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Abstract— The agents or entities frequently require intelli-

gence in the form of Knowledge Based Systems(KBS) to sup-

port many of their functions. In this Paper we discuss how 

these KBSs are conceptual  are conceptually modeled as a first 

step towards their development. In particular, we show to ef-

fectively model all the  different knowledge constructs using an 

extended definition of an Object. The notation used to express 

this is UML [Booch 2005]. 

INTRODUCTION 

Digital Ecosystems frequently require the agents involved to 
possess intelligence. This intelligence can take several 
forms, but a widely utilized form is the Knowledge Based 
System or KBS. Knowledge Based Systems are used to 
solve problems  that normally: 

 

• are solved by skilled human experts, who use their 

expertise for solution of the problem. 

• require human judgment rather than mere calcula-

tion, retrieval, collection or display of data.  These 
might precede the exercise of human judgment, but 
they do not subsume or replace it. 

• require experience that is gained over a long period 
of time.  This is normally acquired by the expert 
through observation and interaction with a myriad 
of different situations. 

• involve a solution approach that cannot be directly 
formulated into an algorithm or a mathematical 
model. 

• frequently require the manipulation of symbolic 
rather than numerical information. 

• could involve imprecise knowledge that is charac-
terized by uncertainty.  This uncertainty could be 
characterized by probability-based representations 
or, alternatively, it could be of the subjective kind.  
Subjective uncertainty could reflect subjective 
judgments or a lack of precision in the concept. 

The knowledge-based system seeks to capture an expert's 

knowledge for solving a particular class of problem and to 

represent that knowledge in a form that allows machine im-

plementation.  This is sometimes referred to as knowledge 

engineering. This process is, in fact, a particular form of 

conceptual modeling.  In this paper, we will further explore 

the modeling aspect associated with knowledge-based sys-

tems particularly for their use in Digital Ecosystems. It be-

gins by a discussion of the modeling requirements of these 

systems. In Digital Ecosystems these KBSs will frequently 

be required to interoperate with databases. 

 

 
In the Sections that follow, we will introduce the  

structures that need to be added to the basic object-oriented 
modeling constructs to permit one to model expert systems 

using the object-oriented paradigm.   
A KBS carries out symbolic processing and consists 

of the following components: 
1. Knowledge using heuristics or rules of thumb of the 
problem domain. a knowledge base (and a working mem-
ory) 
2. An inference engine 
3. A user interface 
4. Interfaces to other databases or systems. 

MODELLING THE PROBLEM SOLVER AND THE 

PROBLEM SPACE 

As explained earlier, in a Knowledge Based System 
one determines the way a domain expert solves problems 
during the process of knowledge engineering and represents 
this in an explicit form that is ultimately the basis of a ma-
chine implementation.  In this case, in addition to modeling 
the real-world problem space, one also needs to model the 
manner in which the problem solver tackles the problem.  
Thus, in an expert system one needs to model: 

• the problem space; 

• the problem solver. 
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Figure 1  (a) Traditional software application, (b) 

Knowledge Based System application 
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The difference between the conceptual modeling car-
ried out for more traditional software applications and that 
required for expert or knowledge-based systems is illus-
trated in Figure 1. 

It is important here to emphasize that when considering 

the model of the problem solver, again one focuses only on 

aspects of the problem solver related to the specific problem 

at hand.  Indeed, it would not be possible with the current 

state of the art to model all aspects of a problem solver. 

One can distinguish the following types of knowl-
edge that are frequently employed by problem solvers:  
 

• Heuristics or rules of thumb.  These are normally 
related to knowledge that the problem solver has 
acquired by experience and frequently are empiri-
cally determined associations. 

• Stereotypes that are used to designate typical ex-
amples of some objects or situations. 

• Solution hierarchies that employ different levels 
of looking at the problem.  These are frequently 
associated with the level of detail the problem 
solver wishes to deal with at one time. 

• Procedures that represent explicitly defined solu-
tion strategies and algorithms.  The solution in 
this case is defined as a sequence of actions that, 
if carried out, leads to the required result.  This 

type of knowledge is close to that found in tradi-
tional software applications.  However, one im-
portant difference is that a procedure may only be 
called by the expert if it is needed or if something 
changes that requires it. 

• Pattern matching a given set of conditions with a 
situation or the current state to see if the condi-
tions are satisfied. 

• Qualitative or quantitative reasoning with a model 
of the real-world phenomena.  This frequently in-
volves obtaining a model of the phenomena and 
then using it in a qualitative or quantitative simu-
lation. 

• Reasoning with primary case material, where it is 
not possible to reduce the knowledge involved to 
a simple enough set of heuristics because of the 

highly context-dependent nature of the knowl-
edge.  This has recently been modellled using soft 
computing approaches [Pal, Dillon and Yueng 
2001] . 
 
The important thing is that when one wishes to rep-

resent all these different kinds of knowledge that the prob-
lem solver uses, it may be necessary to provide additional 
modeling constructs to those discussed in UML. [Booch, 

2005] 
A KBS system frequently involves an open world assump-

tion rather than a closed world assumption.  The closed 

world assumption is often associated with traditional soft-

ware and database systems.  There are some fundamental 

differences between the modeling required for traditional 

software applications and for knowledge-based systems..  

Hence additional constructs are necessary, in particular to 

assist with modeling the problem solver's knowledge and 

the imprecise and uncertain knowledge, and to permit the 

construction of open world models. 

3. MODELING HEURISTICS WITH PRODUCTION 

RULES, STATES AND OBJECTS 

One can effectively model heuristic knowledge 

through  production rules and facts. Heuristics can be effec-
tively represented by production rules which are condition-
action pairs  are of the form: 

IF P THEN Q 
The condition or premise P is matched against the 

working memory and if it is found to be true, the action Q is 
carried out.  The premise P may be composed of other sim-
pler premises P1, ..., Pn.  In early versions (Buchanan & 
Shortliffe 1984) of these production rules, the premises P1, 
..., Pn were joined together by the connective AND.  How-
ever, most Knowledge Based System tools now allow for 
the premises to be joined together with the connectives 
AND or OR and negated by NOT.   Facts are assertions 
about the state of the system and are used to fire the rules.  
We note that attributes of objects are used to characterize 
the state of the system can  be used as storage for the facts 
or state of the system and then to use them to trigger rules.  
These objects or entities each have an entity name, attribute 
names and attribute values.  They do not include any meth-
ods or messages.  The objects or entities, with their associ-
ated attribute names and attribute values, are then used as 
the premises in the left-hand side or condition part of the 
rule. 
Thus, in these cases the rule would have the syntax: 
 

IF    entity A, attribute A1 = value V1 

AND  entity B, attribute A2 = value V2 
THEN  carry out (action Act1) 

 
If the entity is the same in all the premises of a par-

ticular rule, it can simply be written as:  
 
IF    entity A, attribute A1 = value V1  
AND  attribute A3 = value V3 
THEN  carry out (action Act2) 

 
This form of an object or entity within a rule is, of course, 
much more limited than that used in object-oriented sys-
tems.  However, the idea of having (object, attribute, value) 
triples as premises of rules can be used in modeling and we 
will use it in our extension of the object-oriented paradigm 
to include knowledge bases.Thus, the rules used in our ex-
tension of the object-oriented paradigm have the form:  

 
IF P1 
$ P2 
$ P3 
.. .. 
$ Pn 
THEN carry out (action A) 

 

where Pi has the syntax:  
 Pi = (object name i, attribute name Ai, value Vi) 
and $ denotes the connectives: 
 AND, OR, AND NOT and OR NOT  
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As the number of rules in the knowledge base be-

comes very large, the cognitive  on the knowledge engineer 
is unacceptable and an additional structuring facility must 
be provided such as  grouping of thematically consistent  
rules or rules with a similar purpose into smaller chunks 
known as a rule set or rule state.  A rule state is analogous 
to a function module.  Each rule state has an agenda and a 
control mechanism to fire the rules within the rule state or 
to call another rule state.  Each rule state can be called 
dependently or independently, and in sequence or at ran-
dom.   
The next extension is to associate a particular rule state with 
a particular object.  The rules in this rule state will be 
largely restricted to using the attribute names and values of 
its associated object.  This approach allows one to achieve 
some degree of encapsulation.  In practice though, one fre-
quently needs to access the attributes of at least one other 
object to obtain the desired goal state. However, some de-
gree of encapsulation has the advantage of making the mod-
eling clearer and making future maintenance and perhaps 
re-use easier. The symbols used for a rule state and rules are 
given in Figure 2. Note that the rule state (<<rule-state>>) 
is a stereotype in UML [Booch, 2005] which represents the 
collection of rules which reason using the facts in a class it 
is attached to. It contains information such as the name of 
the rule state as a whole. A stereotyped class for 
rule (<<rule>>) is bound to the rule state in order to reflect 
the fact that rules belong to a specific rule state and are part 
of it. In our case the rule state is known as Rule_State_A 
and the class whose instances represent specific rules is 
known as Rule_State_A_Rule. An instance of the rule class 
indicates a specific rule,  
known as Rule_A1. Thus, if a specific rule state has 10 
rules then there will be one instance of the rule state class 
and 10 instances of the rule 

class.

 
 
Figure 2  Symbols for a rule state and rules in an Ob-
ject-Property diagram  
 

An illustration of the rule states attached to particular 
objects is given in Figures 3. 

We first begin by examining the stereotypes defined 
in Figure 3. Note that there are 2 stereotypes which relate to 

relationships. These include <<bind-rule-state>> which 
binds the <<rule-state>> to the class that is using it to rea-
son. Note that the <<rule>> stereotyped class contains at-
tributes which specify the rule name and also the content. 
The internal structure of each rule will be represented in a 
string that will go in this attribute. A class such as 
CAR_SEAT_COVER (we are using the car rental example) 
may have a subset of the total rule base used to select a car 
seat cover. For instance, there may be a total of a 1000 rules 
in the system, but only 10 of them that relate to choosing a 
car seat cover. Rather than going through the entire rule 
base every time we try and choose a car seat cover, we iso-
late and restrict our attension to only the rules that focus on 
the relevant goal. This is done by putting those 10 rules into 
a rule state and attaching it to the CAR_SEAT_COVER 
class. A stereotype <<bind-rule-state>> is built on the asso-
ciation relationship which will bind the rule state to the 
method section of the CAR_SEAT_COVER class. Simil-
iarly there is a stereotype built on the composition relation-
ship (<<bind-rule>>) which will bind the class that repre-
sents individual rules to the rule state as a whole. 

The above discussion applies equally to the CAR 
class, rather than the CAR_SEAT_COVER. 
 

 
 
Figure 3 Symbols for a rule state and rules in an Ob-
ject-Property diagram  
 
It is important to notice in the above extension of the ob-

ject-oriented paradigm to include rules, that the objects cor-

respond to the conceptual model of the real world while the 

attached rules and rule states correspond to the model of the 

problem solver's heuristic knowledge. 

 REPRESENTING STEREOTYPES AND 

HIERARCHICAL KNOWLEDGE USING FRAMES 

A representation that uses only production rules is 
suitable for purely heuristic-oriented applications.  How-
ever, not many applications are solely of this nature.  There 
are stereotyped items in the real world that participate in the 
problem-solving process.  Frames would be a more suitable 
representation for these stereotyped items (Minsky 1975). A 
frame is a prototypical structure that contains the features of 
an object, item or event.  It has a frame name and a number 
of slots and fillers.  The slots are analogous to field names 
in records or attribute names in objects, while the fillers 
represent the values. 
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Facets are used as the means of attaching this control 

information to a slot (Walters & Nielsen 1988). Classically, 
we can distinguish between the following types of facets 
(Winston 1984): 
 

1. value facets  
2. if-needed facets  
3. default facets 

 

Value facets provide control of actual values, On the 
other hand, it may be necessary to pass control to a function 
or procedure to return a value for a particular slot.  This can 

be achieved using the if-needed facet. Thus the price of the 
rental could be computed by a function or procedure.  Note 
that such functions or procedures would only be activated to 
carry out a computation when the value for the particular 
slot is needed rather than using a procedure call at a particu-
lar point in a program.  This sort of function or procedure is 

called a daemon.  Thus, when an access to the slot is made 
to fetch information the daemon is activated.  These dae-

mons are discussed in greater detail in Section 6.2.  Default 

facets provide a most likely value that is used in situations 
where an actual value is not given. 
In addition to providing a representation of a stereotype, 
frames permit one to structure objects and events into a hi-
erarchy using classes. Therefore, frames also provide an ef-
fective means of representing knowledge associated with 
classification of objects and events.  The reader might have 

noticed some similarities between frames and objects.  The 
similarities and the differences between frames and objects 
are discussed in Section 6.1. 

HYBRID RULE AND FRAME-BASED SYSTEMS 

Rule-based systems essentially combine heuristics, 
facts and relationships in a uniform structured knowledge 
base. In many cases there is considerable leverage to be 
gained when heuristics are combined with the stereotyped 
elements.  This leads us to another category of Knowledge 
Based Systems, namely hybrid rule and frame-based sys-
tems.  The knowledge base of this category consists of rules 
and frames.  Rules are used to represent heuristics and 

frames are used to represent the stereotyped items. 
The rules considered here, however, have an ex-

tended type, namely pattern-matching rules which are writ-
ten as IFpm-THEN, in addition to the normal IF-THEN 
rules.  In this paper, we distinguish the pattern-matching 
rules with the notation IFpm-THEN from IF-THEN rules 

for clarity, although this distinction may not be present in 
the particular Knowledge Based System tool used.  A pat-
tern-matching rule, IFpm-THEN, matches the frames with 
conditions specified in the IFpm part of the rule. 

The rules in such hybrid systems use the slot values 
of the frames to set up the premises or conditions part of the 
rule.  The pattern-matching rules also carry out a match 
across several classes and perhaps even across different hi-
erarchies. An important manner in which rules and frames 
are used together is to associate a  particular rule state to an 
if-needed (or if-changed) slot.  When the slot is  accessed, 
the associated set of rules in the rule state is activated to 
carry out the reasoning required.  Note that during this rea-
soning only the specified set of rules in that particular rule 
state will be considered by the inference engine rather than 
all the rules in the system.  

This ability to associate rule states with slots in a 
particular frame allows one to structure a reasoning hierar-
chy.  The frames in the reasoning hierarchy are structured 
so that those at the highest level deal with the more general 
conclusions, with these conclusions being specialized as one 
comes down the hierarchy.  
In certain circumstances, it is desirable to fire a pattern-
matching rule only once even though it matches more than 

one object. 

EXTENDING THE OBJECT MODEL FOR HYBRID 

RULE AND FRAME-BASED EXPERT OR 

KNOWLEDGE-BASED SYSTEMS 

Rules and objects can be integrated to provide extensions to 
the object model to include IF-THEN rules and rule states.  
These extensions permit one to incorporate aspects of heu-
ristic knowledge into an object-oriented model.  In this sec-
tion we will consider additional extensions to incorporate in 
the object-oriented conceptual model the modeling power 
available in hybrid rule and frame-based systems described 

in the last section.  In order to do this, we begin with a 
comparison of frames and objects. 
 

Rules and objects can be integrated to provide extensions 
to the object model to include IF-THEN rules and rule 
states.  These extensions permit one to incorporate aspects 
of heuristic knowledge into an object-oriented model.  In 
this section we will consider additional extensions to incor-
porate in the object-oriented conceptual model the modeling 
power available in hybrid rule and frame-based systems de-
scribed in the last section.  In order to do this, we begin 
with a comparison of frames and objects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Frame  Object 

• Frame  • Class 

• instance  • instance 

• slots  • instance attributes or class attributes 

• passive  • active 

• inheritance  • inheritance 

• defaults  •••• defaults 

• daemons 

• rule attachment 

• reasoning with a pattern-matching rule 

• constraints 

• object identity 

• encapsulation of methods 

• polymorphism 

• message passing 
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6.1 FRAMES AND OBJECTS 

There are some important similarities and differ-
ences between the concepts of frames and objects. 

 
The similarities between an object and a frame are as fol-
lows: 
 
1. Frames and objects each have an identifier or name. 
2. One can have the notion of class and instance with 

both objects and frames. 
3. Frames have slots with slot names and these can take 

on a value.  Similarly, objects have attribute names 
and attribute values.   

4. Both object and frame structures permit single and 
multiple inheritance. 

5. Both frames and objects permit one to attach proce-
dures.  However, the manner and type of attachment 
are different and this is discussed among the differ-
ences below. 

 
Important differences between frames and objects 
are as follows: 

 
1. Frames possess daemons that are activated each 

time a slot is accessed, updated or deleted.  Ob-
jects do not possess a similar form. 

2. Objects use messages for activating a method.  A 
frame lacks the message-passing facility and the 

methods of an object.  Although a frame has dae-
mons that are activated when a slot is accessed, it 
is more of a passive structure as distinct from the 
active object that responds to messages received 
from other objects. 

3. A frame permits one to attach IF-THEN rules and 
rule states to slots.  This allows one to model heu-
ristic knowledge.   

4. An object has the notion of encapsulation of at-
tributes and methods within the object.  Frames 
do not provide an effective mechanism for this. 

5. Pattern-matching rules, which require the direct 
access of information in more than one frame, can 
be used without complication in frames.  These 
extend the heuristic modeling capability to permit 
reasoning about structures and across structures.  

No pattern-matching rules are available in the ob-
jects discussed to date. 

6. Objects can easily incorporate complex con-
straints.  This could be more difficult with frames, 
even though facets and constraint specifying ca-

pabilities have been provided with some Knowl-
edge Based System tools. 

7. Objects have the facility of polymorphism, 
whereas frames do not have this property. 

 
The differences between frames and objects are 
summarized in Figure 4. 

 
 
 
 

6.2  EXTENDING THE OBJECT CONCEPT TO 

OBJECTFS 

 
To distinguish the new notion from an object as de-

fined earlier, we use the stereotype <<objectf>> to indicate 
that it has the characteristics of an object as defined in pure 
object-oriented languages, as well as the characteristics of a 
frame.  The characteristics of an objectf are in bold type in 

Figure 4. 
To facilitate this discussion, we draw attention to the 

fact that slots are often used to refer to attribute names in 
the Knowledge Based Systems area.  We adopt this conven-
tion as, in addition to attribute values and attribute defaults, 
it is possible to attach a procedure or rule set to such a slot.  
This gives the slots an ability to have a dynamic component 
rather than purely static components. 

The extensions that need to be made to the object-
oriented model include: 

 
1. For objectfs, permitting the attachment of daemons 

to a slot in an object 

 
 Daemons are functions that are attached to the slots 
of a objectf.  They are activated when the associated slot is 
being updated, accessed or deleted.  A daemon is somewhat 
similar to a method in that it consists of procedural code but 

it is automatically activated without the need for a message 
to be passed.  To activate daemons, one can access the rele-
vant slots of the objectfs in two ways:  
 
(a) directly, as shown in Figure 5; 
(b) indirectly, such that a message is sent to a method of 

a objectf to access the slot of interest, as shown in 
Figure 6. 

 
These daemons are useful for determining derived 

values, monitoring a situation and carrying out a calculation 
only when something changes.  Together with the methods 

Figure 4  Differences between frames and objects 
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in objectfs, these daemons allow modeling of procedural 
knowledge. 

As far as the stereotypes are concerned in Figure 5, 
there are several. Firstly, note that we have stereotyped a 
class to represent an objectf by using the <<objectf>> 
stereotype. Each objectf will have many slots, and slots are 
part of the objectf. We bind each slot to it’s parent <<ob-
jectf>> by the <<bind-slot>>  

stereotype. We have defined a stereotype to represent each 
slot, named <<slot>>. It is important to note that if a par-
ticular objectf has, say, ten slots there will still be only one 
<<slot>> class. There will be ten instances of this class. The 
<<slot>> class has four stereotyped attributes. They include 
a field that represents the name of the slot (<<name-
field>>) and three types of slots that represent the different 
types of facets that were discussed earlier. It is necessary to 

have all three facets of a slot represented concurrently since 
each slot may have more than one facet used at a particular 
time. In this example, the objectf is called A, and it has a 
slot named AA with a daemon named D used to calculate 
the value of the slot. The <<if-needed>> stereotype is of 
particular interest since it may have either the name of a 
daemon or a rule state attached to calculate the value which 
goes in the value facet. 

Figure 6 has the same layout as Figure 5 with the 
exception of an additional method in the <<objectf>> class. 
Every other stereotype has the same meaning. 

 
 

Figure 5  Change in or access to slot AA causes activation 
of the daemon 
 

 
 

Figure 6  Message to method BB of objectf A leading to 
indirect activation of the daemon 

 
2. For objectfs, permitting the attachment of rule 

states to an object 

 
The production rules should have the form that the 

premises of the rules consist of a conjunction or disjunction 
of triples (objectf, attribute = value).  Such a rule state 
could be attached to a slot and activated when the slot is ac-
cessed, much in the manner of a daemon, as shown in Fig-
ure 7.  Alternatively, it could be called from within a 
method or function, as shown in Figure 8.  Some Knowl-

edge Based Systems tools support this call from within a 
method.  

Stereotypes for Figure 7 have the same meaning as 
for Figures 5 & 6 except the use of the <<if-needed-facet>> 
is slightly different. Previously the name of a daemon was 
used as the value. If we choose to use a rule state rather than 
a procedure to calculate the value for slot AA, we simply 
put the name of the rule state as the <<if-needed-facet>> 
value rather than the procedure name. The note attached to 

the class reflects this slightly different use of the stereotyped 
attribute <<if-needed facet>>.  
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Figure 7  Rule state attached to a slot and activated by ac-
cessing the slot 

Rule 1_A 

Rule 1_B

Rule 1_C

Rule 1_D Function AAA

call rule state (RS2)

call rule state (RS1)
. . . 

. . .

. . . 

. . .

RS2RS1

Rule 2_A 

Rule 2_B

Rule 2_C

Rule 2_D

Rule 2_E

 
Figure 8  Rule state called from within a function 
 

These rule states permit the modeling of heuristic 
knowledge 

 

1. Allowing for pattern-matching rules to be added to 

the system 

 

These rules have premises that involve the attribute 
values from more than one objectf or more than one hierar-
chy of objectfs.  Such a rule for the Rent-a-Car example is 
shown in Figure 9. 
 
 

Figure 9  Pattern-matching rules for the Rent-a-Car exam-
ple 

 
For the purposes of modeling, pattern-matching rules 

could be put into a pattern-matching rule state for the sys-
tem.  However, an object-oriented pattern-matching rule 
state may contain a mixture of ordinary IF-THEN rules as 
well as pattern-matching rules, provided that it has at least 

one of the latter.  The symbols for a pattern-matching rule 
state and a pattern-matching rule are shown in Figure 14.36. 
As far as stereotypes are concerned we define a different 
stereotype for a pattern matching rule state. It is named as 
<<pm-rule-state>> where ‘pm’ is short for pattern match-
ing. Note that we still use the <<rule>> stereotype to repre-
sent both rules that are pattern matching and normal. Usu-
ally we include a stereotyped attribute <<rule-type>> in the 
class stereotyped <<rule>>. The reason for doing it this way 
is that we propose that the rule itself be included in a field 

stereotyped as <<content>> in <<rule>>. So whether a rule 
is pattern-matching or normal it will be included in this 
field. The inference engine that examines instances of rules 
can look at the <<rule-type>> field to decide how to inter-
pret the content of the rule. It is important to note that even 
though a pattern-matching rule has the ‘IF’ part of itself re-
lying on facts from more than one class, it is still attached to 
a rule state that belongs to one class in particular. For ex-
ample, the rule in Figure 14.35 has references (in the ‘IF’ 
part of the rule) to both CAR and CUSTOMER. Neverthe-
less, a CAR is rented by a CUSTOMER so CAR is the sub-
ject in the relationship between the two classes. Hence the 
rule will be included in a rule state attached to the class 
CAR, rather than CUSTOMER. This additional analysis 
will have to be done by the modeler in the case of all pat-
tern-matching rule states. Bear in mind that a pattern-
matching rule state will contain some normal rules which 
only rely on a single class, so this will simplify the process 
of deciding which class to assign the rule state too. 
 

 
Figure 10  Symbols for pattern-matching rules and rule 
states 
 

2. Allowing for inheritance to be stopped at a particu-

lar class level 

 

  IFpm ?aCar of CAR 
  WITH ?aCar.Size = Small 
   ?aCar.Status = Not Rented 
  AND ?Customer.Status = Eligible 
  THEN set (?aCar.Status = Rented) 
  AND add (customer name and car 

registration number to rental 
list) 
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In object-oriented systems, inheritance implies that 

all properties pertaining to a superclass are inherited by the 
subclasses down the hierarchy chain, unless they are over-
ridden.  Despite the feature of overriding of the properties 

by a subclass, there are situations where properties of a su-
perclass are not needed by all the subclasses or instances of 
the class itself.  These properties could exist for a particular 
purpose for the superclass. 
Inheritance can be stopped along the hierarchy chain.  The 
prevention of inheritance of attributes can be specified at 
two levels, the class and instance levels. 

 
3.Permitting the specification of reasoning hierarchies 

through the use of objectfs and associated rule states or 

procedures. 

 

The objects in this case would capture the features of the 
reasoning associated  
with a particular level of inference, including the attributes, 
rules and procedures used at this level.  It should be noted 
that this organization of objectfs into reasoning hierarchies 

is somewhat different from the hierarchy associated with a 
physical object.  These reasoning hierarchies capture as-
pects of the problem solver's knowledge, whereas the others 
are modeling classifications, generalizations and abstrac-
tions of the problem space.  This, however, could limit the 
objectfs associated with a reasoning hierarchy to a particu-
lar application. 

The type of expert or knowledge-based system that 
requires qualitative or quantitative reasoning does not pose 
any special new problems for object-oriented modeling, as 
the model required can easily be encapsulated in a single 
object or a collection of several objects.  The challenge is to 
pick the right model during analysis and ensure that the rea-
soning approach written was suitably devolved to the right 
objectfs. 

In systems that contain both model-based and rule-
based reasoning, the so-called second generation systems, 
the rule-based components could be grouped into rule states 
that are attached to objectfs, and the model-based compo-
nents could be expressed as a set of objects.  Communica-
tion between them, including the passing of control asyn-
chronously from one type of reasoning system to the other, 
can be uniformly performed using messages. 
If the qualitative or quantitative model consists of several 
objects, it is important that it be isolated into its own subject 
layer in the representation.  If the model is still too complex, 
one could nest subject layers within this isolated layer to 

control the complexity of the representation. 

RECAPITULATION 

In this paper, conceptual modeling appropriate to an expert 
or knowledge-based system was considered.  Specifically, 

the extensions necessary to the object-oriented paradigm 
were described.   
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