facets are used as the means of attaching this control

information to a slot (Walters & Nielsen 1988). Classically,
we can distinguish between the following types of facets
(Winston 1984):

1. value facets
2. if-needed facets
3. default facets

Value facets provide control of actual values, On the
other hand, it may be necessary to pass control to a function
or procedure to return a value for a particular slot. This can

be achieved using the if-needed facet. Thus the price of the
rental could be computed by a function or procedure. Note
that such functions or procedures would only be activated to
carry out a computation when the value for the particular
slot is needed rather than using a procedure call at a particu-
lar point in a program. This sort of function or procedure is

called a daemon. Thus, when an access to the slot is made
to fetch information the daemon is activated. These dae-

mons are discussed in greater detail in Section 6.2. Default

facets provide a most likely value that is used in situations
where an actual value is not given.
In addition to providing a representation of a stereotype,
frames permit one to structure objects and events into a hi-
erarchy using classes. Therefore, frames also provide an ef-
fective means of representing knowledge associated with
classification of objects and events. The reader might have

noticed some similarities between frames and objects. The
similarities and the differences between frames and objects
are discussed in Section 6.1.

HYBRID RULE AND FRAME-BASED SYSTEMS

Rule-based systems essentially combine heuristics,
facts and relationships in a uniform structured knowledge
base. In many cases there is considerable leverage to be
gained when heuristics are combined with the stereotyped
elements. This leads us to another category of Knowledge
Based Systems, namely hybrid rule and frame-based sys-
tems. The knowledge base of this category consists of rules
and frames. Rules are used to represent heuristics and

frames are used to represent the stereotyped items.
The rules considered here, however, have an ex-

tended type, namely pattern-matching rules which are writ-
ten as IFpm-THEN, in addition to the normal IF-THEN
rules. In this paper, we distinguish the pattern-matching
rules with the notation IFpm-THEN from IF-THEN rules

for clarity, although this distinction may not be present in
the particular Knowledge Based System tool used. A pat-
tern-matching rule, IFpm-THEN, matches the frames with
conditions specified in the IFpm part of the rule.

The rules in such hybrid systems use the slot values
of the frames to set up the premises or conditions part of the
rule. The pattern-matching rules also carry out a match
across several classes and perhaps even across different hi-
erarchies. An important manner in which rules and frames
are used together is to associate a particular rule state to an
if-needed (or if-changed) slot. When the slot is accessed,
the associated set of rules in the rule state is activated to
carry out the reasoning required. Note that during this rea-
soning only the specified set of rules in that particular rule
state will be considered by the inference engine rather than
all the rules in the system.

This ability to associate rule states with slots in a
particular frame allows one to structure a reasoning hierar-
chy. The frames in the reasoning hierarchy are structured
so that those at the highest level deal with the more general
conclusions, with these conclusions being specialized as one
comes down the hierarchy.
In certain circumstances, it is desirable to fire a pattern-
matching rule only once even though it matches more than

one object.

EXTENDING THE OBJECT MODEL FOR HYBRID

RULE AND FRAME-BASED EXPERT OR

KNOWLEDGE-BASED SYSTEMS

Rules and objects can be integrated to provide extensions to
the object model to include IF-THEN rules and rule states.
These extensions permit one to incorporate aspects of heu-
ristic knowledge into an object-oriented model. In this sec-
tion we will consider additional extensions to incorporate in
the object-oriented conceptual model the modeling power
available in hybrid rule and frame-based systems described

in the last section. In order to do this, we begin with a
comparison of frames and objects.

Rules and objects can be integrated to provide extensions
to the object model to include IF-THEN rules and rule
states. These extensions permit one to incorporate aspects
of heuristic knowledge into an object-oriented model. In
this section we will consider additional extensions to incor-
porate in the object-oriented conceptual model the modeling
power available in hybrid rule and frame-based systems de-
scribed in the last section. In order to do this, we begin
with a comparison of frames and objects.

Frame Object

• Frame • Class

• instance • instance

• slots • instance attributes or class attributes

• passive • active

• inheritance • inheritance

• defaults •••• defaults

• daemons

• rule attachment

• reasoning with a pattern-matching rule

• constraints

• object identity

• encapsulation of methods

• polymorphism

• message passing

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

553

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 21:44 from IEEE Xplore. Restrictions apply.

6.1 FRAMES AND OBJECTS

There are some important similarities and differ-
ences between the concepts of frames and objects.

The similarities between an object and a frame are as fol-
lows:

1. Frames and objects each have an identifier or name.
2. One can have the notion of class and instance with

both objects and frames.
3. Frames have slots with slot names and these can take

on a value. Similarly, objects have attribute names
and attribute values.

4. Both object and frame structures permit single and
multiple inheritance.

5. Both frames and objects permit one to attach proce-
dures. However, the manner and type of attachment
are different and this is discussed among the differ-
ences below.

Important differences between frames and objects
are as follows:

1. Frames possess daemons that are activated each

time a slot is accessed, updated or deleted. Ob-
jects do not possess a similar form.

2. Objects use messages for activating a method. A
frame lacks the message-passing facility and the

methods of an object. Although a frame has dae-
mons that are activated when a slot is accessed, it
is more of a passive structure as distinct from the
active object that responds to messages received
from other objects.

3. A frame permits one to attach IF-THEN rules and
rule states to slots. This allows one to model heu-
ristic knowledge.

4. An object has the notion of encapsulation of at-
tributes and methods within the object. Frames
do not provide an effective mechanism for this.

5. Pattern-matching rules, which require the direct
access of information in more than one frame, can
be used without complication in frames. These
extend the heuristic modeling capability to permit
reasoning about structures and across structures.

No pattern-matching rules are available in the ob-
jects discussed to date.

6. Objects can easily incorporate complex con-
straints. This could be more difficult with frames,
even though facets and constraint specifying ca-

pabilities have been provided with some Knowl-
edge Based System tools.

7. Objects have the facility of polymorphism,
whereas frames do not have this property.

The differences between frames and objects are
summarized in Figure 4.

6.2 EXTENDING THE OBJECT CONCEPT TO

OBJECTFS

To distinguish the new notion from an object as de-

fined earlier, we use the stereotype <<objectf>> to indicate
that it has the characteristics of an object as defined in pure
object-oriented languages, as well as the characteristics of a
frame. The characteristics of an objectf are in bold type in

Figure 4.
To facilitate this discussion, we draw attention to the

fact that slots are often used to refer to attribute names in
the Knowledge Based Systems area. We adopt this conven-
tion as, in addition to attribute values and attribute defaults,
it is possible to attach a procedure or rule set to such a slot.
This gives the slots an ability to have a dynamic component
rather than purely static components.

The extensions that need to be made to the object-
oriented model include:

1. For objectfs, permitting the attachment of daemons

to a slot in an object

 Daemons are functions that are attached to the slots
of a objectf. They are activated when the associated slot is
being updated, accessed or deleted. A daemon is somewhat
similar to a method in that it consists of procedural code but

it is automatically activated without the need for a message
to be passed. To activate daemons, one can access the rele-
vant slots of the objectfs in two ways:

(a) directly, as shown in Figure 5;
(b) indirectly, such that a message is sent to a method of

a objectf to access the slot of interest, as shown in
Figure 6.

These daemons are useful for determining derived

values, monitoring a situation and carrying out a calculation
only when something changes. Together with the methods

Figure 4 Differences between frames and objects

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

554

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 21:44 from IEEE Xplore. Restrictions apply.

in objectfs, these daemons allow modeling of procedural
knowledge.

As far as the stereotypes are concerned in Figure 5,
there are several. Firstly, note that we have stereotyped a
class to represent an objectf by using the <<objectf>>
stereotype. Each objectf will have many slots, and slots are
part of the objectf. We bind each slot to it’s parent <<ob-
jectf>> by the <<bind-slot>>

stereotype. We have defined a stereotype to represent each
slot, named <<slot>>. It is important to note that if a par-
ticular objectf has, say, ten slots there will still be only one
<<slot>> class. There will be ten instances of this class. The
<<slot>> class has four stereotyped attributes. They include
a field that represents the name of the slot (<<name-
field>>) and three types of slots that represent the different
types of facets that were discussed earlier. It is necessary to

have all three facets of a slot represented concurrently since
each slot may have more than one facet used at a particular
time. In this example, the objectf is called A, and it has a
slot named AA with a daemon named D used to calculate
the value of the slot. The <<if-needed>> stereotype is of
particular interest since it may have either the name of a
daemon or a rule state attached to calculate the value which
goes in the value facet.

Figure 6 has the same layout as Figure 5 with the
exception of an additional method in the <<objectf>> class.
Every other stereotype has the same meaning.

Figure 5 Change in or access to slot AA causes activation
of the daemon

Figure 6 Message to method BB of objectf A leading to
indirect activation of the daemon

2. For objectfs, permitting the attachment of rule

states to an object

The production rules should have the form that the

premises of the rules consist of a conjunction or disjunction
of triples (objectf, attribute = value). Such a rule state
could be attached to a slot and activated when the slot is ac-
cessed, much in the manner of a daemon, as shown in Fig-
ure 7. Alternatively, it could be called from within a
method or function, as shown in Figure 8. Some Knowl-

edge Based Systems tools support this call from within a
method.

Stereotypes for Figure 7 have the same meaning as
for Figures 5 & 6 except the use of the <<if-needed-facet>>
is slightly different. Previously the name of a daemon was
used as the value. If we choose to use a rule state rather than
a procedure to calculate the value for slot AA, we simply
put the name of the rule state as the <<if-needed-facet>>
value rather than the procedure name. The note attached to

the class reflects this slightly different use of the stereotyped
attribute <<if-needed facet>>.

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

555

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 21:44 from IEEE Xplore. Restrictions apply.

Figure 7 Rule state attached to a slot and activated by ac-
cessing the slot

Rule 1_A

Rule 1_B

Rule 1_C

Rule 1_D Function AAA

call rule state (RS2)

call rule state (RS1)
. . .

. . .

. . .

. . .

RS2RS1

Rule 2_A

Rule 2_B

Rule 2_C

Rule 2_D

Rule 2_E

Figure 8 Rule state called from within a function

These rule states permit the modeling of heuristic
knowledge

1. Allowing for pattern-matching rules to be added to

the system

These rules have premises that involve the attribute
values from more than one objectf or more than one hierar-
chy of objectfs. Such a rule for the Rent-a-Car example is
shown in Figure 9.

Figure 9 Pattern-matching rules for the Rent-a-Car exam-
ple

For the purposes of modeling, pattern-matching rules

could be put into a pattern-matching rule state for the sys-
tem. However, an object-oriented pattern-matching rule
state may contain a mixture of ordinary IF-THEN rules as
well as pattern-matching rules, provided that it has at least

one of the latter. The symbols for a pattern-matching rule
state and a pattern-matching rule are shown in Figure 14.36.
As far as stereotypes are concerned we define a different
stereotype for a pattern matching rule state. It is named as
<<pm-rule-state>> where ‘pm’ is short for pattern match-
ing. Note that we still use the <<rule>> stereotype to repre-
sent both rules that are pattern matching and normal. Usu-
ally we include a stereotyped attribute <<rule-type>> in the
class stereotyped <<rule>>. The reason for doing it this way
is that we propose that the rule itself be included in a field

stereotyped as <<content>> in <<rule>>. So whether a rule
is pattern-matching or normal it will be included in this
field. The inference engine that examines instances of rules
can look at the <<rule-type>> field to decide how to inter-
pret the content of the rule. It is important to note that even
though a pattern-matching rule has the ‘IF’ part of itself re-
lying on facts from more than one class, it is still attached to
a rule state that belongs to one class in particular. For ex-
ample, the rule in Figure 14.35 has references (in the ‘IF’
part of the rule) to both CAR and CUSTOMER. Neverthe-
less, a CAR is rented by a CUSTOMER so CAR is the sub-
ject in the relationship between the two classes. Hence the
rule will be included in a rule state attached to the class
CAR, rather than CUSTOMER. This additional analysis
will have to be done by the modeler in the case of all pat-
tern-matching rule states. Bear in mind that a pattern-
matching rule state will contain some normal rules which
only rely on a single class, so this will simplify the process
of deciding which class to assign the rule state too.

Figure 10 Symbols for pattern-matching rules and rule
states

2. Allowing for inheritance to be stopped at a particu-

lar class level

 IFpm ?aCar of CAR
 WITH ?aCar.Size = Small
 ?aCar.Status = Not Rented
 AND ?Customer.Status = Eligible
 THEN set (?aCar.Status = Rented)
 AND add (customer name and car

registration number to rental
list)

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

556

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 21:44 from IEEE Xplore. Restrictions apply.

In object-oriented systems, inheritance implies that

all properties pertaining to a superclass are inherited by the
subclasses down the hierarchy chain, unless they are over-
ridden. Despite the feature of overriding of the properties

by a subclass, there are situations where properties of a su-
perclass are not needed by all the subclasses or instances of
the class itself. These properties could exist for a particular
purpose for the superclass.
Inheritance can be stopped along the hierarchy chain. The
prevention of inheritance of attributes can be specified at
two levels, the class and instance levels.

3.Permitting the specification of reasoning hierarchies

through the use of objectfs and associated rule states or

procedures.

The objects in this case would capture the features of the
reasoning associated
with a particular level of inference, including the attributes,
rules and procedures used at this level. It should be noted
that this organization of objectfs into reasoning hierarchies

is somewhat different from the hierarchy associated with a
physical object. These reasoning hierarchies capture as-
pects of the problem solver's knowledge, whereas the others
are modeling classifications, generalizations and abstrac-
tions of the problem space. This, however, could limit the
objectfs associated with a reasoning hierarchy to a particu-
lar application.

The type of expert or knowledge-based system that
requires qualitative or quantitative reasoning does not pose
any special new problems for object-oriented modeling, as
the model required can easily be encapsulated in a single
object or a collection of several objects. The challenge is to
pick the right model during analysis and ensure that the rea-
soning approach written was suitably devolved to the right
objectfs.

In systems that contain both model-based and rule-
based reasoning, the so-called second generation systems,
the rule-based components could be grouped into rule states
that are attached to objectfs, and the model-based compo-
nents could be expressed as a set of objects. Communica-
tion between them, including the passing of control asyn-
chronously from one type of reasoning system to the other,
can be uniformly performed using messages.
If the qualitative or quantitative model consists of several
objects, it is important that it be isolated into its own subject
layer in the representation. If the model is still too complex,
one could nest subject layers within this isolated layer to

control the complexity of the representation.

RECAPITULATION

In this paper, conceptual modeling appropriate to an expert
or knowledge-based system was considered. Specifically,

the extensions necessary to the object-oriented paradigm
were described.

REFERENCES

Booch, G. & Rumbaugh, J & Jacobson, I. 2005 “Unified Modeling
Language User Guide”, 2nd Edition The Addison-Wesley Object
Technology Series

Buchanan, B.G. & Shortliffe, E.H., eds 1984, Rule-Based Expert Systems,

Addison-Wesley, Reading, Massachusetts

Cooke, N.M. & McDonald, J.E. 1986, "A formal methodology for acquir-
ing and representing expert knowledge", Proc. of the IEEE, vol. 74, no.
10, October, pp. 1422-30 *

Dillon T.S. and Tan P.L. ”Conceptual Modelling of Object Oriented Sys-
tems” Prentice Hall 1993 *

Dillon T.S. ,Chang E., Rahayu W., Darshan Dillon 2008“ Conceptual

Modelling and Design of Object Oriented and Component Based Sys-
tems “ In Print *

Duda, R.O., Hart, P.E., Nilsson, N.J. & Sutherland, G.L. 1978, "Semantic

network representations in rule-based inference systems", in Pattern Di-

rected Inference Systems, eds D.A. Waterman & F. Hayes-Roth, Aca-
demic Press, New York *

Duda, R.O., Gaschnig, J.G. & Hart, P.E. 1979, "Model design in the
PROSPECTOR consultation system for mineral exploration", in Expert

Systems in the Micro-Electronic Age, ed. D. Michie, Edinburgh Uni-

versity Press, Edinburgh, Scotland *

Gevarter, W.B. 1987, "The nature and evaluation of commercial expert

system building tools", IEEE Computer, May, pp. 24-41 *

Johnson, P.E. 1983, "What kind of expert should a system be?", J. Med.

Phil., vol. 8, pp. 77-97 *

Liu, N.K. & Dillon, T.S. 1987, "Detection of consistency and complete-
ness in expert systems using Numerical Petri Nets", Proc. Australian

Artificial Intelligence Congress, Sydney, Australia, November, pp.
170-85 *

Liu, N.K. & Dillon, T. 1991, "An approach towards the verification of

expert systems using Numerical Petri Nets", International Journal of

Intelligent Systems, vol. 6, no. 3, June, pp. 255-76 *

Luger, G.F. & Stubblefield, W.A. 1989, Artificial Intelligence and the

Design of Expert Systems, Benjamin-Cummings, Redwood City, Cali-
fornia *

Minsky, M. 1975, "A framework for representing knowledge", in The

Psychology of Computer Vision, ed. P.H. Winston, McGraw-Hill, New
York

Sell, P.S. 1985, Expert Systems - A Practical Introduction, Macmillan,

Basingstoke, Hampshire
Walters, J. & Nielsen, N.R. 1988, Crafting Knowledge-Based Systems,

John Wiley & Sons, New York

Winston, P.H. 1984, Artificial Intelligence, Addison-Wesley, Reading,
Massachusetts

Zadeh, L.A. 1988, "Fuzzy Logic", IEEE Computer, vol. 21, no. 4, April,

pp.83-93

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

557

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 21:44 from IEEE Xplore. Restrictions apply.

