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ABSTRACT  

Objective: This study aimed to examine the evolution of relationships between measures of 

muscle strength and endurance with individual cardio-metabolic risk factors from childhood 

to late adolescence in a prospective population based cohort.  

Methods: Participants from the Western Australian Pregnancy Cohort (Raine) Study at ages 

10, 14 and 17 were analysed, using longitudinal linear mixed model analyses. 

Results: Handgrip strength after adjusting for the confounding effects of BMI was positively 

associated with systolic BP, but not diastolic BP. The association between handgrip strength 

and systolic BP was stronger in males than females at all time points (coefficient (females): 

0.18, p<0.001; sex*handgrip strength coefficient: 0.09, p=0.002). The association was 

strongest at 10 years and significantly attenuated over time (year*handgrip coefficient from 

10 to 14 years: -0.11, p=0.003; year*handgrip coefficient from 10 to 17 years: -0.19, 

p=<0.001). After the inclusion of BMI as a confounder, handgrip strength was significantly 

negatively associated with HOMA-IR and hs-CRP over time in both sexes. Back muscle 

endurance was positively associated with systolic BP, but not diastolic BP, after adjustment 

for the confounding effects of BMI (coefficient: 0.01, p=0.002). There were small, albeit 

significant inverse associations between back muscle endurance and log HOMA-IR and log 

hs-CRP. 

Conclusion: The positive association between handgrip strength and back muscle endurance 

with systolic BP throughout childhood and adolescence contrasts with beneficial effects on 

other related traditional cardio-metabolic risk factors. Mechanisms underlying these 

paradoxical effects on systolic BP warrant further investigation. 
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CONDENSED ABSTRACT 

Objective: To examine the evolution of relationships of muscle strength and endurance with 

individual cardio-metabolic risk factors from childhood to late adolescence in a prospective 

population based cohort.  

Results: Handgrip strength and back muscle endurance were positively associated with 

systolic BP at 10, 14 and 17 years of age in both sexes. The association of handgrip strength 

with systolic BP was stronger at all ages in males. There were no associations between 

handgrip strength and back muscle endurance with diastolic BP at any age. Handgrip strength 

and back muscle endurance were significantly negatively associated with HOMA-IR and hs-

CRP over time. 

Conclusion: The positive association between muscle strength with systolic BP throughout 

childhood and adolescence contrasts with beneficial effects on other traditional cardio-

metabolic risk factors. 

Keywords: muscle strength; endurance; blood pressure; cardio-metabolic risk factors; 

epidemiology; obesity; observational studies 
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INTRODUCTION 

Moderate to high levels of cardiorespiratory fitness have been associated with lower mortality 

rates (1) and lower levels of hypertension, dyslipidemia and insulin resistance (2, 3). Muscle 

strength and endurance are key contributors to measures of physical fitness. Muscle strength 

is defined as the ability to generate a maximal force during a single contraction, whereas 

muscle endurance is the ability to maintain a repeated exertion of force over an extended 

period of time (4). The handgrip test acts as a proxy for general muscle strength and is 

associated with total body strength measures in adults (5) and children (6).  

 

In middle-aged adults, low muscle strength has been associated with high morbidity and 

mortality rates (7). At least part of this effect is suggested to be mediated by beneficial 

influences on standard cardio-metabolic risk factors. For example, increased muscular mass 

due to resistance training has been shown to be protective against the onset of insulin 

resistance (8). Furthermore, large epidemiological studies have shown high levels of handgrip 

strength are associated with lower levels of undiagnosed hypertension (9) and to be a 

moderately strong predictor of incident cardiovascular disease in adults (10). However, there 

are limited data in children and adolescents.   

 

Adolescence is a critical period of substantial physiological, psychological and lifestyle 

changes which can impact on future adult behaviours and health outcomes (11). Muscle 

strength and endurance increase as children age, due to growth in muscle mass and muscle 

fibre size (12). In addition, blood pressure (BP) has been shown to linearly increase 

throughout adolescence (13). With a view to understanding the ontogeny of effects of muscle 

strength and endurance on adolescent risk factors for cardio-metabolic disease, we have 

examined two modes of muscle function, specifically handgrip strength and back muscle 
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endurance. We then analysed their relationships with a range of individual cardio-metabolic 

risk factors in participants from the population based Western Australian Pregnancy Cohort 

(Raine) Study. We hypothesised that higher levels of handgrip strength and back muscle 

endurance would be associated with lower levels of cardio-metabolic risk factors. 

METHODS 

 

Participants 

The Raine Study is a prospective population study that recruited 2900 pregnant women 

between 16 to 20 weeks’ gestation from King Edward Memorial Hospital and closely located 

practices, in Perth, Western Australia, Australia. The mothers gave birth to 2868 live infants. 

The offspring have been followed at approximately three-year intervals with a comprehensive 

range of anthropometry, BP, lifestyle, psychosocial and biochemical measures recorded. 

Details on methods of the Raine Study have previously been reported (14). Ethics approvals 

for the 10, 14 and 17 year assessments were obtained from the Human Research Ethics 

Committees at the University of Western Australia, Curtin University and Princess Margaret 

Hospital. Written informed consent was obtained from the participant's parent and the 

participant at 17 years age. Handgrip strength measures, BMI and BP recordings were 

recorded at 10, 14 and 17 years. Back muscle endurance, cardiorespiratory fitness, puberty 

and biochemistry measures were recorded at 14 and 17 years.  

 

Muscle strength 

Muscle strength was assessed using a handgrip dynamometer (Dynamometer, Therapeutic 

Instruments Clifton N.J.) following the protocol developed by McCarron (15). Participants 

were asked to extend and hold the hand dynamometer at shoulder length and pull hard on the 

device to record grip force (kg). Measurements were assessed with the right hand and the left 



7 

 

hand with the process being repeated. The best score of the two trials for each hand was 

recorded. These were combined to create a total handgrip strength score (kg).  

 

Muscle Endurance 

The sustained back muscle endurance test was employed to evaluate dynamic back muscle 

endurance by testing the postural trunk muscles using a procedure described by Biering-

Sorensen (16). Participants were instructed to lie in the prone position with their lower body 

strapped to a bed and the upper body extended beyond the bed. Subjects were required to 

maintain the horizontal position isometrically for as long as possible. The endurance time was 

recorded (seconds).  

 

Cardiorespiratory fitness 

Cardiorespiratory fitness was estimated from heart rate recordings during sub-maximal cycle 

ergometry using the Physical Work Capacity Protocol (PWC170) (Monark cycle 

ergonometer). Heart rate at three different workloads (watts) was used to extrapolate the load 

required to reach a heart rate of 170 bpm. PWC170 is the maximal steady state power attained 

for a heart rate of 170 beats per minute on a cycle ergometer (17).  

 

Anthropometry  

Height was measured using a mounted stadiometer (to the nearest 0.1 cm) and weight was 

measured (to the nearest 100g) with participants dressed in light clothes. Body mass index 

(BMI) was calculated as weight (kg) divided by the square of height (m2).  

 

Puberty 
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Puberty was assessed using the Tanner Stages of physical development. This scale asks 

participants to rate their development based on a number of physical sexual characteristics, 

such as development of breasts, genitalia and pubic hair. The five stages range from 1 

(prepubertal) to 5 (fully developed) (18). At 14 years of age, misreporting occurred when 

approximately 330 individuals were shown the wrong developmental stage chart. To account 

for this, these individuals were omitted from the analyses when using puberty as a 

confounder.  

 

Biochemistry 

Venous blood samples were taken after an overnight fast and analysed in the PathWest 

Laboratory at Royal Perth Hospital for serum glucose, insulin, total cholesterol, HDL-C, 

triglycerides and C-reactive protein (hs-CRP) (19). LDL-C was calculated using the 

Friedewald formula (20). The homeostasis model of assessment for insulin resistance 

(HOMA-IR) was calculated using the formula: fasting insulin (µU/ml) x fasting glucose 

(mmol/L) / 22.5 (21). 

 

Blood pressure  

Systolic and diastolic BP were measured by trained personnel using an oscillometric 

sphygmomanometer (DINAMAP vital signs monitor 8100, DINAMAP XL vital signs 

monitor or DINAMAP ProCare 100; GE Healthcare) after resting for 5 minutes and using the 

appropriate cuff size on the right arm. Three cuff sizes were available. At 10 years, two BP 

readings were obtained every 2 minutes in the seated position and the average calculated. At 

14 years, six BP readings were obtained every 2 minutes within a 10-minute period in the 

seated position, whereas at 17 years, the same protocol was employed in the supine position. 
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The average BP was calculated using the last five readings at 14 and 17 years. BP was 

recorded on a separate day to handgrip strength and back muscle endurance assessments. 

 

Statistical analysis  

Descriptive data were summarised by year and sex using means, geometric means and their 

95% confidence intervals. There is no consensus in the literature regarding the need to adjust 

handgrip strength for body size or how this might be achieved.  To explore this issue, 

handgrip strength was calculated at each year by regressing handgrip strength on height or 

weight respectively, we then added the residuals from these analyses to the mean handgrip 

strength, to obtain a height adjusted and weight adjusted handgrip strength. Potential non-

linearity was accommodated by using fractional polynomials.  Hierarchal linear mixed 

models of a selection of cardio-metabolic outcomes (systolic BP, diastolic BP, log HOMA-

IR, log triglycerides, HDL-C, hs-CRP) were then used to compare the performance of raw 

handgrip strength, height adjusted handgrip strength and weight adjusted handgrip strength. 

A simple model was adopted for this purpose, containing time, sex and subsequently an 

adjustment for adiposity, using BMI. Models were assessed using Akaike Information 

Criterion (AIC) where the lowest value indicates the better model. 

 

Longitudinal patterns of raw handgrip strength and back muscle endurance over time as well 

as individuals cardio-metabolic risk factors were investigated using hierarchical linear mixed 

models, to account for nesting of time within an individual and siblings within a family.  In 

these models, maximum likelihood estimation was utilised to retain those with outcome data 

from at least one-time point in the analysis, resulting in unbiased estimates when missing data 

is missing at random. Random effects Tobit regression (for censored data) was utilised for hs-

CRP due to the lower boundary of the test (but does not make any adjustment for siblings) 
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(22). HOMA-IR, triglycerides and hs-CRP were not normally distributed and hence were log 

transformed. Initial associations between cardio-metabolic risk factors and handgrip strength 

and back muscle endurance were investigated after adjusting for sex and year. A further 

adjustment for adiposity was investigated in a subsequent model using BMI. Interactions 

between handgrip strength or back muscle endurance with time or sex were tested to 

determine whether the relationship varied over time or sex.  In addition, a time and sex 

interaction was included to determine whether an outcome varied over time and sex. 

Interactions were excluded from the model if p≥0.05. Cardiorespiratory fitness was included 

as a confounder in both handgrip strength and back muscle endurance models with either 

systolic BP or diastolic BP as the outcome. Data were analysed using STATA (StataCorp, 

2011. Stata Statistical Software: release 13. College Station. TX: StataCorp, LP). All 

reported p values are 2-tailed and significance was set at α=0.05.     

 

RESULTS 

Participant characteristics 

At 10, 14 and 17 years, 1632, 1560 and 1234 participants, respectively had complete data for 

handgrip strength and systolic BP (Figure 1). Handgrip strength and biochemistry at 14 and 

17 years was available for 1346 and 1048 participants, respectively. At 14 and 17 years, 1554 

and 1158 participants, respectively, had complete data for back muscle endurance and 

systolic BP, whereas 1341 and 983 participants, respectively, had complete data for back 

muscle endurance and biochemistry. 

 

Interpretation of handgrip strength: Comparison of unadjusted and adjusted measures 

For the determination of the ‘better’ handgrip strength measure, identical models of raw 

handgrip strength, height adjusted handgrip strength and weight adjusted handgrip strength 
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were compared (Supplementary Table 1a, 1b and 1c, Table, Supplemental Digital Content 1). 

Raw handgrip strength in unadjusted and BMI confounder adjusted models exhibited the 

lowest AIC compared to height and weight adjusted handgrip strength. Therefore, raw 

handgrip strength was deemed a better fit for the outcome of systolic BP and hence was 

employed as the preferred handgrip strength measure in the final analyses. The same pattern 

was observed for other cardio-metabolic risk factors investigated (only systolic BP data 

shown as supplementary material, Table, Supplemental Digital Content 1).  

 

Longitudinal linear mixed models of handgrip strength, back muscle endurance, blood 

pressure and biochemical risk factors 

Handgrip strength increased between 10 to 17 years in both sexes (p<0.001), but to a greater 

extent in males (p<0.001) (Table 1). Back muscle endurance was higher in females than in 

males at 14 years (p=0.021) but by 17 years there was no difference between the sexes 

(p=0.200) (Table 1). Back muscle endurance increased between 14 and 17 years in females (p 

<0.001) and also in males but to a greater extent (p=0.001) (Table 1). Handgrip strength and 

back muscle endurance were weakly correlated (r= 0.07, p= 0.008 at 14 years; r= 0.08, p= 

0.004 at 17 years). Systolic BP increased between 10, 14 and 17 years in both sexes but to a 

greater extent in males (p<0.001) (Table 1). Diastolic BP increased between years 10 and 14 

in both sexes but to a greater extent in females (p<0.001). There was no significant change in 

diastolic BP between 14 and 17 years for either sex. Log HOMA-IR decreased between 14 

and 17 years in both sexes to a similar extent (p<0.001) (Table 1). Cholesterol decreased in 

males (p<0.001) with no change in females over time (p=0.281). Log triglycerides increased 

in males (p<0.001) with no change in females over time (p=0.547). LDL-C increased in 

females (p=0.004) with no change in males over time (p=0.818). HDL-C decreased in both 
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sexes but to a greater extent in males (p<0.001). Log hs-CRP increased from 14 to 17 years in 

females (p<0.001), but decreased in males (p<0.001).  

 

Longitudinal linear mixed models examining associations between handgrip strength and 

cardio-metabolic risk factors over time 

Handgrip strength was positively associated with systolic BP at all time points in both sexes. 

The association was strongest at 10 years and attenuated over time (Table 2, Supplementary 

Table 2, Table, Supplemental Digital Content 1 and Supplementary Figure 1, Figure, 

Supplemental Digital Content 2).   

After adjustment for the confounding effects of BMI, similar associations were detected 

(Table 2, Supplementary Table 2, Table, Supplemental Digital Content 1 and Figure 2). The 

association between handgrip strength and systolic BP was stronger in males than females at 

all time points (sex*handgrip strength coefficient: 0.09, p=0.002). In both sexes, handgrip 

strength was positively associated with systolic BP at 10 years of age and attenuated over 

time, (year*handgrip for 10 to 14 years coefficient: -0.11, p=0.003; year*handgrip for 10 to 

17 years coefficient: -0.19, p=<0.001) resulting in a non-significant association at 17 years of 

age in females. The change in systolic BP resulting from a 1 SD change (noted in brackets) in 

females was 1.07 mm Hg (5.94 kg) and 0.72 mm Hg (9.02 kg) for years 10 and 14 

respectively. The corresponding changes in males were 1.78 mm Hg (6.37 kg), 2.50 mm Hg 

(14.70 kg) and 1.43 mm Hg (15.86 kg) for years 10, 14 and 17 respectively. 

To investigate whether these associations may be attributable to cardiorespiratory fitness 

(only available at 14 and 17 years); PWC170 was included as a further confounder with BMI 

(Supplementary Table 2, Table, Supplemental Digital Content 1). The same pattern was 

observed after the additional adjustment for PWC170 between 14 and 17 years when BMI was 

the sole confounder in adjusted models. 
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There were no associations between handgrip strength and diastolic BP at any time point in 

the unadjusted, BMI-adjusted (Table 2) and the PWC170 and BMI-adjusted models (data not 

shown). 

 

Handgrip strength was positively associated with HOMA-IR in both sexes at all time points 

(coefficient (log HOMA-IR): 0.003, p=0.013) (Table 3 and Supplementary Table 3, Table, 

Supplemental Digital Content 1). After the inclusion of BMI as a confounder in the model, 

handgrip strength was negatively associated with HOMA-IR in both sexes at all time points, 

(coefficient (log HOMA-IR): -0.003, p<0.001). A 1 SD change in handgrip strength at 14 

years (13.40 kg) and 17 years (20.58 kg) equated to a decrease in HOMA-IR of 3.9% and 6 

%, respectively.  

 

Handgrip strength was positively associated with triglycerides at all time point in both sexes 

in the unadjusted model (coefficient (log triglycerides): 0.002, p=0.006) (Table 3). After the 

inclusion of BMI as a confounder, the aforementioned association was no longer significant 

(coefficient (log triglycerides): -0.0007, p=0.302). Handgrip strength was negatively 

associated with HDL-C and this association attenuated from 14 to 17 years in both sexes, 

(coefficient at 14 years: -0.004, p<0.001; year*handgrip coefficient: 0.003, p<0.001) (Table 4 

and Supplementary Table 4, Table, Supplemental Digital Content 1). After, the inclusion of 

BMI as a confounder, handgrip strength remained negatively associated with HDL-C at 14 

years (coefficient: -0.003, p<0.001) but the association was no longer significant at 17 years 

(year*handgrip coefficient: 0.003, p<0.001). A 1 SD change in handgrip strength at 14 years 

(13.40 kg) equated to a 0.04 mmol decrease in HDL-C. 

There was a positive association between handgrip strength and hs-CRP (coefficient (log hs-

CRP): 0.005, p=0.013) (Table 3 and Supplementary Table 5, Table, Supplemental Digital 
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Content 1). After the inclusion of BMI as a confounder, there was a small negative, albeit 

significant, association between handgrip strength and hs-CRP (coefficient (log hs-CRP): -

0.006, p=0.007). These associations did not vary with sex or time. A 1 SD change in handgrip 

strength at 14 years (13.40 kg) and 17 years (20.58 kg) equated to a decrease in hs-CRP of 

7.7% and 11.3%, respectively. 

 

Longitudinal linear mixed models examining associations between back muscle endurance 

and cardio-metabolic risk factors over time 

There were no interactions for back muscle endurance and time or back muscle endurance 

and sex for any of the cardio-metabolic risk factors investigated. The associations reported 

therefore apply to both time points in both sexes.  

 

Back muscle endurance was not associated with systolic BP in unadjusted analysis 

(coefficient: -0.001, p=0.723) (Table 5, Supplementary Table 6, Table, Supplemental Digital 

Content 1, Supplementary Figure 2, Figure, Supplemental Digital Content 2). After the 

inclusion of BMI as a confounder in the model, back muscle endurance was positively 

associated with systolic BP (coefficient: 0.01, p=0.002) (Table 5, Supplementary Table 6, 

Table, Supplemental Digital Content 1 and Figure 3). A 1 SD (14 years: 62.83 seconds; 17 

years: 56.67 seconds) increase in back muscle endurance equated to a 0.06 mm Hg increase 

in systolic BP. After the inclusion of cardiorespiratory fitness as a further confounder, these 

associations were not altered (Supplementary Table 6, Table, Supplemental Digital Content 

1). Back muscle endurance was not associated with diastolic BP in unadjusted, BMI adjusted 

(Table 5) and the PWC170 and BMI-adjusted models (data not shown). 
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Back muscle endurance was inversely associated with HOMA-IR (coefficient (log HOMA-

IR): -0.002, p<0.001) (Table 5 and Supplementary Table 7, Table, Supplemental Digital 

Content 1). With BMI as a confounder in the model, back muscle endurance remained 

negatively associated with HOMA-IR (coefficient (log HOMA-IR): -0.001, p<0.001). A 1 

SD (14 years: 62.83 seconds; 17 years: 56.67 seconds) increase in back muscle endurance 

equated to a 6% and 5.5% decrease in HOMA-IR at 14 and 17 years, respectively. 

 

Back muscle endurance was inversely associated with triglycerides (coefficient (log 

triglycerides): -0.0009, p<0.001) and remained significant after the inclusion of BMI as a 

confounder (coefficient (log triglycerides): -0.0004, p=0.007) (Table 5 and Supplementary 

Table 8, Table, Supplemental Digital Content 1). A 1 SD (14 years: 62.83 seconds; 17 years: 

56.67 seconds) increase in back muscle endurance equated to a 2.5% and 2.2% decrease in 

triglycerides at 14 and 17 years, respectively. Back muscle endurance was positively 

associated with HDL-C (coefficient: 0.0005, p<0.001), but this was no longer significant 

after the inclusion of BMI as a confounder (coefficient: 0.0001, p=0.209) (Table 5). Back 

muscle endurance was negatively associated with hs-CRP (coefficient (log hs-CRP): -0.003, 

p<0.001) and the relationship remained significant after inclusion of BMI in the model 

(coefficient (log hs-CRP): -0.001, p=0.018) (Table 5 and Supplementary Table 9, Table, 

Supplemental Digital Content 1). A 1 SD (14 years: 62.83 seconds; 17 years: 56.67 seconds) 

increase in back muscle endurance equated to a 6% and 5.5% decrease in hs-CRP at 14 and 

17 years, respectively.  

DISCUSSION  

To our knowledge, this the first study examining the relationship between measures of 

muscle performance i.e. muscle strength and endurance, with blood pressure and other 

cardio-metabolic risk factors from childhood to late adolescence. The study has shown 
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unexpectedly, handgrip strength was positively associated with systolic BP and attenuated 

over time. The association between handgrip strength and systolic BP was stronger in males 

than females, with a non-significant association at 17 years of age in females. More 

predictably, handgrip strength and back muscle endurance were inversely associated with 

HOMA-IR and hs-CRP after the inclusion of BMI as a confounder. Additionally, back 

muscle endurance was inversely associated with plasma triglycerides.  

 

Previous paediatric studies investigating the effects of muscle strength on cardiovascular risk 

factors have examined cardio-metabolic risk factors as components of a clustered metabolic 

risk score. These studies have shown an inverse relationship between muscle strength and 

clustered metabolic risk (23-25). Artero et al. (23) used a muscular fitness score computed 

using the standardized values of handgrip strength and standing long jump (separately for 

males and females) and showed a negative association with a clustered metabolic risk score 

which included systolic BP, HOMA-IR, total cholesterol/HDL-cholesterol and triglycerides 

in 12 to 17 year old participants of the HELENA study. In addition, the ACFIES study 

observed that poorer handgrip strength were associated with a worse cardio-metabolic risk in 

Columbian schoolchildren, aged 8-14 years (26). However, the aforementioned studies did 

not examine BP and related cardio-metabolic risk factors individually. More recently, Zaqout 

et al. (27) examined the longitudinal associations between individual components of physical 

fitness (cardiorespiratory fitness, handgrip strength and lower limb strength and speed/agility) 

and the combined sum of these individual physical fitness components (using z-scores) with 

metabolic risk markers, in 6-11 year old European participants in the IDEFICS study. No 

longitudinal associations were observed between handgrip strength or the sum of physical 

fitness with clustered metabolic risk (sum of age and sex specific z-scores of waist 

circumference, systolic BP, diastolic BP, triglycerides, HDL-C and HOMA-IR) or with 
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systolic BP, HOMA-IR and blood lipids. Lower limb strength (measured by standing long 

jump) showed longitudinal and inverse associations with clustered metabolic risk, blood 

lipids and HOMA-IR but there were no associations with systolic BP. No studies to date have 

examined BP or related cardio-metabolic risk factors individually or longitudinally from 

childhood through to adolescence where significant maturational changes occur. 

Additionally, no studies have examined the association between isometric endurance of the 

trunk extensor muscles and the individual risk factors.  

Adult population studies present conflicting results with muscle fitness and BP. Sayer et al. 

(28) have shown a lower handgrip strength was associated with higher systolic BP in a 

population based sample of 2677 men and women aged 59 – 73 years from the Hertfordshire 

study. In that study, a 1 SD decrease in handgrip strength associated with high BP (OR 1.13 

p= 0.004). Vaara et al (29) found that muscle endurance was inversely associated with both 

systolic and diastolic BP in young men (25±years). The younger age of our participants and 

our use of dynamic assessment of muscle endurance may explain the observational 

differences seen in our study. In contrast, Viitasalo et al. (30) found positive correlations 

between muscle strength of the trunk extensor muscles with systolic BP in young healthy 

men (mean age 19.7 years). Takaema et al. (31) reported higher levels of handgrip strength 

associated with higher resting BP in a large population based sample of Japanese men and 

women (aged 66 years).  

 

In contrast to our study of muscle strength and muscle endurance per se, a study of self-

reported aerobic exercise in young adults (<30 years), showed an association with lower 

diastolic BP and higher pulse pressure (32). Aerobic physical activity was self-reported via 

questionnaire (International Physical Activity Questionnaire, 2002) and individuals who 

reported regular resistance training were excluded. There were no differences in central or 
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brachial systolic BP between exercising and non-active individuals. This study contrasts with 

our results, as we found a positive association between handgrip strength and back muscle 

endurance with systolic BP, even after adjustment for cardiorespiratory fitness. Additionally, 

we observed no associations between muscle strength or muscle endurance with diastolic BP 

in our young population. Discrepancies between the two studies are likely due to the different 

measurement methods, types of physical fitness assessed, and different ages of the 

populations. 

Population data are in contrast to resistance training studies which have consistently shown 

improvements in handgrip strength are associated with reductions in systolic BP (33-35). 

Owen et al. (36) suggested handgrip exercise might increase forearm blood flow and/or 

improve local flow-mediated dilation. Enhanced brachial FMD response as well as 

endothelium dependent vasodilatation were observed after isometric handgrip training in 

older men, elderly hypertensives and chronic heart failure subjects (37). Similarly, forearm 

blood flow was increased with regular handgrip exercise training in young men and in middle 

aged men (38). However, it is important to note various factors, such as exercise intensity, 

different populations and exercise modality can have differing influences on BP.  

 

The lack of effect of muscle strength and muscle endurance on diastolic BP in our study is of 

interest given that systolic BP and more predominantly diastolic BP in young adults are 

predictive of subsequent cardiovascular events and mortality (39). Our findings of a positive 

relationship between handgrip strength and back muscle endurance with systolic BP across 

periods of the survey may be related to the fact that both muscle strength and BP increase in 

magnitude during adolescence. Nevertheless, we saw similar associations cross-sectionally at 

each time point in subjects that were predominantly pre-pubertal at 10 years to post-puberty 

at 17 years. Thus it is possible that changes in androgen levels related to puberty influenced 
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muscle mass and strength (40, 41) and thereby the positive association with systolic BP (42). 

Increases in testosterone could increase muscle mass and may have an additive effect on BP, 

although the associations in our study were seen in females as well as males making this 

explanation unlikely. This critical period of growth in the Raine cohort is associated with 

other hormonal changes such as growth hormone, which might also contribute to parallel 

changes in muscle strength (12) and left ventricular mass and contractility (43, 44) and hence 

BP. The association between handgrip strength and back muscle endurance with systolic BP 

in our study could be explained by an increase in arterial stiffness and/or vascular 

hypertrophy with a higher degree of muscle fitness in childhood and adolescents.  

 

In accordance with our findings with HOMA-IR and triglycerides, adult studies have 

consistently shown inverse associations between different measures of muscle strength and 

measures of insulin resistance and lipids (45, 46). Vaara et al. (29) showed that muscular 

endurance (sit-ups, push-ups and repeated squats) was inversely associated with blood 

triglycerides and glucose in young men. Increased muscle mass is the most likely explanation 

for the effects on glucose homeostasis and lipids which appear to persist through childhood 

and adolescence into adult life. Skeletal muscle is one of the primary tissue sites for glucose 

and lipid metabolism and is considered a determinant of resting metabolic rate. Thus changes 

in muscle mass may influence multiple cardio-metabolic risk factors (47).  

 

The results of our study are likely to be generalizable as Raine study participants were 

derived from a cohort broadly representative of the general population and were not a 

selected group of athletes. Strengths of our study include serial measures of detailed 

phenotypes in a large cohort of population-based children and adolescents, allowing the study 

of the evolution of associations between different aspects of muscle function and a panel of 
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cardio-metabolic risk factors. Limitations include the use of BMI in the analyses which does 

not distinguish between fat and lean mass. In addition, not all measures were repeated at 

every time point. BP recordings varied across the three time points in terms of posture and 

number of measurements obtained. This could have influenced the associations observed. 

Relationships with home BP or 24-hour ambulatory monitoring would be of further interest.    

In conclusion, we have demonstrated that paradoxically handgrip strength and back muscle 

endurance were positively associated with higher systolic BP in children and adolescents 

despite inverse associations with HOMA-IR, lipids and hs-CRP. These BP findings warrant 

replication in other populations and further evaluation to the possible underlying 

mechanisms. In view of the fact grip strength increases from childhood through to 20-30 

years of age (48, 49), it will be of particular interest to ascertain whether the association 

between handgrip strength and back muscle endurance, with systolic BP, are maintained or 

reversed in later adulthood. Equally important will be to determine the optimal period to gain 

a substantial benefit from resistance strength training for the early prevention of Type 2 

diabetes, dyslipidemia and hypertension. 
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Table 1. Characteristics of the participants by age and sex  

 Males Females 

 10 years 

n=849 

14 years 

n=815 

17 years 

n=628 

10 years 

n=783 

14 years 

n=774 

17 years 

n=616 

Height (cm) 143.69  

(143.25, 144.14) 

166.27 

(165.65, 166.88) 

178.3 

(177.74, 178.88) 

143.64 

(143.20, 144.09) 

162.02 

(161.58, 162.46) 

165.90 

(165.39, 166.41) 

Weight (kg) 38.57 

(38.00, 39.14) 

58.62 (57.66, 

59.59) 

72.29 

(71.13, 73.41) 

38.71 

(38.13, 39.31) 

56.67 

(55.82, 57.52) 

63.66 

(62.61, 64.71) 

Body mass index (kg/m2) 20.97 

(19.86, 21.18) 

21.06 

(20.78, 21.35) 

22.69 

(22.36, 23.02) 

 21.53 

(21.24, 21.83) 

23.12 

(22.76, 23.48) 

Waist circumference (cm)  76.31 

(75.52, 77.09) 

80.53 

(79.67, 81.04) 

 74.60 

(73.88, 75.31) 

77.55 

(76.63, 78.47) 

Handgrip strength (kg) 

 

Back muscle endurance (sec) 

32.02 

(31.60, 32.45) 

57.00 

(55.98, 58.02) 

78.07 

(73.86, 82.28) 

81.18 

(79.93, 82.43) 

102.82 

(98.55, 107.10) 

29.01 

(28.59, 29.43) 

46.29 

(45.64, 46.93) 

85.82 

(81.26, 90.39) 

49.74 

(48.95, 50.53) 

98.99 

(94.03, 103.95) 

Cardiorespiratory fitness 

PWC170 (watts) 

 124.35 

(122.14, 126.56) 

154.39 

(151.08, 157.69) 

 97.20 

(95.79, 98.63) 

99.62 

(97.60, 101.34) 

Systolic BP (mm Hg) 106.9 

(106.2, 107.5) 

113.84 

(113.1 114.6) 

117.82 

(117.07, 118.57) 

106.22 

(105.54, 106.89) 

108.80 

(108.15, 109.46) 

108.66 

(107.94, 109.38) 

Diastolic BP (mm Hg) 56.7 

(56.2, 57.1) 

58.6 

(58.0, 59.0) 

58.2 

(57.7, 58.7) 

56.8 

(56.3, 57.2) 

59.3 

(58.8, 59.7) 

59.5 

(58.9, 60.0) 

Glucose (mmol)  4.72 (4.64, 4.92) 4.65  

(4.82, 4.92) 

 4.88  

(4.68, 4.76) 

4.87  

(4.61, 4.70) 

Insulin (mU/L)  12.29 

(11.29, 13.30) 

8.96  

(8.36, 9.57) 

 12.71 

(12.06, 13.36) 

9.91  

(8.93, 10.89) 

HOMA-IR*  0.65 

(0.61, 0.70) 

0.50 

(0.46, 0.55) 

 0.72 

(0.68, 0.77) 

0.52 

(0.47, 0.56) 

Triglycerides (mmol)*  0.22 

(0.20, 0.26) 

0.27 

(0.24, 0.30 

 0.19  

(0.17, 0.22) 

0.21 

(0.18, 0.24) 
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Total cholesterol  (mmol)  4.06  

(4.01, 4.11) 

3.96  

(3.90, 4.01) 

 4.28  

(4.23, 4.34) 

3.96  

(4.24, 4.36) 

HDL cholesterol (mmol)  1.35  

(1.33, 1.37) 

1.20  

(1.18, 1.22) 

 1.43  

(1.41, 1.45)  

1.38  

(1.36, 1.41) 

LDL cholesterol (mmol)  2.25  

(2.21, 2.30) 

2.25  

(2.20, 2.31) 

 2.38  

(2.36, 2.43) 

2.44  

(2.38, 2.49) 

hs-CRP (mg/L)*  0.61 

(0.52, 0.71) 

0.65 

(0.55, 0.76) 

 0.54 

(0.42, 0.68) 

0.74 

(0.64, 0.84) 

 

Descriptive characteristics are presented as means, geometric means and 95% CI. HDL, high-density lipoprotein; LDL, low-density lipoprotein; 

hs-CRP, high sensitivity C-reactive protein; HOMA-IR, homeostatic model assessment - insulin resistance; BP, blood pressure. BP was measured 

in the seated position at ages 10 and 14 years, and in the supine position at 17 years. 

*Variables were log transformed.
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Table 2. Handgrip strength associations with blood pressure generated from a 

longitudinal linear mixed model  
 

 Unadjusted model BMI adjusted model 

Systolic BP 

 Coefficient 

(95% CI) 

P value Coefficient  

(95% CI) 

P value 

Females      

10 years 0.29 

(0.21, 0.37) 

<0.001 0.18 

(0.11, 0.26) 

<0.001 

14 years 0.15 

(0.09, 0.20) 

<0.001 0.08 

(0.02, 0.13) 

0.007 

17 years  0.07 

(0.01, 0.12) 

0.016 -0.001 

(-0.06, 0.05) 

0.960 

Males      

10 years 0.35 

(0.28, 0.42) 

<0.001 0.28 

(0.20, 0.35) 

<0.001 

14 years 0.21 

(0.17, 0.25) 

<0.001 0.17 

(0.13, 0.20) 

<0.001 

17 years  0.13 

(0.09, 0.17) 

<0.001 0.09 

(0.05, 0.13) 

<0.001 

 

Diastolic BP 

All years  -0.006 

(-0.02, 0.01) 

0.558 -0.13 

(-0.03, 0.01) 

0.196 

 

N= 4425 observations from 1916 participants 

 

Coefficients reported were generated from longitudinal linear mixed models (shown in 

Supplementary tables).  
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Table 3. Handgrip strength associations with HOMA-IR, triglycerides and hs-CRP 

generated from a longitudinal linear mixed model or random effects tobit model 

 

 Unadjusted BMI adjusted 

Log HOMA-IR   

Coefficient 

(95% CI) 

0.003 

(0.0006, 0.005) 

-0.003 

(-0.005, -0.002) 

P value  0.013 0.001 

Log Triglycerides    

Coefficient 

(95% CI) 

0.002 

(0.0006, 0.003) 

-0.0007 

(-0.002, 0.0006) 

P value  0.006 0.302 

Log hs-CRP*   

Coefficient 

(95% CI) 

0.005 

(0.001, 0.01) 

-0.006 

(-0.01, -0.002) 

P value  0.013 0.007 

 

  N= 4425 observations from 1916 participants 

*N= 1967 observations from 1363 participants as participants with values >10 were excluded 

 

Coefficients reported were generated from longitudinal linear mixed models or random 

effects tobit model (shown in Supplementary tables).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 

 

Table 4. Handgrip strength associations with HDL-C generated from a longitudinal 

linear mixed model  

 

 

 

Unadjusted model BMI adjusted model 

 Coefficient  

(95% CI) 

P value Coefficient 

(95% CI) 

P value 

14 years -0.004 

(-0.006, -0.003) 

<0.001 -0.003 

(-0.004, -0.002) 

<0.001 

17 years  -0.002 

(-0.003, -0.0007) 

0.002 -0.0002 

(-0.001, 0.001) 

0.796 

 

N= 2396 observations from 1506 participants 

 

Coefficients reported were generated from longitudinal linear mixed models (shown in 

Supplementary tables).  
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Table 5. Longitudinal linear models of back endurance with cardio-metabolic outcomes 

generated from a longitudinal linear mixed model or random effects tobit model 

 

 

  N= 2325 observations from 1491 participants 

^N= 2712 observations from 1687 participants  

*N= 1895 observations from 1337 participants as participants with values >10 were excluded 

 

Coefficients reported were generated from longitudinal linear mixed models or random 

effects tobit model (shown in Supplementary tables).  

 

 

 

 

 

 

 Unadjusted BMI adjusted 

Systolic BP^ 

Coefficient 

(95% CI) 

 

-0.001 

(-0.007, 0.005) 

 

0.01 

(0.004, 0.02) 

P value  

Diastolic BP^ 
Coefficient 

(95% CI) 

0.723 

 

0.002 

(-0.002, 0.006) 

0.002 

 

0.002 

(-0.002, 0.007) 

P value  

Log HOMA-IR  
Coefficient 

(95% CI) 

0.384 
 

-0.002 

(-0.002, -0.001) 

0.285 

 

-0.001 

(-0.001, -0.0006) 

P value  

Log Triglycerides 

Coefficient 

(95% CI) 

<0.001 

 

-0.0009 

(-0.001, -0.0006) 

<0.001 

 

-0.0004 

(-0.0007, -0.0001) 

P value  

HDL-C 

Coefficient 

(95% CI) 

<0.001 

 

0.0005 

(0.0003, 0.0007) 

0.007 

 

0.0001 

(-0.00007, 0.0003) 

P value  

Log hs-CRP* 

Coefficient 

(95% CI) 

<0.001 

 

-0.003 

(-0.004, -0.002) 

0.209 

 

-0.001 

(-0.002, -0.0002) 

P value  <0.001 0.018 
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Figure 1. Flow diagram of Raine Study participants attending the 10, 14 and 17 year 

follow-up with complete handgrip strength and back muscle endurance data 

 

Figure 2. Handgrip strength and systolic BP at 10, 14 and 17 years after adjustment for 

BMI (mean and 95% CI’s represented) generated from longitudinal linear mixed 

models 

 

Figure 3. Back muscle endurance and systolic BP at 14 and 17 years after adjustment 

for BMI (mean and 95% CI’s represented) generated from longitudinal linear mixed 

models 

 

 

Supplemental Digital Content 1. Tables that illustrate longitudinal linear mixed models of 

handgrip strength or back endurance with the individual cardio-metabolic risk factors.pdf 

 

Supplemental Digital Content 2. Figures that illustrate handgrip strength or back muscle 

endurance and systolic BP in unadjusted models.pdf 
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Figure 1. Flow diagram of Raine Study participants attending the 10, 14 and 17 year follow-up with complete handgrip strength and 

back muscle endurance data 
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Figure 2. Handgrip strength and systolic BP at 10, 14 and 17 years after adjustment for 

BMI (mean and 95% CI’s represented) generated from longitudinal linear mixed 

models 
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Figure 3. Back muscle endurance and systolic BP at 14 and 17 years after adjustment 

for BMI (mean and 95% CI’s represented) generated from longitudinal linear mixed 

models 
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Supplementary Table 1a. Raw handgrip strength with systolic BP  

 Unadjusted for adiposity  Adjusted for adiposity 

Systolic BP Coefficient P Value 95% CI Coefficient P value 95% CI 

Year (ref 10)         

14 1.80 0.154 -0.67 4.27 0.04 0.977 -2.42 2.50 

17 2.71 0.031 0.25 5.17 -0.44 0.726 -2.93 2.04 

         

Handgrip strength 0.30 <0.001 0.25 5.17 0.22 <0.001 0.15 0.29 

         

Year*handgrip 

strength 

        

14 -0.08 0.026 -0.15 -0.01 -0.04 0.282 -0.12 0.03 

17 -0.11 0.001 -0.18 -0.04 -0.05 0.124 -0.12 0.01 

         

Sex (ref females) 1.58 <0.001 0.84 2.33 2.22 <0.001 1.49 2.95 

BMI N/A N/A N/A N/A 0.52 <0.001 0.44 0.60 

Constant 97.12 <0.001 95.02 99.22 89.55 <0.001 87.17 91.93 

         

AIC  31919.38    31768.82    

 

N= 4425 observations from 1916 participants 
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Supplementary Table 1b. Height adjusted handgrip strength with systolic BP  
 

 Unadjusted for adiposity  Adjusted for adiposity 

Systolic BP 

 

Year (ref 10) 

Coefficient P Value 95% CI Coefficient P value 95% CI 

     

14 -0.22 0.884 -3.25 2.80 -1.37 0.371 -4.36 1.63 

17 0.15 0.92 -2.88 3.18 -2.12 0.168 -5.13 0.89 

         

Handgrip strength 0.14 0.001 0.05 0.22 0.06 0.172 -0.02 0.14 

         

Year*handgrip 

strength 

        

14 0.03 0.471 -0.05 0.12 0.05 0.198 -0.03 0.14 

17 0.02 0.619 -0.06 0.10 0.06 0.161 -0.02 0.14 

         

Sex (ref females) 3.34 <0.001 2.60 4.07 3.90 <0.001 3.20 4.61 

BMI N/A N/A N/A N/A 0.60 <0.001 0.52 0.68 

Constant 101.34 <0.001 98.86 103.82 92.29 <0.001 0.52 0.68 

         

AIC  32130.51    31939.96    

 

N= 4425 observations from 1916 participants 
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Supplementary Table 1c. Weight adjusted handgrip strength with systolic BP  
 

 Unadjusted for adiposity  Adjusted for adiposity 

Systolic BP 

 

Year (ref 10) 

Coefficient P Value 95% CI Coefficient P value 95% CI 

     

14 -3.15 0.036 -6.10 -0.20 -6.03 <0.001 -8.93 -3.13 

17 -3.12 0.035 -6.03 -0.21 -7.56 <0.001 -10.44 -4.68 

         

Handgrip strength 0.01 0.806 -0.07 0.09 0.06 0.132 -0.02 0.14 

         

Year*handgrip 

strength 

        

14 0.14 0.001 0.06 0.22 0.13 0.001 0.05 0.22 

17 0.14 0.001 0.06 0.23 0.13 0.002 0.05 0.21 

         

Sex (ref females) 2.94 <0.001 2.16 3.71 2.72 <0.001 2.00 3.45 

BMI N/A N/A N/A N/A 0.77 <0.001 0.69 0.85 

Constant 105.38 <0.001 2.16 3.71 89.62 <0.001 86.72 92.52 

         

AIC  32137.14    31809.22    

 

N= 4425 observations from 1916 participants 
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Supplementary Table 2: Longitudinal linear mixed model for the association between handgrip strength and systolic BP over time  

 Unadjusted model BMI adjusted model  

 

BMI and PWC170 adjusted model 

 Coefficient  

(95% CI) 

P value Coefficient  

(95% CI) 

P value Coefficient  

(95% CI) 

P value 

Year       

      14 yrs 3.35 

(0.70, 6.00) 

0.013 1.99 

(-0.62, 4.61) 

0.135 Reference  

group 

Reference  

group 

      17 yrs  6.69 

(3.87, 9.52) 

<0.001 4.52 

(1.72, 7.32) 

0.002 3.70 

(1.25, 6.14) 

0.003 

Sex Male  -2.23 

(-4.22, -0.22) 

0.030 -2.86 

(-4.82, -0.90) 

0.004 -0.34 

(-3.67, 2.99) 

0.842 

Year*sex        

          14 yrs
 
 2.24 

(0.65, 3.83) 

0.006 2.19 

(0.63, 3.75) 

0.006 Reference  

group 

Reference  

group 

          17 yrs 4.40 

(2.08, 6.72) 

<0.001 4.95 

(2.68, 7.22) 

<0.001 3.25 

(1.49, 5.00) 

<0.001 

Handgrip strength  0.29 

(0.21, 0.37) 

<0.001 0.18 

(0.11, 0.26) 

<0.001 0.12 

(0.06, 0.19) 

<0.001 

Year*handgrip strength        

          14 yrs  -0.14 

(-0.21, -0.07) 

<0.001 -0.11 

(-0.18, -0.04) 

0.003 Reference 

group 

Reference 

group 

          17 yrs -0.22 

(-0.29, -0.15) 

<0.001 -0.19 

(-0.26, -0.11) 

<0.001 -0.10 

(-0.15, -0.06) 

<0.001 

Sex*handgrip strength        

         Males  0.06 

(-0.0004, 0.12) 

0.051 0.09 

(0.03, 0.15) 

0.002 0.09 

(0.02, 0.15) 

0.008 

BMI N/A N/A 0.58 

(0.50, 0.67) 

<0.001 0.50 

(0.40, 0.59) 

<0.001 
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PWC170 N/A N/A N/A N/A -0.02 

(-0.03, -0.007) 

0.003 

Constant 90.61 

(88.08, 93.13) 

<0.001 90.61 

(88.08, 93.13) 

<0.001 94.09 

(90.79, 97.40) 

97.40 

 

N (unadjusted and BMI adjusted model) = 4425 observations from 1916 participants; (BMI and PWC170 adjusted model) =2617 observations 

from 1649 participants  
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Supplementary Table 3: Longitudinal linear mixed model for the association between handgrip strength and log HOMA-IR over time  

 Unadjusted model BMI adjusted model 

 Coefficient  

(95% CI) 

P value Coefficient  

(95% CI) 

P value 

Year      

      17 yrs  -0.38 

(-0.44, -0.31) 

<0.001 -0.46 

(-0.52, -0.40) 

<0.001 

Sex Male -0.12 

(-0.19, -0.05) 

0.001 -0.01 

(0.08, -0.05) 

0.663 

Year*sex      

      17 yrs
 
 -0.06 

(-0.16, 0.04) 

0.221 0.06 

(-0.03, 0.15) 

0.210 

Handgrip strength  0.003 

(0.0006, 0.005) 

0.013 -0.003 

(-0.005, -0.002) 

0.001 

BMI N/A N/A 0.06 

(0.05, 0.07) 

<0.001 

Constant 0.72 

(0.61, 0.83) 

<0.001 -0.39 

(-0.53, -0.24) 

<0.001 

 

N= 2392 observations from 1505 participants 
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Supplementary Table 4: Longitudinal linear mixed model for the association between handgrip strength and HDL-C over time  

 Unadjusted model BMI adjusted model 

 Coefficient  

(95% CI) 

P value Coefficient  

(95% CI) 

P value 

Year      

      17 yrs  -0.15 

(-0.22, -0.08) 

<0.001 -0.12 

(-0.18, -0.05) 

0.001 

Sex Male -0.02 

(-0.06, 0.01) 

0.181 -0.05 

(-0.09, -0.02) 

0.001 

Year*sex      

     17 yrs
 
 -0.11 

(-0.15, -0.06) 

<0.001 -0.14 

(-0.18, -0.02) 

<0.001 

Handgrip strength  -0.004 

(-0.006, -0.003) 

<0.001 -0.003 

(-0.004, -0.002) 

<0.001 

Year*handgrip strength      

    17 yrs 0.003 

(0.001, 0.004) 

<0.001 0.003 

(0.001, 0.004) 

<0.001 

BMI N/A N/A -0.02 

(-0.02, -0.01) 

<0.001 

Constant 1.64 

(1.58, 1.70) 

<0.001 2.02 

(1.94, 2.09) 

<0.001 

 

N= 2396 observations from 1506 participants 
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Supplementary Table 5: Random effects tobit model for the association between handgrip strength and log hs-CRP over time  

 Unadjusted model BMI adjusted model 

 Coefficient  

(95% CI) 

P value Coefficient  

(95% CI) 

P value 

Year      

      17 yrs  0.43 

(0.30, 0.56) 

<0.001 0.35 

(0.23, 0.48) 

<0.001 

Sex Male 0.06 

(-0.09, 0.22) 

0.439 0.22 

(0.08, 0.37) 

0.003 

Year*sex      

      17 yrs
 
 -0.73 

(-0.94, -0.53) 

<0.001 -0.50 

(-0.70, -0.31) 

<0.001 

Handgrip strength  0.005 

(0.001, 0.01) 

0.013 -0.006 

(-0.01, -0.002) 

0.007 

BMI N/A N/A 0.11 

(0.10, 0.13) 

<0.001 

Constant -0.84 

(-1.06, -0.62) 

<0.001 -2.89 

(-3.18, -2.59) 

<0.001 

 

N= 1967 observations from 1363 participants 
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Supplementary Table 6: Longitudinal linear mixed model for the association between back muscle endurance and systolic BP over time  

 Unadjusted model BMI adjusted model BMI and PWC170 adjusted model 

 Coefficient  

(95% CI) 

P value Coefficient  

(95% CI) 

P value Coefficient  

(95% CI) 

P value 

Year*        

      17 yrs  -0.34 

(-1.17, 0.50) 

0.429 -1.34 

(-2.18, -0.51) 

0.002 -1.40 

(-2.27, -0.52) 

0.002 

Sex Male 4.99 

(4.05, 5.95) 

<0.001 5.39 

(4.47, 6.31) 

<0.001 5.55 

(4.54, 6.57) 

<0.001 

Year*sex        

      17 yrs
 
 4.33 

(3.17, 5.49) 

<0.001 4.07 

(2.93, 5.21) 

<0.001 3.90 

(2.67, 5.14) 

<0.001 

Back muscle endurance   -0.001 

(-0.007, 0.005) 

0.723 0.01 

(0.004, 0.02) 

0.002 0.01 

(0.003, 0.02) 

0.003 

BMI N/A N/A 0.61 

(0.52, 0.71) 

<0.001 0.62 

(0.52, 0.72) 

<0.001 

PWC170 N/A N/A N/A N/A 0.003 

(-0.01, 0.02) 

0.654 

Constant 108.86 

(107.99, 109.72) 

<0.001 94.69 

(92.32, 97.07) 

<0.001 94.21 

(91.66, 96.76) 

<0.001 

 

N (unadjusted and BMI adjusted model) = 2712 observations from 1687 participants; (BMI and PWC170 adjusted model) =2557 observations 

from 1638 participants   
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Supplementary Table 7: Longitudinal linear mixed model for the association between back muscle endurance and log HOMA-IR over 

time  

 Unadjusted model BMI adjusted model 

 Coefficient  

(95% CI) 

P value Coefficient  

(95% CI) 

P value 

Year     

      17 yrs  -0.36 

(-0.43, -0.30) 

<0.001 -0.46 

(-0.52, -0.39) 

<0.001 

Sex Male  -0.10 

(-0.17, -0.04) 

0.002 -0.06 

(-0.12, -0.004) 

0.036 

Year*sex      

      17 yrs
 
 0.04 

(-0.05, 0.12) 

0.403 0.01 

(-0.07, 0.10) 

0.768 

Back muscle endurance   -0.002 

(-0.002, -0.001) 

<0.001 -0.001 

(-0.001, -0.0006) 

<0.001 

BMI N/A N/A 0.06 

(0.05, 0.10) 

<0.001 

Constant 1.02 

(0.97,  1.08) 

<0.001 -0.29 

(-0.44, -0.14) 

<0.001 

 

N= 2325 observations from 1491 participants 
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Supplementary Table 8: Longitudinal linear mixed model for the association between back muscle endurance and log triglycerides over 

time  

 Unadjusted model BMI adjusted model 

 Coefficient  

(95% CI) 

P value Coefficient  

(95% CI) 

P value 

Year     

      17 yrs  -0.0001 

(-0.04, 0.04) 

0.996 -0.04 

(-0.08, -0.004) 

0.033 

Sex Male  -0.09 

(-0.13, -0.04) 

<0.001 -0.07 

(-0.11, -0.03) 

0.001 

Year*sex      

      17 yrs
 
 0.10 

(0.04, 0.15) 

<0.002 0.09 

(0.03, 0.14) 

0.002 

Back muscle endurance   -0.0009 

(-0.001, -0.0006) 

<0.001 -0.0004 

(-0.0007, -0.0001) 

0.007 

BMI N/A N/A 0.03 

(0.02, 0.03) 

<0.001 

Constant 0.03 

(-0.007, 0.07) 

0.112 -0.58 

(-0.69, -0.47) 

<0.001 

 

N= 2325 observations from 1491 participants 
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Supplementary Table 9: Random effects tobit model for the association between back muscle endurance and log hs-CRP over time  

 Unadjusted model BMI adjusted model 

 Coefficient  

(95% CI) 

P value Coefficient  

(95% CI) 

P value 

Year      

      17 yrs  0.45 

(0.32, 0.59) 

<0.001 0.34 

(0.21, 0.46) 

<0.001 

Sex Male 0.10 

(-0.04, 0.25) 

0.169 0.15 

(0.02, 0.29) 

0.029 

Year*sex      

      17 yrs
 
 -0.58 

(-0.76, -0.39) 

<0.001 -0.60 

(-0.78, -0.43) 

<0.001 

Back muscle endurance   -0.003 

(-0.004, -0.002) 

<0.001 -0.001 

(-0.002, -0.0002) 

0.018 

BMI N/A N/A 0.10 

(0.09, 0.12) 

<0.001 

Constant -0.31 

(-0.44, -0.18) 

<0.001 -2.81 

(-3.14, -2.49) 

<0.001 

 

N= 1895 observations from 1337 participants 
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Supplementary Figure 1. Handgrip strength and systolic BP at 10, 14 and 17 years 

(mean and 95% CI’s represented) generated from longitudinal linear mixed models 
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Supplementary Figure 2. Back muscle endurance and systolic BP at 14 and 17 years 

(mean and 95% CI’s represented) generated from longitudinal linear mixed models 
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Supplementary Figure 1. Handgrip strength and systolic BP at 10, 14 and 17 years 

(mean and 95% CI’s represented) generated from longitudinal linear mixed models 

 

Supplementary Figure 2. Back muscle endurance and systolic BP at 14 and 17 years 

(mean and 95% CI’s represented) generated from longitudinal linear mixed models 
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