
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library
Accepted Manuscript

A linear algorithm for string reconstruction in the reverse
complement equivalence model

Ferdinando Cicalese, Péter L. Erdős, Zsuzsanna Lipták

PII: S1570-8667(11)00106-7
DOI: 10.1016/j.jda.2011.12.003
Reference: JDA 405

To appear in: Journal of Discrete Algorithms

Please cite this article in press as: F. Cicalese et al., A linear algorithm for string
reconstruction in the reverse complement equivalence model, Journal of Discrete Algorithms
(2011), doi:10.1016/j.jda.2011.12.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published
in its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

https://core.ac.uk/display/19564185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jda.2011.12.003
http://dx.doi.org/10.1016/j.jda.2011.12.003

A Linear Algorithm for String Reconstruction in the Reverse

Complement Equivalence Model ∗

Ferdinando Cicalese
Dipartimento di Informatica ed Applicazioni, University of Salerno, Italy

email: cicalese@dia.unisa.it

Péter L. Erdős
A. Rényi Institute of Mathematics, Hungarian Academy of Sciences,

Budapest, P.O. Box 127, H-1364 Hungary

email: elp@renyi.hu

Zsuzsanna Lipták†

AG Genominformatik, Technische Fakultät, Bielefeld University, Germany

email: zsuzsa@cebitec.uni-bielefeld.de

December 2, 2011

Abstract

In the reverse complement equivalence model, it is not possible to distinguish a string from
its reverse complement. We show that one can still reconstruct a string of length n, up to reverse
complement, using a linear number of subsequence queries of bounded length. We first give the
proof for strings over a binary alphabet, and then extend it to arbitrary finite alphabets. A
simple information theoretic lower bound proves the number of queries to be asymptotically
tight. Furthermore, our result is optimal w.r.t. the bound on the query length given in [Erdős
et al., Ann. of Comb. 2006].

Key words: string reconstruction, reverse complement, string algorithms, subsequences, sub-
words, combinatorics on words

1 Introduction

Reconstructing a string over a finite alphabet Σ from information about its subsequences is a classic
string problem, with applications ranging from coding theory to bioinformatics. Due to differences
in terminology in the literature, we want to give a precise definition right here: Given two strings
s = s1 . . . sn and t = t1 . . . tm over Σ, we say that t is a subsequence (often called subword) of s
if there exist 1 ≤ i1 < i2 < . . . < im ≤ n such that t = si1si2 . . . sim . It was shown by Simon
in 1975 [14] that two strings of length n are equal if their subsequences up to length �n/2� + 1
coincide. The proof, as given in Chapter 6 of the classic Lothaire book [13] can be easily adapted

∗An extended abstract of the results for the binary case was published in [3].
†Current affiliation: Dipartimento di Informatica ed Applicazioni, University of Salerno, Italy.

1

to yield an algorithm which reconstructs the string s of length n, using O(|Σ|n) queries of the type
“Is u a subsequence of s?” Here, u is a string of length at most �n/2�+ 1.

In this paper, we consider this problem in the RC-equivalence model, which is motivated by
reverse complementation of DNA. Our alphabet consists of pairs of characters (a, ā), called comple-
ment pairs, and for every string s = s1 . . . sn over Σ, we define its reverse complement as s̃ = s̄n . . . s̄1.
Two strings s, t are RC-equivalent if s = t or s = t̃. A string u is an RC-subsequence of s if u
or ũ is a subsequence of s. For example, consider the string s = āaā over the alphabet {a, ā}.
Then aa is not a subsequence of s, but it is an RC-subsequence, because āā is a subsequence of
s. Erdős et al. showed in [6] that two strings s and t of length n are RC-equivalent if and only if
all their RC-subsequences up to length

⌈
2
3(n+ 1)

⌉
coincide. However, no reconstruction algorithm

was given.
Here, we present such an algorithm. First, we give an information theoretic lower bound on

the number of queries necessary for exact reconstruction, which is Ω(n log |Σ|). Then we describe a
simple algorithm for arbitrary alphabets, which uses an asymptotically optimal number of queries
O(n log |Σ|). This algorithm was adapted from a paper by Skiena and Sundaram [15], where the
length of the queries is not bounded. The major part of the paper, however, is devoted to the
bounded query case: For the case of a binary alphabet, i.e., where the alphabet consists of two
complementary characters, our algorithm reconstructs a string s of length n, using O(n) queries of
the type “Is u an RC-subsequence of s?” where u is a string of length at most

⌈
2
3(n+ 1)

⌉
. We note

that our algorithm is optimal w.r.t. the length of the queries, and asymptotically optimal w.r.t.
the information theoretic lower bound on the number of queries necessary for exact reconstruction.
Finally, we provide an algorithm for the general case of arbitrary alphabets and bounded queries,
which uses O(|Σ|n) queries. In the whole paper we assume that |Σ| = O(n).

Related work. Most literature deals with the classical, i.e. non-RC, model. In addition to the
papers mentioned above, we want to point to the following.

When the multiset of subsequences is known, then much shorter subsequences suffice to uniquely
identify a string: A string of length n can be uniquely identified by the multiset of its subsequences of
length �167

√
n�+5, as shown by Krasikov and Roditty [8]. Dud́ık and Schulman [5] give asymptotic

lower and upper bounds, in terms of k, on the length of strings which can be uniquely determined
by the multiset of their subsequences of length k.

Levenshtein [9] investigates the maximal number of common subsequences of length k that two
distinct strings of length n can have. Here, subsequences are regarded as erroneous versions of
the original string. The aim is to find how many times a transmission needs to be repeated, over
a channel which allows a constant number of deletions, to make unique recovery of the original
message possible.

The case where only substrings are considered has also received much attention. Substrings,
often called factors, are contiguous subsequences: t is a substring of s if there are 1 ≤ i ≤ j ≤ n
such that t = si . . . sj . The length of substrings of a string s of length n which are necessary for
uniquely determining s depends on a parameter of s, namely on the maximal length of a repeated
substring, as shown by de Luca and Carpi in a series of papers [2,4]. An algorithm for reconstruction
was given by Fici et al. in [7], while the uniqueness bound for multisets of substrings was recently
shown to be �n2 �+ 1 by Piña and Uzcágetui [11].

The problem of reconstructing a string of length n using substring queries has also been exten-
sively studied in the setting of Sequencing by Hybridization (SBH), first suggested by Pevzner [10].
Here, a large number of strings of a certain length are queried in parallel, using a DNA chip, and

2

the resulting answers are then used to reconstruct all or parts of the DNA string. A number of
different SBH techniques have been proposed, leading to different string combinatorial questions.
(See, for example, [12, 16] for some more recent results.)

Reverse complementation over paired alphabets was referred to as video reversal, denoted s̄R,
by Bercoff in [1]. However, the object of research there are the generation of infinite sequences
with certain properties, and reverse complementation is only used as a function, and not as an
equivalence relation.

Overview of paper. In Section 2, we give the necessary definitions and prove an information
theoretic lower bound on the number of queries. In Section 3, we describe a simple algorithm
for arbitrary alphabets for unbounded query length. We then give a reconstruction algorithm for
binary alphabets (Section 4). Sections 5 and 6 present the analogous result for general alphabets,
where we first show how to reduce the problem to interleaving two subsequences over disjoint
sets of complementary character pairs (Section 5), and then show how to execute this interleaving
(Section 6). We end with a brief outlook in Section 7.

2 Preliminaries

By a paired alphabet we understand a finite set Σ of size 2δ for some integer δ ≥ 1, together with a
non-identity involution operation : Σ �→ Σ, which we call complement. By convention, we write
Σ as Σ = {a1, a1, . . . , aδ, aδ}. Notice that by definition, ai = ai, for each i.

Let s = s1 . . . sn be a string over Σ, i.e., s ∈ Σ∗ =
⋃∞

i=0Σ
i, where, following standard notation,

Σi = {x1 . . . xi | xk ∈ Σ, for each k = 1, . . . , i}, and Σ0 is the singleton containing only the empty
string ε. The reverse complement of s is defined as s̃ = sn sn−1 . . . s1. Two strings s, t are RC-
equivalent, denoted s ≡RC t, if either s = t or s = t̃. A string s is called an RC-palindrome if
s = s̃.

For a string s = s1 . . . sn over the alphabet Σ, we denote by |s| = n the length of s, and by
|s|a = |{i | si = a}| the number of a’s in s, for a ∈ Σ. We write ak for the string aa . . . a of length
k. We denote by alph(s) the subset of Σ of characters a for which |s|a > 0. Two strings s and t
over Σ are RC-character-disjoint, if for all a ∈ Σ s.t. |s|a > 0, neither a nor a occurs in t, and vice
versa. Note that this is stronger than the condition alph(s) ∩ alph(t) = ∅.

Given two strings s = s1 . . . sn and t = t1 . . . tm over Σ, t is a subsequence of s, denoted by
t ≺ s, if there exist 1 ≤ i1 < i2 < . . . < im ≤ n such that t = si1si2 . . . sim . If t is a subsequence of
s, then s is a supersequence of t. Further, we define t to be an RC-subsequence, denoted t ≺RC s
if and only if t ≺ s or t ≺ s̃, i.e., if t is a subsequence of s or of its reverse complement. Note that
the condition t ≺ s̃ is equivalent to t̃ ≺ s. For a string s over Σ, and an index i ∈ {1, . . . , δ}, we
denote by s|i the longest subsequence of s containing only characters ai and ai. We call s|i the i’th
projection of s.

Example 2.1. Our motivating example is the alphabet of the 4 nucleotides (DNA) Σ = {A,T,C,G},
i.e. (A,T) and (C,G) are complement pairs. Let s = ACCGATTAC. Then s̃ = GTAATCGGT,
GTTT �≺ s but GTTT ≺RC s. The two projections of s are AATTA and CCGC.

Let s = s1 . . . sn ∈ Σ∗. A run in s is a maximal interval (i, j), 1 ≤ i ≤ j ≤ n consisting of the
same character, i.e. for some a ∈ Σ, we have sk = a for all i ≤ k ≤ j. Any string s over Σ can be
written uniquely in its runlength encoded form s = ax1

1 ax2
2 . . . axr

r , where axi
i , with xi > 0, are the

runs of s and r ≤ n.

3

We are now ready to state the problem we investigate in the present paper.

The RC-String Identification Problem. Fix a paired alphabet Σ, together with
a string s over Σ, and let n = |s|. For any positive integer T ≤ n, a T -bounded RC-
subsequence query is any t ∈ ⋃T

i=1Σ
i. The answer to such a query is yes (or positive) if

and only if t ≺RC s. Otherwise the answer is no (or negative). Given the alphabet Σ, the
size of the string n, and the threshold on the length of the queries T ≤ n, the RC-String
Identification Problem asks for the minimum number of T -bounded RC-subsequence
queries which are sufficient to determine the pair (s, s̃), for any unknown string s of size
n.

We first present an information theoretic lower bound that holds even in the case of unbounded
queries, i.e. if T = n. Here and elsewhere, we denote by log x the logarithm of x to base 2.

Proposition 2.2 (Lower Bound). Given a string s of size n over a paired alphabet Σ. Any deter-
ministic algorithm that identifies s (up to reverse complement) by asking RC-subsequence queries
needs at least n log |Σ| − 1 queries.

Proof. Upon identifying a string with its reverse complement, there are at least |Σn|/2 possible
distinct strings of length n. Any query t splits the space of candidate solutions into two parts.
Therefore, at least log |Σn|/2 = n log |Σ| − 1 questions are necessary to identify s.

3 Unbounded query size

If T = n, i.e., no constraint is set on the length of a query, then it is easy to reconstruct a string
in linear time. We adapt a simple algorithm from [15], developed for the classic case, i.e., without
RC-equivalence.

Theorem 3.1. There exists an algorithm which reconstructs, up to RC-equivalence, a string of
length n using Θ(n log |Σ|) RC-subsequence queries of unbounded length.

To prove Theorem 3.1, we will use the following easy lemma, which extends Lemma 14 in [15]
to our problem.

Lemma 3.2. Let s be an unknown string over the paired alphabet Σ = {a1, a1, . . . , aδ, aδ}. Let
u,v ≺RC s be two known RC-character-disjoint strings over Σ, i.e., no character of u or its pair
occurs in v, and vice versa. Then it is possible to construct a string w such that u,v ≺RC w and
w ≺RC s using at most 2(|u|+ |v|+ 1) queries.

Proof. By definition, at least one of the four cases must hold: u,v ≺ s, ũ, ṽ ≺ s, u, ṽ ≺ s, or
ũ,v ≺ s. Let us first assume that u,v ≺ s. Let u = u1u2 . . . uk and v = v1v2 . . . vm, w.l.o.g.
k ≤ m. Finding w consists of interleaving u and v in such a way that the resulting string is
a subsequence of s. In other words, we must find indices 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik+1 ≤ k + 1
s.t. w = v1 . . . vi1u1vi1+1 . . . vi2u2 . . . ukvik+1 . . . vik+1

is a subsequence of s. (For technical reasons,
we set vi to be the empty string for i < 1 and i > m.) This can be done by asking queries
v1u, v1v2u, v1v2v3u etc. until the first no to determine i1; then queries v1 . . . vi1u1vi1+1u2u3 . . . uk,
v1 . . . vi1u1vi1+1vi1+2u2u3 . . . uk, etc. to determine i2. Proceeding in this way, we will find all ij ’s,

4

using ij − ij−1 + 1 many queries in the j’th step, so altogether i1 + 1 +
∑k+1

j=2(ij − ij−1 + 1) =
m+ k + 1 = |v|+ |u|+ 1 many queries.

Now note that we have assumed that both u and v are subsequences of s. In this case, the
string w which is constructed is also a subsequence of s. If, on the other hand, both u and v are
subsequences of s̃, then the w thus constructed will also be a subsequence of s̃, thus satisfying
w ≺RC s. Finally, if neither of these cases holds, then the algorithm sketched above will abort
without producing a desired w. Then we repeat it with u and ṽ, which will produce a string w
that is either a subsequence of s or of s̃, in either case w ≺RC s, as claimed. The total number of
queries is thus at most 2(|u|+ |v|+ 1).

Proof of Theorem 3.1. We first give the algorithm for the case where |Σ| = 2. Let Σ = {a, b} where
b = ā. Let M = max{χ ≥ 0 | aχ ≺RC s}. Clearly, we have M = max{|s|a, |s|b}. Notice that we can

determine M by asking query t
(0)
χ = aχ, for χ = 1, 2, 3, . . . , until we get the first negative answer,

implying that M = χ− 1. In particular, we need exactly M + 1 such queries.
Define y1 = max{χ = 0, 1, 2, . . . , | bχaM ≺RC s}, and for i = 2, . . . ,M + 1,

yi = max{χ = 0, 1, 2, . . . | by1aby2a . . . byi−1abχaM−i+1 ≺RC s}.

In perfect analogy with what we did above, we can determine yi, by asking the query t
(i)
χ =

by1aby2a . . . byi−1abχaM−i+1, for each χ = 1, 2, . . . , until we receive a negative answer, implying that
yi = χ− 1. Therefore, we need exactly yi + 1 such queries to determine yi.

Let us write t for t
(M+1)
yM+1 . For constructing t we need exactly M + 1 +

∑M+1
i=1 (yi + 1) =

2maxc=a,b |s|c + 2+minc=a,b |s|c many queries. We claim that t is a maximum size subsequence of
s or s̃, i.e., there exists no t′ �= t such that t ≺ t′ ≺RC s. This implies that t ∈ {s, s̃}, i.e., the above
procedure determines s up to reverse complement using O(n) queries.

We prove the claim by contradiction. Assume that t �∈ {s, s̃}. Since by construction t ≺RC s, it
follows that there exists a sequence t′ �= t such that t ≺ t′ ≺RC s, and |t′| = |t|+ 1.

By the definition of M, it follows that |t|a = |t′|a, for otherwise aM+1 ≺ t′ ≺RC s, con-
tradicting the fact that M is maximal. Therefore it must be |t′|b = |t|b + 1. In analogy with

what we have done for t, let us write t′ = by
′
1aby

′
2a . . . by

′
Maby

′
M+1 , where y′j ≥ 0, for each j =

1, . . . ,M +1. By the definition of t′, there exists exactly one j such that y′j = yj +1. It follows that

by1aby2a . . . byj−1abyj+1aM−j ≺ t′ ≺RC s, which contradicts the definition of yj .

Now let |Σ| = 2δ, with δ > 1. Recall that s|i, the i’th projection of s, is the longest subsequence
of s only containing characters from {ai, ai}.

It is not hard to see that we can use the above procedure to identify a string ui ∈ {s|i, s̃|i}. In
particular, it follows that the number of queries required for determining the i’th projection is thus
at most 3

2ni + 2, where ni = |s|i|.
Once we have identified the i’th projection of s (up to reverse complement), for each i = 1, . . . , δ,

we can use Lemma 3.2 for iteratively interleaving these projections and constructing s: We first
interleave s|1 with s|2, which yields s|1,2. Then we interleave s|1,2 with s|3,4 and so on. By Lemma 3.2,
each of these can be done using at most twice the total length of the two strings plus 2. So the
total number of queries for the interleaving phase is at most 2n log δ + 2(δ − 1): the lengths of
the subsequences at each level add up to n, there are log δ many levels, and for each of the δ − 1
many inner nodes where the interleavings happen, we may have two additional queries. Thus

5

the total number of queries for the complete algorithm is
∑δ

i=1(
3
2ni + 2) + 2n log δ + 2(δ − 1) =

3
2n + 2n log δ + 4δ − 2 = O(n log |Σ|), using the fact that |Σ| = 2δ and our assumption that
|Σ| = O(n).

4 Bounded query size over a binary alphabet

We now turn to subsequence queries whose length is bounded by a threshold T . In this section, the
alphabet is binary, i.e., Σ = {a, b}, with b = a. The following result shows that string identification
by T -bounded subsequence queries cannot be attained in general if the threshold T on the size of
the subsequence queries is not larger than

⌈
2
3n

⌉
.

Observation 4.1 (Erdős et al., 2006 [6]). For any n ≥ 4 there exist two distinct strings of size n
with exactly the same set of subsequences of length up to

⌈
2n
3

⌉− 1.

Proof. Let us write n as n = 3k + r, with r ∈ {0, 1, 2}. Let s1 = a2k+rbk and s2 = a2k+r−1bk+1. It
is not hard to see that we have a2k+r ≺RC s1 but a2k+r �≺RC s2 whilst for any string t such that
|t| ≤ 2k + r − 1, we have that t ≺RC s1 if and only if t ≺RC s2.

This implies that if we are looking for algorithms which are able to reconstruct any binary string
of size n, we must allow queries of size ≥ �2n/3� .

Let s ∈ Σ∗. Denote by ρa the number of a-runs (runs of a’s) in s and by ρb the number of
b-runs. Note that |ρa − ρb| ≤ 1. Then s can be written as:

s = ax1by1ax2by2 . . . axρ−1byρ−1axρbyρ , (1)

with x1 and yρ possibly 0, all other xi, yi > 0. Note that ρ either equals max(ρa, ρb) or max(ρa, ρb)+
1, with the latter being the case if and only if s begins with a b and ends with an a.) We denote
by A = |s|a the number of a’s and by B = |s|b the number of b’s in s. In the following we assume
that A ≥ B. This is without loss of generality since otherwise, we exchange the roles of s and s̃.

In this section we will prove the following theorem:

Theorem 4.2. There is an algorithm which reconstructs, up to RC-equivalence, a binary string s
of length n using O(n) many RC-subsequence queries of length at most

⌈
2
3(n+ 1)

⌉
.

Notice that this is at most 1 off the lower bound of Observation 4.1: It is tight when n ≡ 2 mod 3,
and it is almost tight otherwise (in this case there is a gap of 1).

The proof of the theorem is by examining four cases separately. Recall that A = |s|a, B = |s|b,
and T = �23(n+ 1)�. The four cases are: 1. A ≥ T , 2. T > A > B, 3. A = B and s1 = sn, and 4.
A = B and s1 �= sn. The following simple lemma will be used to distinguish these cases.

Lemma 4.3. Let s be a string of length at least 8 over {a, b}, T =
⌈
2
3(n+ 1)

⌉
, and A = |s|a ≥ |s|b.

Then,

1. using O(log n) RC-subsequence queries of length at most T , it is possible to determine the
exact value of A = |s|a if A < T , or to establish the fact that A ≥ T .

2. Moreover, if A < T, then it can be determined whether s starts and ends with the same
character; furthermore, unless A = n

2 and s1 = sn, we can determine s1 and sn. Altogether
we require at most 3 additional RC-subsequence queries of length at most T .

6

Proof. 1. Binary search for A, using queries of the form aχ, for χ ∈ [n2 , T], will either return the
exact value of A (if A < T), or will exit with the maximum size query aT ≺RC s, thus showing that
A ≥ T .

2. Notice that if A = B = n
2 , then the query t = ab

n
2 a will return yes if and only if s1 = sn. If

s1 = sn, then, due to the complete symmetry, we cannot determine the exact nature of s1 and sn.
Otherwise, either T > A = B and s1 �= sn, or T > A > B. In either case, the query baA has length
at most T and will answer positively if and only if s1 = b. Likewise, the query aAb will answer
positively if and only if sn = b.

Example 4.4. Let s1 = aababbba. Then s̃1 = baaababb. The query ab4a will return yes and we
can only determine that the first and last characters are equal, but not what they are. Instead, for
s2 = aababbab, we have s̃2 = abaababb, the query ab4a will return no, and since the query ab4 is
positively answered, we know that the first character is a (and thus the last character is b).

We will now introduce a fundamental notion used in our algorithms.

Definition 4.5 (Fixes the direction). Given a string s and a subsequence t of s, we say that t fixes
the direction of s if t �≺ s̃.

If t fixes the direction of s then for any t′ ≺ s, such that t ≺ t′ we also have that t′ fixes the
direction of s. In general, we shall try to identify s by first finding some sequence t which fixes the
direction of s or s̃ and then extending this t. The importance of “direction-fixing” is that once we
have found t which fixes the direction of s, by asking queries about super-sequences of t we are
sure that the answers to our queries are only about s and not its reverse complement.

The following two statements formalize two simple facts which will be used repeatedly in the
following, thus, for the sake of completeness, we formally state and prove them here. Let s be fixed
for the rest of this section.

Lemma 4.6. Let t = t1 . . . tm be a sequence which fixes the direction of s. Fix a character c ∈ Σ,
so c = a or c = b. For each i = 1, . . . ,m+1, let γi = min{max{j | t1 . . . ti−1c

jti . . . tm ≺ s}, T −m}.
Then, for each i = 1, . . . ,m + 1, we can determine γi using 2 log γi + 1 queries, or alternatively,
using γi+1 queries. In particular, we can determine all γi using at most m+1+

∑m+1
i=1 γi queries.

Proof. We can determine all the values γi either with one-sided binary search, using 2 log γi + 1
queries, or with linear search, using γi + 1 queries.

Example 4.7. Note that Lemma 4.6 only assumes that t fixes the direction of s, but not that
the positions in s to which the characters of t are matched are also fixed. Consider the following
example. Let s = a10ba10ba10. Then t = aaa fixes the direction of s. For c = b, we get γ1 = γ2 =
γ3 = γ4 = 2. For c = a, we have γi = min(27, 19) = 19 for all i (since T = 22 and m = 3).

The next lemma says that if there are long a-runs or long b-runs, then there cannot be many runs.

Lemma 4.8. Let s = ax1by1 . . . axρbyρ . Assume that there are 1 ≤ i1 < i2 < · · · < iq ≤ ρ and k ≥ 0,
such that xij ≥ T −B − k (resp. yij ≥ T −A− k) for each j = 1, . . . , q, and for at least one value
of j it holds that xij > T −B − k (resp. yij > T −A− k). Then

ρa ≤ n−B − q(T −B − k − 1)− 1 (resp. ρb ≤ n−A− q(T −A− k − 1)− 1).

7

Proof. We limit ourselves to showing the argument for ρa, the number of non-empty a-runs. Since
each run counted by ρa has at least one a, we have the desired inequality:

n−B = A ≥
q∑

j=1

xij + ρa − q ≥ q(T −B − k) + 1 + ρa − q.

4.1 The case where A ≥ T

Since A ≥ T =
⌈
2
3(n+ 1)

⌉
, we have that B ≤ n

3 − 2
3 , so 2B + 1 = 2(n − A) + 1 ≤ 2

3(n + 1) ≤ T.
This implies that we can ask queries which include B + 1 many a’s and up to B many b’s. Let
β =

⌈
n
3 − 2

3

⌉
, and t = aβ+1. We have B ≤ β and, therefore, t fixes the direction of s. Notice also

that B + β + 1 ≤ T.
By Lemma 4.6, with t = aβ+1, we can find L = max{j | bjaβ+1 ≺ s} with O(logL) queries.

Likewise, with t = bLaβ+1 we can find R = max{j | bLaβ+1bj ≺ s}, with O(logR) queries.
Notice that in s, between the left-most L many b’s and the right-most R many b’s, there may

be more than β+1 many a’s. More precisely, with reference to (1), the previous queries guarantee
that there are 1 ≤ i ≤ j ≤ ρ such that

∑i−1
k=1 yk = L and

∑ρ
k=j yk = R. Let w be the substring of

s between the L left-most and the R right-most b’s, i.e., w = axibyi · · · axj . Moreover, let sleft and
sright be such that s = sleftwsright. We know that |sleft|b = L, |sright|b = R, and |w|a ≥ β + 1. We
will first determine all but the first a-run of w and all of its b-runs, in particular yielding the exact
value of B. Then we determine sleft and sright. For any a-runs that have length at least T − B,
their exact value will be determined during the final stage.

We have aβ+1 ≺ w, and by the definition of L and R we also have that
∑ρ

k=i+1 xk ≤ β and

xi >
∑ρ

k=j+1 xk. It follows that, for χ = 1, 2, 3 . . . , β, the query bLaχbaβ+1−χbR answers negatively

as long as
∑j

k=i+1 xk < β + 1− χ. Let χ∗ be the first value for which the answer to this query is yes,

and χ∗ = β+1 if the answer is no for all values of χ. It is easy to see that χ∗ = β+1−∑j
k=i+1 xk.

In particular, χ∗ = β + 1 if and only if w does not contain any b’s. In this case, set w′ = aβ+1.
If χ∗ ≤ β, define t = bLaχ

∗
baβ+1−χ∗

bR. By Lemma 4.6, with t we can find the value of yk for
each k = i, . . . , j − 1. As a side effect, we also determine the value of xk for k = i + 1, . . . , j. Now
we know that bLw′bR ≺ s, where w′ = aχ

∗
byiaxi+1 . . . byj−1axj . In other words, we know w except

for its first a-run, which may be longer than χ∗. We also know B, the number of b’s of s.

Now we turn to sright. Let us denote by w′ − a� an arbitrary sequence obtained by removing
exactly � many a’s from w′ and leaving the rest as it is. Now we can use queries of the form
bL(w′−a�)bra�bR−r with r = 1, . . . , R and � = 1, 2, 3 . . . , in order to determine the values of xk, for
each k = j + 1, . . . , ρ. To see this, it is enough to notice that each such query contains β + 1 many
a’s, therefore it can only be a subsequence of s and not of s̃. Moreover, we notice that in order to

determine xk we need to receive a positive answer to the query bL(w′ − axk)b
∑k−1

�=j y�axkbR−∑k−1
�=j y�

and a negative answer to the query bL(w′−axk−1)b
∑k−1

�=j y�axk+1bR−∑k−1
�=j y� . Because of

∑ρ
k=j+1 xk <

β + 1, both these queries have length not larger than T. Again, by determining xk for each k =
j + 1, . . . , ρ, we also determine yk for each k = j + 1, . . . , ρ.

By an analogous procedure, we can determine sleft and the first a-run of w, i.e. all the values
xk, for k = 1, . . . , i, where xk ≤ T − B. Again, in this process, we also determine the size of the
runs of b’s, i.e., the yk, for each k = 1, . . . , i− 1.

8

Finally, we compute the size of the a-runs in s that are larger than T − B. Notice that for
at most two indices we can have xk ≥ T − B, for otherwise their total sum would be larger than
n, the total length of the string. If there is exactly one such xk, then we can compute it as
xk = n − B − ∑

��=k x�. Otherwise, let 1 ≤ i1 < i2 ≤ i be such that xi1 , xi2 ≥ T − B. Then it
must hold that n− B −∑

��=i1,i2
x� = 2(T − B), and thus, xi1 , xi2 = T − B. Otherwise, we would

have that x1 + x2 > 2(T − B), and using Lemma 4.8, with k = 0, we can then conclude that
ρa ≤ n− 2T +B + 1 ≤ −1, a contradiction.

Notice that we use at most one query per character of s plus at most one query for each run of
s. Therefore, in total we have O(

∑
i(xi + 1) +

∑
i(yi + 1)) = O(n).

4.2 The case T > A > B

By Lemma 4.6 with t = aA and c = b, with O(n) queries we can determine exactly yk for each k
such that yk < T − A. In the process, we also find out exactly xk for each k = 1, . . . , ρa. The only
problem now is to determine those runs of b’s which have length at least T −A.

Let i1, . . . , iq be the q distinct indices of the runs of b’s such that yij ≥ T − A, so we have not
yet been able to determine their exact value. Clearly, if q = 1, we can compute yi1 = B−∑

��=i1
y�.

Likewise, if B −∑
��=i1,...,iq

y� = q(T −A), then we know yij = T −A for all ij . Otherwise, it must

hold that
∑q

j=1 yij > q(T −A). Let yi1 ≥ yi2 ≥ · · · ≥ yiq and α > 0 such that yi1 = T −A+α. We
have

ρb ≤ B − (yi1 + yi2) + 2 = n−A− (T −A+ α)− yi2 + 2 ≤ n

3
+

4

3
− α− yi2 .

Now, consider the sequence tχ = (ab)i2−1abχ(ab)ρb−i2 . For each χ = T −A+1, T −A+2, . . . , yi2+1,
such a string has length at most T, since we have

|tχ| = 2ρb + χ− 1 ≤ 2ρb + yi2 ≤ 2n

3
+

8

3
− 2α− 2yi2 + yi2 =

2n

3
+

8

3
− 2α− yi2 ≤ T − 1, (2)

where the last inequality follows from the fact that α, yi2 ≥ 1.

We will finish the proof for the case T > A > B by distinguishing four subcases according to
whether s1 = sn and whether s1 = a or s1 = b. (Note that due to the assumption A > B we cannot
assume w.l.o.g. the identity of the first character.)

Case 1. If s1 = sn = b, then ρb = ρ, we can remove the first a from tχ, and the new query fixes the
direction of s. This query has length at most T , so we can identify yi2 . By the same argument, we
can also identify yij , for each j = 3, . . . , q, since yij ≤ yi2 , for each such j. Finally we can determine
yi1 by subtraction.

Case 2. If s1 = sn = a, then ρb = ρ− 1. Now we have to add an a at the end to get a query which
fixes the direction of s, and its length is again at most T . The argument is then analogous to Case
1.

Case 3. Let s1 �= sn and s1 = b. This case is analogous to Case 4. below, replacing tχ by
uχ = (ba)i2−1bχa(ba)ρb−i2 and all following sequences accordingly.

Case 4. As the final case we have s1 �= sn and s1 = a, so ρb = ρ. We will now look at the value
of X := xρ−i2+1. Note that any query tχ with χ ≤ X would answer yes because it would be

9

interpreted as t̃χ. Notice that we know the value of X. If X < T − 2ρ, then we ask query tχ for
χ = X +1. If the answer is yes, we continue with X +2, X +3 . . . until we receive the first no, and
we are done, since the last χ where tχ answered positively was equal to yi2 . By (2), these queries
do not exceed the threshold.

Otherwise, if the query tX+1 answered no or if X > T − 2ρ, then we know that yi2 ≤ X. In this
case, we use the following queries to determine yi2 .

Let w.l.o.g. i2 ≤ ρ − i2 + 1 (otherwise exchange the roles of i2 and ρ − i2 + 1 in the formulas
below). Define t′ξ = (ab)i2−1aξ(ba)ρ−2i2+1bξ+1(ab)i2−1. One can verify that for each ξ = T −A, T −
A+ 1, . . . , yi2 , we have

|t′ξ| ≤ 2ρb + 2yi2 − 1 ≤ 2n

3
+

2

3
− 2α+ 1 ≤ T + 1− 2α ≤ T − 1, (3)

where the last inequality follows from the fact that α ≥ 1.
We can ask queries t′ξ until either we receive a negative answer or we cannot enlarge it further

because it would violate the bound T. The largest value of ξ for which we receive a positive answer
to query t′ξ correctly gives the value of yi2 . Clearly this is true if we also receive a negative answer,
for the next larger value. If, instead, we had to stop because of the bound T, we can be sure that
ξ = yi2 , because if yi2 > ξ, then this would contradict the inequality (3).

We ask at most one query per character plus one query per run, except for Case 4, where we
might use two queries per character of the yi2 ’th run of b’s. Altogether, we have that the total
number of queries is O(n).

4.3 The case T > A = B = n
2
, s1 = sn

We assume w.l.o.g. that the string starts and ends in a. Therefore, with reference to (1), in this
section we have yρ = 0 and our string looks like this:

s = ax1by1ax2by2 . . . axρ−1byρ−1axρ ,

with all xi, yi > 0, i.e., it includes ρ = ρa runs of a’s and ρ− 1 = ρb runs of b’s.
By Lemma 4.6 with t = ab

n
2 we can exactly determine xk (run of a’s) for each k, such that

xk < T − n
2 − 1 ≤ n

6 − 1
3 . In this process, we determine exactly yk, for each k = 1, . . . , ρb.

Let 1 ≤ i1 < i2 < · · · < iq ≤ ρa be all the indices of the runs of a’s whose length we have not
been able to determine exactly, i.e., such that xij ≥ T − n

2 − 1. By A = n
2 , we have that q ≤ 3. In

fact, the interesting cases are q = 2 and q = 3, since, for q = 1 we can determine the only missing
xi1 as the difference between A and the sum of the remaining xk’s.

For q = 3, by Lemma 4.8, we have ρa ≤ 3, thus it follows that ρa = 3. Let t = ababa, and c = a.
By Lemma 4.6 we can determine each xk, such that xk ≤ T − 5. Suppose that for all k = 1, 2, 3,
it holds that xk ≥ T − 5. Since there must exist one run of a’s of length ≤ n

6 , we have that n ≤ 9,
whence A ≤ 4, implying that the only possible case is to have two runs of a’s of length 1 and one
run of a’s of length 2. Direct inspection shows that in this case we can easily reconstruct the whole
string with T -bounded queries.

Finally, if q = 2, by Lemma 4.8, we have ρa ≤ n
6+

5
3 .We can now use query t1 = (ab)i1−1aT−n

2
−1+χ(ba)ρ−i1 ,

for χ = 1, 2, 3, . . . , until we receive a negative answer, then xi1 = T − n
2 − 1 + χ − 1. If we

never receive a negative answer and the query becomes of length T, we can resort to the query
t2 = (ab)i2−1aT−n

2
−1+χ(ba)ρ−i2 , for χ = 1, 2, . . . , and proceed analogously. It is easy to see that we

10

cannot have that both t1 and t2 exceed the threshold T ; the other value can then be determined
by difference.

We have used O(log n+A) = O(n) many queries.

4.4 The case T > A = B = n
2
, s1 �= sn

Recall that by Lemma 4.3, in this case we can exactly determine s1 and sn. Let us assume w.l.o.g.
that s1 = a and sn = b. (Otherwise, rename the characters.) Then the string s has the following
form:

s = ax1by1ax2by2 . . . axρ−1byρ−1axρbyρ .

In particular, it starts with a run of a’s and ends with a run of b’s.
We need some more notation. For each i = 1, 2, . . . , 2ρ, we use ri to denote the size of the i’th

run in s starting from the left. I.e., we have xi = r2i−1 and yi = r2i for each i = 1, . . . , ρ. Also
we denote by mi = min{ri, r2ρ−i+1} and by Mi = max{ri, r2ρ−i+1}. We use the following technical
lemma.

Lemma 4.9. Fix i < ρ and assume that for each k = 1, . . . , i− 1, we know rk and r2ρ−k+1 and it
holds that rk = r2ρ−k+1 < T − n

2 . Then we can determine mi and min{Mi, T − n
2 }, asking at most

max{mi,min{Mi, T − n
2 }} queries.

Proof. For each odd i (i.e., ri denotes the length of a run of a’s) we have

mi = min
{
χ = 1, 2, 3, . . . | tχ = ax1+···+xi−1+χba

n
2
−(x1+···+xi−1+χ) ≺RC s

}
,

min
{
Mi, T − n

2

}
= max

{
χ = mi,mi + 1, . . . , T − n

2
|

qχ = a
n
2
−(y1+···+yi−1)bχay1+···+yi−1 ≺RC s

}
.

Using the above equalities, one can determine the value mi (resp. min{Mi, T − n
2 }) by asking the

query tχ (resp. qχ) for increasing values of χ, until the first positive (resp. negative) answer, or
until χ = T − n

2 . This settles the case of i odd.
It is not hard to see that exactly the same argument holds for even i, using the following:

mi = min
{
χ = 1, 2, . . . | tχ = by1+···+yi−1+χab

n
2
−(y1+···+yi−1+χ) ≺RC s

}
,

min
{
Mi, T − n

2

}
= max

{
χ = mi,mi + 1, . . . , T − n

2
|

qχ = b
n
2
−(x1+···+xi−1)aχbx1+···+xi−1 ≺RC s

}
.

This completes the proof of the lemma.

Now, let us consider the largest k ≥ 1 such that rj = r2ρ−j+1 < T − n
2 for each j < k. Note that by

repeated application of Lemma 4.9, we can determine all these rj ’s. Assume w.l.o.g. that k is odd
and let i = �k/2� . Then we can write:

s = uaxis′byρ−i+1ũ, (4)

11

s'

vu byp-i+1axi

Figure 1: The case where |s|a = |s|b and s1 �= sn. We determine s by first finding the first assymetry
in s (xi �= yρ−i+1), and then extending queries for s′, which has fewer b’s than a’s. Note that up to
index i, string s is perfectly symmetric, i.e. we have v = ũ.

where u = ax1by1 . . . axi−1byi−1 is known, and the string s′ is still unknown. Note that also the
two values min{xi, yρ−i+1} and min{max{xi, yρ−i+1}, T − n

2 } are known (again by application of
Lemma 4.9). Moreover, for determining these two values and string u, we have used a number of
queries linear in 2|u|+min{max{xi, yρ−i+1}, T − n

2 }.
According to the magnitude of xi and yρ−i+1, we will enter one of the following three cases,

where we will assume, w.l.o.g., that xi ≤ yρ−i+1. (The case where yρ−i+1 < xi is symmetric.) We
illustrate the situation in Figure 1.

4.4.1 The subcase A = B = n
2 , s1 �= sn, xi, yρ−i+1 < T − n

2 .

With reference to (4), we can use a recursive argument to show how to determine s′. Let n′ = |s′|.
Note that |s′|a > |s′|b and that s′ starts with a b and ends with an a.

Let t′ be a query for s′: Since |s′|a > |s′|b, such queries were defined by one of the previous
cases (Section 4.1 or 4.2). Let t′+ be the query obtained by adding to t′ an initial b, if t′ does not
begin with b, and a final a, if t′ does not end with an a. Define a query t for s in the following way:

t = a|u|at′+a
|u|b (5)

Lemma 4.10. Let t be defined as in Eq. (5). Then,

1. t ≺RC s if and only if t′ ≺RC s′.

2. If |t′| ≤ 2(n′+1)
3 , then |t| ≤ 2(n+1)

3 .

Proof. 1. Let t ≺RC s. First assume that t ≺ s. Notice that t′+ starts with character b and
ends with character a, and that t = a|u|at′+a|ũ|a , i.e., the number of a’s in t following t′+ equals
the number of a’s in ũ. Because of the |u|a many a’s at the beginning of t, the fact that t is
a subsequence of s implies t′+a|ũ| ≺ axis′byρ−i+1ũ, and because t′+ starts with a b, we also have
t′+a|ũ| ≺ s′byρ−i+1ũ. This again implies that t′+ ≺ s′byρ−i+1 , and because t′+ ends with an a, also
t′+ ≺ s′, and thus, t ≺ s′.

Now let t ≺ s̃, or, equivalently, t̃ ≺ s. We have t̃ = b|u|b t̃′+b|u|a = b|u|b t̃′+b|ũ|b , and t̃′+ starts
with an a and ends with a b. Thus, because of the |u|b many b’s at the beginning of t̃ and the fact
that t̃′+ starts with an a, we have t̃′+ ≺ s′byρ−i+1ũ. Further, because of the |ũ|b many b’s at the end
and the fact that t̃′+ ends with a b, this implies t̃′+ ≺ s′. It follows that t′ ≺ s′.

Conversely, if t′ (resp. t̃′) is a subsequence of s′, then clearly, t (resp. t̃) is a subsequence of s.

2. The length of t is |t| ≤ |u|+ 2 + |t′|, where |t′| ≤ 2
3(n

′ + 1) and n′ = n− 2|u| − xi − yρ−i+1,
and yρ−i+1 > xi ≥ 1. This implies xi + yρ−i+1 ≥ 3. Thus,

12

|t| ≤ |u|+ 2 +
2

3
(n− 2|u| − xi − yρ−i+1 + 1)

=
2

3
(n+ 1) + 2− 1

3
|u| − 2

3
(xi + yρ−i+1)

≤ 2

3
(n+ 1) + 2− 1

3
|u| − 2 ≤ 2

3
(n+ 1).

Thus it follows that we can use the analysis of the previous sections to prepare a sequence of
queries on s which is (i) linear in |s′| and (ii) allows us to determine the substring s′ of s. Once this
is accomplished, the whole s can be fully determined (up to reverse complement).

4.4.2 The subcase A = B = n
2 , s1 �= sn, xi, yρ−i+1 ≥ T − n

2 .

Notice that, because of the assumption n ≥ 8 and xi, yρ−i+1 ≥ T− n
2 , it follows that xi+yρ−i+1 ≥ 4.

We have |s′| = n− 2|u| − xi − yρ−i+1. This implies

|s′|+ |u|+ 2 ≤ n− xi − yρ−i+1 + 2 + |u| ≤ 2n− 2T + 2− |u| ≤ 2n

3
+

2

3
− |u| ≤ T. (6)

Thus we can adapt the strategy we described in Section 3 for unbounded RC-reconstruction to
determine s′ and then, by subtraction, also xi and yρ−i+1. We proceed as follows: Suppose that in
the strategy for reconstructing s′, in the unbounded-query case, we would ask a query t′, starting
with b and ending with a. Then we will ask query t = a|u|a+1t′ba|u|b . It is not hard to see that such
t answers positively on s if and only if t′ answers positively on s′. By (6), |t| = |t′|+ 2 + |u| ≤ T .

The only requirement is that t′ begin with b and end with a. However, the strategy in Section 3
can be easily adapted to this case, under the assumption that the string to be reconstructed begins
with b and ends with a, a condition that holds for s′. (Notice, in fact, that because the query size
is unbounded, any query in the strategy in Section 3 can be safely extended by an arbitrary prefix
and/or suffix of the string we are trying to reconstruct.)

Finally, once we have reconstructed s′ we can determine max{xi, yρ−i+1} as n
2 − |s′|b − |u|.

(Recall that we have assumed w.l.o.g. that xi ≤ yρ−i+1; in fact, now that we know s′, we can
determine whether this is the case: we have xi ≤ yρ−i+1 if and only if |s′|a ≥ |s′|b.)

4.4.3 The subcase A = B = n
2 , s1 �= sn, xi < T − n

2 , yρ−i+1 ≥ T − n
2 .

In order to determine ρ and xi+1, . . . , xρ−i+1, we can use the query

tχ = a|u|a+xibaχba
n
2
−|u|a−xi−χ (7)

as follows. Under the standing hypothesis, we have xi <
2(n+1)

3 − n
2 ≤ yρ−i+1. The above query tχ

has size n
2 + 2 ≤ T, for any n ≥ 8. Moreover, the fact that xi < yρ−i+1 guarantees that if tχ ≺ s

then t fixes the direction of s. To see this, with reference to (4), it is enough to observe that in this
case, in s there are more a’s following the first b of s′ than there are b’s preceeding the last a of s′.

We use the query tχ as follows: We ask tχ for each χ = 1, 2, 3 . . . , until we get the first positive
answer. Let χ1 be the minimum value of χ for which the answer is positive. It is not hard to see

13

that this implies xi+1 = χ1. We now continue asking query tχ for each χ = χ1 + 1, χ1 + 2, Let
χ2 be the minimum value of χ for which we get a new positive answer. Again, this implies that
xi+2 = χ2 − χ1. More generally, for each j = 1, . . . , ρ − i + 1, let χj be the value of χ when we
receive the ith positive answer. Then, we have xi+j = χj − χj−1 (where we set χ0 = 0 for sake of
definiteness).

Note, however, that at this point we do not know ρ. We continue asking tχ as long as n
2 −|u|a−

xi−χ > |u|b, or equivalently, χ < n
2 −|u|−xi. This way we determine xj , for j = i+1, . . . , ρ− i+1

and, in particular, we determine ρ.

Now by Lemma 4.6, with t = a|u|a+xiba
n
2
−xi−|u|a , we can determine exactly yj , for each j =

i, . . . , ρ−i such that yj < T− n
2 , or, otherwise, establish the fact that yj ≥ T− n

2 . As in the previous
cases, it now remains to determine the exact values of those runs with length at least T − n

2 .
Let i1, . . . , iq, be such that yij ≥ T − n

2 , for each j = 1, . . . , q. We can also assume that for at
least one 1 ≤ j ≤ q it holds that yij > T − n

2 , for otherwise we can identify this situation by the
fact that n−∑

��∈{i1,...,iq} y� = q(T − n
2), whence we have yij = T − n

2 , for each j.

For each j such that yij ≥ T − n
2 and whose value is not determined yet, we use a query of the

form:
tχ = (ab)ij−1abχ(ab)ρ−i−ijabxi+1(ab)i−1,

increasing χ until we get the first positive answer. It remains to show that each of these queries
has length smaller or equal to T .

We have that |tχ| = 2ρ+ xi + χ− 1. To see that this is smaller or equal to T for each χ ≤ yij ,

notice that yij ≥ 2(n+1)
3 − n

2 = n
6 + 2

3 . Further, by assumption, we have yρ−i+1, yij ≥ n
6 + 2

3 ,
implying ρ ≤ n

2 − 2n
6 + 2

3 = n
6 + 2

3 ≤ yρ−i+1. Thus, we have ρ ≤ yρ−i+1. Moreover, recall that
n
2 = B ≥ yρ−i+1 + ρ+ yij − 2. Putting it all together, we get

tyij = 2ρ+ xi + yij − 1 ≤ yρ−i+1 + ρ+ yij − 1︸ ︷︷ ︸
≤B+1=n

2
+1

+xi ≤ n

2
+ xi + 1︸ ︷︷ ︸

≤n
6
+ 2

3

≤ 2(n+ 1)

3
≤ T.

As can be readily seen, in all three subcases we use O(|s′|) queries to determine s′, hence,
altogether O(|s|) queries to complete the reconstruction.

This ends the reconstruction for binary strings. In the next two sections, we turn to the general
case of arbitrary constant size paired alphabets.

5 Bounded query size over an arbitrary paired alphabet

In this and the next section we consider the reconstruction of an unknown string w over a paired
alphabet Σ = {a1, a1, . . . , aδ, aδ}, with δ > 1, using only bounded queries of size not larger than
T =

⌈
2
3(n+ 1)

⌉
, where n = |w|. We will show the following result:

Theorem 5.1. There is an algorithm which reconstructs, up to RC-equivalence, a string s of
length n over a paired alphabet Σ, using O(|Σ|n) many RC-subsequence queries of length at most⌈
2
3(n+ 1)

⌉
.

We will proceed as follows. In this section, we will show that it is possible to determine each
projection of w, i.e. the maximal subsequence w|i consisting only of characters ai and āi, using the

14

methodology from previous sections. Once determined, we will combine these iteratively. We will
also show that it is easy to find a split of the alphabet into two subsets such that all but the last
of these merges can be done using unbounded queries. Finally, in Section 6, we examine, case by
case, how to execute the final merging.

We want to extend the notion of projection introduced in Section 2 to the case of projection
over a set of complement pairs.

Definition 5.2 (S-projection). Let S ⊂ [δ], where, using standard notation, [δ] = {1, 2, . . . , δ}.
We denote by w|S the longest subsequence of w only containing characters from complement pairs
{ai, ai} whose index i is in S. We call w|S the S-projection of w. (Note that when S is a singleton,
S = {i}, then w|S = w|i, as defined previously.)

As a consequence of the results in the previous sections, we have a method for determining the
maximal subsequences that consist only of one complement pair, as we will now see.

5.1 Determining the projections

Recall that δ is the number of complement pairs. For each i = 1, . . . , δ, let ni = |w|i| be the length
of the projection onto the complement pair {ai, ai}. Note that for at most one projection we can
have ni ≥ T . Also, recall that Ai = max{|w|ai , |w|ai}. We will now determine the w|i’s in the
following way:

Step 1: First, for each i = 1, . . . , δ, attempt to determine Ai by asking queries aχi for
χ = 1, 2, 3, This will be possible for all pairs {ai, ai} except at most one.

Step 2: For all i such that Ai < T , attempt to determine the subsequence w|i using the
unbounded query strategy of Section 3. For each i such that ni < T, this will result in full
knowledge of w|i and thus of ni.

Step 3: If there is an i ∈ [δ] for which we have not been able to determine w|i (we either
reached the threshold T in step 1 or in step 2), then this is the only such i. Therefore we can
determine ni by difference, since ni = n−∑

j �=i nj . Now we can employ the binary algorithm
of Section 4 for finding w|i.

Thus, we have determined all projections onto the individual character pairs. We will now turn
to how to combine them into longer strings.

5.2 Iteratively merging the projections

Clearly, there can be at most one projection of size greater than 2n/3. Moreover, if all projections
are smaller than 2n/3, then we can split the set of projections into two subsets such that the total
length of the substrings induced by each of the two subsets is no greater than 2n/3, in the following
way.

We want to find a set S ⊂ [δ] such that |w|S | ≤ 2n/3 and for the complement set Sc = [δ] \ S
it holds that either |w|Sc | ≤ 2n/3 or Sc is a singleton. To do this, we order the projections in

order of non-decreasing cardinality, i.e., n1 ≤ n2 ≤ · · · ≤ nδ. Let k = min{i | ∑i
j=1 nj > 2n/3} and

choose S = [k − 1]. If k = δ, then we are done. Else assume that |w|Sc | = ∑δ
j=k nj > 2n/3. This

implies that
∑k−1

j=1 nj < n/3. Moreover, note that
∑k

j=1 nj > 2n/3 implies
∑δ

j=k+1 nj < n/3, and

15

thus also nk < n/3, since the cardinalities are non-decreasing. Thus we have n = (
∑k−1

j=1 nj)+nk +

(
∑δ

j=k+1 nj) < n/3 + n/3 + n/3, a contradiction.

For merging the projections we need O(n log |Σ|) queries. The final merging step, the only one
requiring bounded search, is taken care of in the next section.

6 Combining two projections of w over disjoint pairs of comple-
mentary characters

The problem we want to solve in this section is, given two strings s and t, which are RC-character-
disjoint (i.e. if a ∈ alph(s), then a, ā �∈ alph(t), and vice versa), find a string w, such that s ≡RC w|S
and t ≡RC w|Sc , where S � [δ]. As before, we can only use queries of length at most T = �23(n+1)�,
where n = |s|+ |t|.

The string w, up to RC-equivalence, is an interleaving of s and t, or of s and t̃, a concept we
will define precisely below.1 Deciding which is the case means finding the relative direction of s
and t. In order to reconstruct w, we need to (a) decide the relative direction of s and t and (b)
find out how the two strings are interleaved. In the following, we will formalize these notions.

In the whole of this section, we will assume, without loss of generality, that |s| ≤ |t|, and that
s ≺ w.

6.1 Some preliminary observations

We first introduce a notion which we will use extensively in the following.

Definition 6.1 (Run structure). Let w ∈ Σ∗ and s = w|S for some S � [δ]. Then w can be
written uniquely as

w = u0v1u1v2u2 . . .vr−1ur−1vrur,

where v1 . . .vr = s, u0 and ur are possibly empty, and u1, . . . ,ur−1,v1, . . . ,vr �= ε. We define the
run structure of s (in w) as the partition v1, . . . ,vr of s, together with two bits bL(s) and bR(s),
where bL(s) = 1 if and only if u0 �= ε and bR(s) = 1 if and only if ur �= ε. We say that s’s
run structure is symmetric if bL(s) = bR(s) and for all i = 1, . . . , r, it holds that |vi| = |vr−i+1|;
otherwise, it is asymmetric.

Given two projections s and t with their respective run structures, we define the interleaving
s � t as the unique string w s.t. the given partitions, along with the given bits, are the respective
run structures of s and t in w.

Note that from the run structure of s in w we can deduce the run structure of s̃ in w̃: It is the
partition ṽr, . . . , ṽ1 of s̃, together with the bits bL(s̃) = bR(s) and bR(s̃) = bL(s).

Example 6.2. Let Σ = {a, ā, b, b̄}, and let w = abb̄bāābaā. Then the projection onto {a, ā} is
s = aāāaā, and its complement is t = bb̄bb, with the following run structures. For s: a, āā, aā,
bL(s) = bR(s) = 0, and for t: bb̄b, b, and bL(t) = bR(t) = 1. Then these can be combined in
four ways: (1) s � t = abb̄bāābaā = w, (2) s � t̃ = ab̄āāb̄bb̄aā, (3) s̃ � t = aābb̄baabā, and (4)

1In other words, it is an element of the shuffle of s and t, or of s and t̃, see e.g. [13] for a definition of the related
concept of shuffle.

16

s̃� t̃ = aāb̄aab̄bb̄ā = w̃. There are only two distinct solutions up to RC-equivalnce, namely (1) and
(2).

The next lemma gives some cases in which there is only one possible solution, up to RC-
equivalence. Recall that a string s is an RC-palindrome if s̃ = s.

Lemma 6.3. Let s, t ∈ Σ∗, be the projections of some w onto S � [δ] and Sc, respectively. Let
bL(s) and bR(s) be the bits associated to the run structure of s in w.

1. If bL(s) �= bR(s) then w is the unique string up to RC-equivalence such that s ≡RC w|S and
t ≡RC w|Sc.

2. If s is an RC-palindrome and its run structure is symmetric, then s� t ≡RC s� t̃.

Proof. For 1., note that bL(s) �= bR(s) implies bL(t) �= bR(t), and since both are projections of the
same string, we have bL(t) = 1 − bL(s). Thus the only possibilities of interleaving the two strings
are s� t or s̃� t̃, which are RC-equivalent.

For 2., let us assume that bL(s) = bR(s) = 0. (The case bL(s) = bR(s) = 1 is analogous.)
Let the run structure of s be v1, . . . ,vr, and of t, u1, . . . ,ur−1. We can now write s � t =

v1u1v2u2 . . .vr−1ur−1vr. Then s � t̃ = v1ũr−1v2ũr−2 . . .vr−1ũ1vr, and s̃� t̃ = ṽru1ṽr−1 . . .
ur−2ṽ2ur−1ṽ1 = v1u1v2u2 . . .vr−1ur−1vr = s� t.

The next lemma gives an algorithm for determining the relative direction of s and t.

Lemma 6.4. Let s, t,w ∈ Σ∗ such that s ≡RC w|S and t ≡RC w|Sc. If neither s nor t is an RC-
palindrome then we can determine their relative direction, i.e., assuming s ≺ w we can determine
whether t ≺ w or t̃ ≺ w, using O(n) many queries, where n = |w|.
Proof. Simon’s Theorem [14] states that if two strings of length � have the same set of subsequences
of length up to ��/2�+1, then they are equal. Thus, given two distinct strings u and v of length �,
there exists a distinguishing subsequence z of length at most ��/2�+1 s.t. either z ≺ u and z �≺ v,
or z ≺ v and z �≺ u. In Appendix A, we give an explicit construction in linear time.

Since s and t are not RC-palindromes, s and s̃ are two distinct strings, likewise t and t̃. Thus,
we can find strings z1, z2, such that |z1| ≤ |s|/2 + 1, |z2| ≤ |t|/2 + 1, and, up to exchanging the
roles of s and s̃, and of t and t̃,

z1 ≺ s, z1 �≺ s̃, and z2 ≺ t, z2 �≺ t̃.

In other words, there exist subsequences which fix the direction of s and t, and the sum of their
lengths is at most n/2+2. Note that since s is not an RC-palindrome, either s ≺ w or s̃ ≺ w holds,
but not both. The same holds for t. We proceed as follows: We try to construct a supersequence
u of both z1 and z2 which is a subsequence of w. We use a procedure analogous to the one used
in Lemma 4.6, namely, we try to fit as many characters as possible from the beginning of z2 before
the first character of z1, then we continue trying to fit the next characters of z2 between the first
and the second character of z1 and so on. If we succeed, then we know that w is an interleaving of
s and t, otherwise, it is one of s and t̃.

Now let us write w, the string to be reconstructed, as

17

w = u0v1u1v2u2 . . .vr−1ur−1vrur, (8)

where v1 . . .vr = s, u0 and ur are possibly empty, and u0u1 . . .ur = t or u0u1 . . .ur = t̃. We will
now establish some simple facts about the size of the ui’s. Let us recall once more that s ≡RC w|S
and t ≡RC w|Sc , and |s| ≤ |t|. Further, T = �23(n+ 1)� where n = |w|.
Lemma 6.5. Let |s| ≤ |t|. Let I = {i | |s| + |ui| ≥ T}. Then |I| ≤ 2. Moreover, if |I| = 2, then
|t| ≤ T − 2.

Proof. Let q = |I|. For all i ∈ I, |ui| ≥ T − |s| ≥ 2
3n+ 2

3 − |s|. This implies

n− |s| ≥ |t| ≥ ∑
i∈I |ui| ≥ q(T − |s|) = 2q

3
n+

2q

3
− q|s|. (9)

Thus, for any q ≥ 3, we have |s| ≥ 2q−3
3q−3n+ 2q

3q−3 > n/2, a contradiction. Moreover, if |I| = 2, then

(9) implies |s| ≥ n
3 + 4

3 , and thus |t| = n− |s| ≤ n− n
3 − 4

3 = 2
3n− 4

3 ≤ T − 2.

The next lemma is proved analogously:

Lemma 6.6. Let |s| ≤ n
3 + 1 and I = {i | |s|+ |ui| ≥ T}. Then |I| ≤ 1.

Proof. Suppose that there exist i �= j s.t. |s|+ |ui| ≥ T and |s|+ |uj | ≥ T. This implies

n = |t|+ |s| ≥ |ui|+ |uj |+ |s| ≥ 2T − |s| ≥ 4

3
n+

4

3
− 1

3
n− 1 = n+

1

3
,

a contradiction.

Thus, in general, for all but at most two i, we can reconstruct the substring ui by fitting, one
by one, its characters between vi and vi+1 until we receive a negative answer. Moreover, if s is
short, i.e. at most n/3 + 1, then we can reconstruct all but one ui in this way. (We will make this
more precise below.)

We are now ready to present our reconstruction procedure starting with an S-projection s and
the complementary Sc-projection t. Recall that we are assuming that |s| ≤ n/2 ≤ |t|. We will
proceed by distinguishing three cases, according to the length of s: (1) |s| > n

3 +1, (2) |s| ≤ n
3 , and

(3) |s| = �n3 + 1�.

6.2 The case |s| > n
3
+ 1

We will first describe how to determine the run structure of s and t, and then how to determine
their relative direction. If we know these two things, we also know w, which is the unique string
s� t or s� t̃, where the interleaving happens according to the run structures determined.

Determining the run structure of s and t. Here the main observation is that |t| + 2 =
n − |s| + 2 < 2n

3 + 1 ≤ T. We limit ourselves to explicitly describing how to determine the run
structure of s. The analogous procedure can be applied to t.

Let s = s1 . . . s|s| and for technical reasons, we set s0 = s|s|+1 = ε. For each i = 1, . . . , |s| + 1
and for each x ∈ Σ, we define the string

qi(x) = s0s1 . . . si−1xsi . . . s|s|+1. (10)

18

Case 1. s is not an RC-palindrome. Then s fixes the direction of w, and we ask, for every
i = 1, . . . , |s|+ 1, and for every x ∈ alph(t) (those characters which actually occur in t), the query
qi(x). If, for fixed i, there is an x such that we get a positive answer, then we know that there is a
partition position between si−1 and si in the run structure of s in w. When all queries have been
asked, we have determined the run structure of s.

Case 2. s is an RC-palindrome. Again we ask for each i = 1, . . . , |s|+1 and for each x ∈ alph(t),
the query qi(x). However, since s = s̃, a positive answer to qi(x) could indicate either that there is
an x between si−1 and si, or that there is a x̄ between s|s|−i+1 and s|s|−i+2, or both. In order to
distinguish these cases, we ask, for any i and x such that qi(x) answered positively, the query

q′
i(x) = s0s1 . . . si−1xsi . . . s|s|−i+1x̄s|s|−i+2 . . . s|s|+1. (11)

If also q′
i(x) answers positively, then we know that both (si−1, si) and (s|s|−i+1, s|s|−i+2) are

partition positions in the run structure of s, i.e. they both contain a character from t. So we
continue with the next query qi+1(x). Otherwise, we have found asymmetry in the run structure
of s, which we can exploit in the following: Let k be the minimum index for which there is a y
s.t. qk(y) answered positively and q′

k(y) answered negatively. Then qk(y) fixes the direction of w.
Thus, we can finish the construction of the run structure of s by asking for each j > k and for each
x the query

q′′
j (x) = s0 . . . sk−1ysk . . . sj−1xsj . . . s|s|+1. (12)

Since q′′
j (x) is a supersequence of qk(y), it fixes the direction of w. As before, every time we

get a positive answer we record the new partition position and we increment j.
Notice that all queries we have used have size at most |s|+2. Thus, the analogous procedure is

also feasible for determining the run structure of t, since t has size at most T − 2. The number of
queries is altogether at most |Σ||s|+ |Σ||t| = O(|Σ|n).
Determining the relative direction of s and t. Assume now we have already determined the
run structure of both s and t.

Case 1. At least one of s and t is both an RC-palindrome and has symmetric run structure.
Then, by Lemma 6.3, there is only one possibility of interleaving s and t, so we are done.

Case 2. Neither s nor t are RC-palindromes. Then, by Lemma 6.4, we can determine their
relative direction using O(n) many queries of length at most T .

Case 3. s is either not an RC palindrome, or it is an RC-palindrome and its run structure is
asymmetric. Then we can obtain a sequence s′ which fixes the direction of w: Define

s′ =

{
s, if s is not RC-palindrome

qk(y), otherwise,
(13)

where qk(y) is defined as before, i.e. qk(y) is the string defined in (10), for the minimum k for
which q′

k(y) from (11) answered negatively.

Case 3a. If t is not an RC-palindrome, since s′ is also not an RC-palindrome, by Lemma 6.4
we can find their relative direction using O(n) queries.

Case 3b. Finally, assume that t is an RC-palindrome and has asymmetric run structure. Let
u1,u2, . . . ,ur be the partition of t. Then there exists an index i such that |ui| �= |ur−i+1|.

19

If at least one of ui and ur−i+1 is “small”, in the sense that min{|ui|, |ur+1−i|}+ |s′| < T, then
we can determine the direction of t with respect to s′ as follows. Let |ui| = m, |ur+1−i| = m′, and
w.l.o.g. m > m′. Let ui = u1 . . . um and k be the position such that, if t ≺ w then the run ui must
appear in w immediately before the occurrence of the kth character of s′. This k can be determined
from the run structures, under the assumption t ≺ w. We can now verify whether t ≺ w, by asking
the query

s′1 . . . s
′
k−1u1 . . . um′+1s

′
k . . . s

′
|s′|, (14)

where s′ = s1 . . . s|s′|. Clearly, this query answers yes if and only if t ≺ w, otherwise we have t̃ ≺ w.

Else, for all i such that |ui| �= |ur−i+1|, it holds that both runs are “big”, i.e., min{|ui|, |ur−i+1|}+
|s′| ≥ T. Then, by Lemma 6.5, there must be exactly one such i. Moreover, t must consist of only
these two runs, since otherwise, there would be at least another asymmetric pair of runs, which
would have to be small. Let u1,u2 be the partition of t, and let u1 = u1 . . . um be the larger of the
two runs, |u2| = m′ < m. By Lemma 6.3, if bL(t) �= bR(t), then the relative direction of s and t is
fixed by their run structures. We are left with two other possibilites: (i) bL(t) = bR(t) = 0, or (ii)
bL(t) = bR(t) = 1.

In case (i) we have that all of s appears between u1 and u2. It follows that s �= s̃, since otherwise,
s would be an RC-palindrome with symmetric run structure, a case we dealt with earlier. Since
s �= s̃, we can compute in time linear in |s| (see appendix) a sequence z ≺ s, such that z �≺ s̃.
Consider now the query u1 . . . um′+1z. This query answers positively if and only if t ≺ w, hence
allows to determine the direction of t, and to complete the reconstruction. Notice that the size of
the query is at most |t|/2 + 1 + |s|/2 + 1 = n/2 + 2 ≤ T, for any n ≥ 8.

In case (ii) we have v1,v2,v3 as partition of s. It follows that v2 �= ṽ2 or v1 �= ṽ3, since
otherwise, s would be RC-palindrome with symmetric run structure. In the former case we ask the
query u1 . . . um′+1z, where z is a subsequence of size ≤ |v2|/2 + 1 distinguishing between v2 and
ṽ2. This query answers positively if and only if t ≺ w, because z fixes the direction of w. The
query has length ≤ |t|/2 + 1 + (|s| − 2)/2 + 1 ≤ n/2 + 1 ≤ T for any n ≥ 2.

Finally, assume that v2 = ṽ2 and v1 �= ṽ3. Let |v1| ≥ |v3|. Since v1 �= ṽ3, there exists
a sequence v′ of length at most |v3| + 1 such that v′ ≺ v1 and v′ �≺ ṽ3. We ask the query
v′u1 . . . um′+1xy where x is a character from v2 and y a character form u2. This query has length
at most |t|/2 + 1 + (|s| − 1)/2 + 1 ≤ n/2 + 3/2 ≤ T for any n ≥ 5. Again, this query answers
positively if and only if t ≺ w.

In conclusion, also in Case 3b, a constant number of additional queries allows to determine the
relative direction of s and t and hence to complete the reconstruction. In total we have use O(|Σ|n)
queries.

6.3 The case |s| ≤ n
3

Recall that we have w = u0v1u1 . . .ur−1vrur, where u0 and ur are possibly empty strings. By
proceeding as in the previous section, using the fact that |s|+2 ≤ T, we can find the run structure
of s, and in particular, the partition of s as v1, . . . ,vr.

Case 1. Assume first that s is not an RC-palindrome with symmetric run structure. Then, like
in Section 6.2, we can define a supersequence s′ of s which fixes the direction of w: we have s′ = s
if s is not an RC-palindrome; otherwise, let i be the minimum index such that vi �= ṽr+1−i, and

20

x be a character from ui, which we find when we discover the run structure of s. Then we have
s′ = v1 . . .vixvi+1 . . .vr.

If t is not an RC-palindrome, then, using Lemma 6.4, with O(n) additional queries, we can find
the relative direction of t and s′. If t is RC-palindrome, then it is indifferent, since t̃ = t. Let us
assume, w.l.o.g., that t ≺ w, i.e., it appears in w in the same direction of s′, hence, t = u0u1 . . .ur.
Then we are left with the problem of determining the partition of t.

In order to reconstruct the partition, we proceed as follows. First, note that by Lemma 6.6, we
know that there is at most one j such that |uj |+ |s′| ≥ T. Suppose we have determined u0, . . . ,ui−1

and we know u0u1 . . .ui−1 = t1 . . . tj . In order to reconstruct ui, for k = 1, 2 . . . , we ask the query
qk defined by inserting in s′ immediately after vi the characters tj+1 . . . tj+k. We continue until
either we receive a negative answer or we have |s′| + k = T. In the former case we can conclude
that ui = tj+1 . . . tj+k−1 and we can repeat the same procedure in order to determine ui+1. In case
we stopped because |s′| + k = T, we have discovered that ui is the only long run in t, i.e., such
that |s′| + |ui| ≥ T. Then we can continue reconstructing t from the back, i.e., from ur using the
obvious analogous procedure. Since there is only one long run, we will be able to reconstruct all the
remaining runs, ur, . . . ,ui+1. Then, once the boundary of ui+1 is known, we have also determined
ui and the reconstruction of w is complete.

Since we need a constant number of queries to increase by at least one character our knowledge
about the partition of t, it follows that we can complete this case with O(n) additional queries.

Case 2. Assume now that s is RC-palindrome and its run structure is symmetric, i.e. for each
i we have vi = ṽr+1−i. Then we know by Lemma 6.3 that s� t ≡RC s� t̃. However, we still need
to determine the run structure of t in w. We do this iteratively. By showing that this can be
achieved with at most O(|Σ||t|) additional queries, we will reach the desired conclusion also in this
case, about the linear query complexity of the reconstruction.

Suppose that with O(|u0|+. . . |ui−1|+|ur−i+1|+. . . |ur|) queries we have determined u0, . . . ,ui−1

and ur−i+1, . . . ,ur and we have uj = ũr−j , for each j = 0, . . . , i − 1. Let us also define zL =
u0v1u1v2 . . .vi−1ui−1vi and zR = vr+1−iur+1−i . . .vrur. Then, under the standing hypotheses, we
have zL = z̃R. Finally, let � = |u0 . . .ui−1|.

For reconstructing ui and ur−i we use queries made of the entire sequence s and some characters
in gaps corresponding to the runs ui and ur−i: Let

qL(k) = v1 . . .vit�+1 . . . t�+kvi+1 . . .vr,

qR1(k) = v1 . . .vit�+1 . . . t�+kvi+1 . . .vr−it|t|+1−�−k . . . t|t|−�vr−i+1 . . .vr, and

qR2(k) = v1 . . .vit�+1 . . . t�+k−1vi+1 . . .vr−it|t|+1−�−k . . . t|t|−�vr−i+1 . . .vr.

We proceed as follows. For each k = 1, 2, . . ., we ask query qL(k). If it answers positively, we
ask qR1(k). If it answers negatively, we ask qR2(k). We continue until we reach a k for which one
of the following occurs:

(i) both queries answer negatively;

(ii) exactly one query answers negatively;

(iii) qL(k) answers negatively and qR2(k) exceeds the threshold T ;

(iv) qL(k) answers positively and qR1(k) exceeds the threshold T.

21

We shall now analyze the four cases separately.

Case (i). We have determined ui = t�+1 . . . t�+k−1 and ur−i = t|t|+2−�−k . . . t|t|−� with O(|ui| +
|ur−i|) queries. If ur−i = ũi, then we can continue with the reconstruction of ui+1,ur−i−1 as above.
Else, we have that qL(k) fixes the direction of w, and we proceed as in Case (ii) below.

Case (ii). We can assume w.l.o.g. that qL(k) answered positively. (The other case can be handled
symmetrically, by switching the role of ui and ur−i.) We have now determined ur−i, and we know
that the string u′

i = t�+1 . . . t�+k is a prefix of ui. Moreover, because of the different answers we
are sure that—even if t is RC-palindrome—the sequence qL(k) fixes the direction of w.

We shall now attempt to reconstruct the remaining runs ur−i−1,ur−i−2, . . . , in this order, i.e.
from the back, by using queries which are supersequences of qL(k).

For some j ≥ 0, suppose we have already reconstructed ur−i−1, . . . ,ur−i−j and �′ is such that
the sequence ur−i−jur−i−j+1 . . .ur = t�′ . . . t|t|. In order to reconstruct ur−i−j−1 we ask queries

v1 . . .viu
′
ivi+1 . . .vr−i−j−1t�′−λ . . . t�′−1vr−i−j . . .vr (15)

for λ = 1, 2, . . . , until we either receive a negative answer or the query cannot be enlarged further
because the threshold T has been reached. In the former case, we have identified the run and we
can continue with ur−i−j−2.

If otherwise, we stop because of the threshold T, we have

|s|+ |u′
i|+ |ur−i−j−1| ≥ T. (16)

As we will see, this means that any query containing all of s, and u′
i, and any yet unreconstructed

gap uj′ is feasible. It even holds that all of the unreconstructed part of t (excluding ur−i−k−1),
together with s and u′

i, is not larger than T :

| unreconstructed part of t | ≤ |t| − |u′
i| − |ur−i| − |ur−i−j−1|

= n− |s| − (|u′
i|+ |ur−i−j−1|)− |u′

i|+ 1

≤ n− |s|+ |s| − T − |u′
i|+ 1 ≤ n/3 + 1/3− |u′

i|, (17)

where we used that |u′
i| = |ur−i|+1 and −(|u′

i|+ |ur−i−j−1|) ≤ |s| − T, by (16). Therefore, for the
size of the remaining part of t we have

| unreconstructed part of t | = |ui| − |u′
i|+ |ui+1|+ · · ·+ |ur−i−j−2| ≤ n/3 + 1/3− |u′

i|. (18)

This implies that we can reconstruct it from left to right using the following queries, which are
supersequences of the direction fixing sequence qL(k). Recall that |u′

i| = k. Then asking the queries

v1 . . .viu
′
it�+1 . . . t�+λvi+1 . . .vr (19)

for λ = k+1, k+2, . . . , until we receive a negative answer, will determine ui. Let λ1 be the minimum
value of λ for which the answer is negative. Then, we ask queries

v1 . . .viu
′
ivi+1t�+λ1+1 . . . t�+λ1+λvi+1 . . .vr (20)

for λ = 1, 2, . . . , until we receive a negative answer, in order to reconstruct ui+1, and so on. Once
we have reconstructed ur−i−j−2, we will be finished since also ur−i−j−1 will be determined.

22

From the above analysis, it is easy to see that the number of queries asked to complete the
reconstruction in this case is O(|t|), as desired.
Case (iii). Ask the query

qR3(k) = v1 . . .vr−it|t|+1−�−k . . . t|t|−�vr−i+1 . . .vr.

Since we know that qL(k) is not an RC-subsequence of w, we can be sure that qR3(k) answers
positively if and only if t|t|+1−�−k . . . t|t|−� is a suffix of ur−i. If the answer is negative, we are back
in Case (i); if the answer is positive, we are in Case (ii).

Case (iv). This means that (assuming, w.l.o.g. that |ui| ≥ |ur−i|) we have

|ui|+ |ur−i| ≥ 2|ur−i| ≥ T − |s| ≥ n/3 + 2/3. (21)

As a consequence we have that |t|+ |s| − (|ui|+ |ur−i|) ≤ T.
The last inequality implies that we can reconstruct all the runs ui+1, . . . ,ur−i−1 by exploiting

the unbounded search procedure, even ignoring what we know about t. Precisely, suppose we have
reconstructed ui+1, . . . ,ui+j for some j ≥ 0, then we can ask queries

qj+1(p) = v1 . . .vi+1ui+1vi+2ui+2 . . .vi+j+1pvi+j+2 . . .vr,

where p represents a query we would use in an unbounded query reconstruction of the sole sequence
ui+j+1.

Let zC = vi+1ui+1vi+2 . . .ur−i−1vr−i. The above procedure allows us to reconstruct zC with
O(|Σ||zC |) queries and to have zLzCzR ≺RC w. We still need to determine the direction of zC . In
fact we shall show that we can reconstruct the larger of ui and ur−i.

Under the assumption that |ui| ≥ |ur−i|, suppose now that queries based only on s and subse-
quences of ui (namely the queries qL(k) defined above) become too long to be performed because
of

|ui|+ |s| ≥ T. (22)

Then let us consider the query q which is made of one character each from the runs of s and t
and of the whole run ui. More precisely, we observe that if we have u0 = ur = ε, then we do not
use characters from v1 and vr. Precisely, if u0 = ur = ε, then we use query

q(k) = b1a2b2a3 . . . bi−1ait�+1 . . . t�+kai+1bi+1 . . . ar−1br−1,

where ai is a character from vi and bi is a character from ui. Alternatively, if u0 = ur �= ε, then
we use q(k) = b0a1b1a1 . . . bi−1ait�+1 . . . t�+kai+1bi+1 . . . ar−1br−1. The length of q(k), for k = |ui|,
is within the threshold T , since

|q(|ui|)| ≤ 2(|t| − |ui| − |ur−i|+ 2)− 1 + |ui| − 1 = 2|t| − |ui| − 2|ur−i|+ 2

≤ 2n− 2|s|+ |s| − T + |s| − T + 2 ≤ 2n

3
+

2

3
,

where for the first inequality we used the fact that the number of runs considered is maximum
when all runs of t comprise one character except for ui and ur−i. For the second inequality we used
|t| = n− |s| and (22)-(21) for bounding −|ui| and −2|ur−i| with |s| − T.

It follows that we can use queries q(k) to reconstruct ui. This, together with zC , t and s, allows
complete reconstruction of w. The number of additional queries is clearly O(|ui|).

23

6.4 The case |s| = �n
3
+ 1�

We only sketch this case. We can proceed as in Section 6.3, except for the case when s is RC-
palindrome and its run structure is asymmetric. Here, in contrast to Section 6.3, we have that
|s′| = �n3 + 2� and therefore, we cannot use Lemma 6.6 to conclude that there can be at most two
big gaps.

However, an analogous argument as in the proof of Lemma 6.6 shows that for |s′| = �n3 + 2�
there can be two big gaps but these must then be the only runs of t, i.e., in this case, t consists
only of the characters which are in these two big gaps. In order to find the size of these two gaps,
it is enough to ask queries including the whole t and one character from s to mark the separation
between the two gaps. Since |s| = �n3 + 1�, we have that |t|+ 1 = n− |s|+ 1 = �2n3 � ≤ T, whence
the queries are feasible. The number of queries used is O(|t|).

Once we know the size of the gaps, the rest of the argument in Section 6.3 can be applied as
before. Thus, we can complete the reconstruction also for |s| = �n3 + 1�, with the desired number
of bounded queries.

7 Conclusion

In this paper, we gave reconstruction algorithms from subsequences in the RC-equivalence model,
i.e. where strings cannot be distinguished from their reverse complements. We treated the problem
separately for strings over binary alphabets, i.e. alphabets consisting only of one complement pair,
and for strings over general finite paired alphabets. Our algorithms use queries of the form “Is u an
RC-subsequence of w?”, where w is the string to be reconstructed, with |w| = n, and u is a string
of length at most

⌈
2n+1

3

⌉
. This is optimal w.r.t. the length of the queries, as has been shown in [6].

Our algorithm for the binary case is also asymptotically optimal w.r.t. the number of queries, as
we showed in Section 2, while the one for the general case is off only by a factor of O(|Σ|/ log |Σ|).

We note that our focus in this paper has been to provide algorithms which use O(n log |Σ|)
resp. O(|Σ|n) many queries, while keeping the length of queries optimal. We have not attempted
to minimize the number of queries within the asymptotics.

The RC-equivalence model can be viewed as a special case of erroneous information, where the
answers to subsequence queries could be either about the query string or its reverse complement.
It is also a special case of a group action on Σ∗, the set of finite strings over Σ. The search in Σn is
substituted by a search in Σn/∼, where ∼ is the equivalence induced by the group action. String
reconstruction in this latter setting is an interesting and more general question, and we plan to
revisit it at a later point.

Acknowledgements

We thank an anonymous referee who read our paper very careful and made several useful suggestions
which helped improve the paper. This research was carried out in part while F.C. and Zs.L. were
visiting the Alfréd Rényi Institute in Budapest, with support from the Hungarian Bioinformatics
MTKD-CT-2006-042794, Marie Curie Host Fellowships for Transfer of Knowledge, within the 7th
Framework Programme of the European Union. P.E. was in part supported by the Hungarian NSF,
under contracts NK 78439 and K 68262. Zs.L. is currently supported within the 7th Framework
Programme of the European Union, with a Marie Curie IEF, grant no. PIEF-2010-274778.

24

References

[1] C. Bercoff. Uniform tag systems for paperfolding sequences. Discrete Applied Mathematics,
77(2):119–138, 1997.

[2] A. Carpi and A. de Luca. Words and special factors. Theoretical Computer Science, 259(1-
2):145–182, 2001.

[3] F. Cicalese, P. L. Erdős, and Zs. Lipták. Efficient reconstruction of RC-equivalent strings.
In Proc. of the 21st International Workshop on Combinatorial Algorithms (IWOCA 2010),
volume 6460 of LNCS, pages 349–362. Springer, 2011.

[4] A. de Luca. On the combinatorics of finite words. Theoretical Computer Science, 218(1):13–39,
1999.

[5] M. Dud́ık and L. J. Schulman. Reconstruction from subsequences. J. Comb. Theory, Ser. A,
103(2):337–348, 2003.

[6] P. L. Erdős, P. Ligeti, P. Sziklai, and D. C. Torney. Subwords in reverse-complement order.
Annals of Combinatorics, 10:415–430, 2006.

[7] G. Fici, F. Mignosi, A. Restivo, and M. Sciortino. Word assembly through minimal forbidden
words. Theoretical Computer Science, 359(1-3):214–230, 2006.

[8] I. Krasikov and Y. Roditty. On a reconstruction problem for sequences,. J. Comb. Theory,
Ser. A, 77(2):344–348, 1997.

[9] V. I. Levenshtein. Efficient reconstruction of sequences. IEEE Transactions on Information
Theory, 47(1):2–22, 2001.

[10] P. Pevzner. l-tuple DNA sequencing: Computer analysis. Journal of Biomolecular Structure
and Dynamics, 7:63–73, 1989.

[11] C. Piña and C. Uzcátegui. Reconstruction of a word from a multiset of its factors. Theoretical
Computer Science, 400(1-3):70–83, 2008.

[12] F. P. Preparata. Sequencing-by-hybridization revisited: The analog-spectrum proposal.
IEEE/ACM Trans. Comput. Biology Bioinform., 1(1):46–52, 2004.

[13] J. Sakarovitch and I. Simon. Combinatorics on Words, by M. Lothaire, chapter 6: Subwords.
Cambridge University Press, 1983.

[14] I. Simon. Piecewise testable events. In Automata Theory and Formal Languages, pages 214–
222. Springer, 1975.

[15] S. Skiena and G. Sundaram. Reconstructing strings from substrings. Journal of Computational
Biology, 2(2):333–353, 1995.

[16] D. Tsur. Tight bounds for string reconstruction using substring queries. In APPROX-
RANDOM, pages 448–459, 2005.

25

APPENDIX

A How to construct distinguishing subsequences

Let w and w′ be two strings of length n over a finite alphabet Σ = {a1, . . . , aσ}, w �= w′. We
want to construct a sequence u of length at most �n/2�+ 1 which is subsequence of w and not of
w′, or vice versa. For a string s = s1 . . . sn over Σ, let pri(s) = s1 . . . si be its prefix of length i.
In addition, let p(s) = (|s|a1 , . . . , |s|aσ) be the vector whose i’th component counts the number of
occurrences in w of the character ai.

Case 1. p(w) �= p(w′). Then there are two characters a, b s.t. |w|a < |w′|a and |w|b > |w′|b.
W.l.o.g. let |w|a ≤ |w′|b. Set x = |w|a. Then for u = ax+1 we have u �≺ w but u ≺ w′. Moreover,
since |w|a ≤ |w′|b < |w|b, we have that x = |w|a ≤ �n/2�, and thus |u| = x+ 1 ≤ �n/2�+ 1.

Case 2. p(w) = p(w′). Then there is a smallest position i s.t. wi �= w′
i, and let a = wi, b = w′

i.
Let A be the number of a’s and B the number of b’s in w (and in w′), and let k be the number of
a’s and � be the number of b’s in pri−1(w) (i.e. k = |pri−1(w)|a, � = |pri−1(w)|b). Define

u = ak+1bB−� and v = b�+1aA−k. (23)

Then u ≺ w and u �≺ w′; while v ≺ w′ and v �≺ w. Moreover, either u or v is not larger than
�n/2�+1: Assume that |u| > �n/2�+1. Then k+B− � > �n/2�, and thus n− k−B+ � ≤ �n/2�.
Therefore, �n/2�+ 1 ≥ n− k −B + �+ 1 ≥ A− k + �+ 1 = |v|.

26

