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CHARACTERIZATION OF CEMENT-MODIFIED BASE COURSE 
MATERIALS FOR WESTERN AUSTRALIA ROADS 

 
 

P. Jitsangiam, 1 H. R. Nikraz2, K.Siripun3 
 

ABSTRACT: The cement-modified soil (CMS) is described as a soil that has been treated with a relatively small amount of 
cement in order to improve its engineering properties so that it is suitable for construction. This soil stabilization technique is 
employed for the typical base course material in Western Australia named “Hydrated Cement Treated Crushed Rock Base 
(HCTCRB)”. In present, the mechanistic approach of pavement design and analysis become more important and widely used 
internationally but HCTCRB has been created from the empirical approach empirical approach point of view. In order to be 
able to use this material effectively relating to the new pavement design method, its shear strength, resilient modulus, and 
permanent deformation characteristics need to be more investigated and deeply understood. This study aimed to perform the 
results of the laboratory testing which was carried out to assess the mechanical characteristics of HCTCRB. Our findings 
show that HCTCRB can be characterized as a relevant cohesive granular material with significant shear strength parameters. 
Based on the laboratory results, the suitable models of the resilient modulus characteristics and the permanent deformation 
characteristics were determined and introduced 
 
Keywords: Cement-Modified Soil (CMS), Cement modified base course material, Pavement, Repeated Loading Triaxial 
(RLT) test, Resilient modulus, Permanent deformation 
 
 
INTRODUCTION 
 

The cement-modified materials as a base course 
aggregate for Western Australia roads is crushed rock with 
the addition of 2% cement, described as Hydrated 
Cemented Treated Crushed Rock Base (HCTCRB).The 
main function of the base course is to reduce the vertical 
compressive stress induced by traffic, in the subbase and 
the subgrade, to a stress level at which no unacceptable 
deformation will take place in these layers. Knowledge of 
HCTCRB shear strength, resilient modulus, and permanent 
deformation characteristics is important because if these 
characteristics are well understood, pavement analysis and 
design can be more reliable than in the past where design 
was empirically based.  

 
Currently most road and highway agencies rely on the 

California Bearing Ratio (CBR) to characterize pavement 
materials for design of pavements. CBR, however, is a 
static parameter which has been corrected empirically with 
response of the pavement materials under dynamic loads of 
moving vehicles. The permanent deformation of pavement 
materials is manifested as rutting and shoving, the visible 
damage on the road coming from excess deformation of the 
pavement. This is caused by the pavement material having 
insufficient stability to cope with the prevailing loading and 
environmental conditions. Consequently, clearly 
understanding shear strength, resilient modulus and 
permanent deformation characteristics of HCTCRB is 
important for improved reliability in design. 

 

This study reports results of tests for shear strength 
parameters, the resilient modulus, and the permanent 
deformation of HCTCRB and to report on its characteristics 
so that a better understanding of the beneficial uses of the 
material can be gained 

 
MATERIALS 

 
Hydrated Cemented Treated Crushed Rock Base 
(HCTCRB) 

 
Hydrated cemented treated crushed rock base 

(HCTCRB) is manufactured by blending 2 % GP or 
Portland cement, which shall be the General Purpose (GP) 
or Portland cement (Australian Standard AS 3972-1997 
1997), with standard crushed rock base (MAIN ROADS 
Western Australia 2003). HCTCRB is mixed and stockpiled 
in the range of -1.0% to +2.0% of the optimum moisture 
content of the untreated crushed rock base as obtained by 
WA 133.2(MAIN ROADS Western Australia 1997). 
 
Crushed rock 
 

The crushed rock, used in this study, was obtained from 
a local Gosnells Quarry. Crushed rock samples were 
collected randomly from a stockpile area and kept in sealed 
plastic containers. Samples were re-checked, at the 
Department of Civil Engineering, Curtin University of 
Technology, in the laboratory as to their important 
properties in accordance with the Crushed Rock Base (CRB) 
specification (MAIN ROADS Western Australia 2003).  

 
Figure1 shows the particle size distribution of the 

crushed rock of this study corresponded to the average 
particle size of the base course specifications. Comparisons 
of important properties and specifications were made as 
shown in Table 1. 
 
Cement 

 
The cement used in this study was the bagged type GP 

cement product of Cockburn  Cement(COCKBURN 
CEMENT 2006) complying with Australian 
Standard(Australian Standard 1997). 

1 Lecturer, Department of Civil Engineering, Curtin University 
of Technology, P.O. Box U1987, Perth, WA, Australia 9845; PH 
(61) 8 9266-4527; FAX (61) 9266-2681; (Corresponding author: 
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Fig.1  The particle size distribution of crushed rock 

studied comparing with MRWA’s specifications. 
 

Table 1  The important properties of crushed rock 
studied (before the addition of cement). 

 
Test 

Methods* Tests 
Resu
lts 

Specifica
tion 

WA 
120.2 

Liquid 
Limit, LL 

22.40
% <25 

WA 
121.1 

Plastic 
Limit, PL 

17.60
% N/A 

WA 
122.1 

Plastic 
Index, PI 

4.80
% N/A 

WA 
123.1 

Linear 
Shrinkage, 

LS 
1.50

% 0.4-2.0 
WA 

216.1 
Flakines

s Index, FI 
22.50
% <30 

WA 
140.1 

Max. 
Dry 

Compressive 
Strength, 
MDCS 

3528 
kPa 

> 1700 
kPa 

WA 
220.1 

Californi
a Bearing 

Ratio, CBR 180 80 
 
*test methods in accordance with MRWA Test Method 
(MAIN ROADS Western Australia 2006) 
 
LABORATORY PROGRAM AND TESTING 
 

The crushed rock was initially tested in terms of the 
compaction test in accordance with Main Roads Test 
Method WA 133.2(MAIN ROADS Western Australia 2006) 
to establish the Modified compaction curve for determining 
its optimum moisture content (OMC) and maximum dry 
density (MDD). This resulted in an average MDD of the 
crushed rock base studied of 2.27tonnes/m3 at OMC of 
5.5%. HCTCRB samples for triaxial tests then were made 
at 100% OMC of the crushed rock.  

 
The test program consisted of both static and repeated 

loading triaxial tests. The static tests were carried out to 
establish cohesion (c) and internal friction angle (φ) of 
parameters HCTCRB. The repeated loading tests were 
performed to establish the relationships between the applied 
stress conditions, resilient modulus values, and the 
permanent deformation behavior of HCTCRB. 

Specimen preparation 
 
All HCTCRB samples were prepared based upon 100% 

OMC of the crushed rock. The mixing procedure consisted 
of adding 2% GP cement (by dry masses) to the crushed 
rock at the 100% OMC condition and mixing then all 
mixtures in the mixing machine at least 10 minutes or until 
the mixture being uniform in color and texture. The mixture 
then was kept at room temperature in sealed plastic bags for 
a 7-day period. After that, the mixture was then re-mixed in 
the same mixing machine at least for 10 minutes. 
Compaction was then carried out in a mould 100mm in 
diameter and 200mm in height, using 25 blows of a 4.9 kg 
rammer at 450mm drop height in 8 layers. This is 
equivalent to 100% Modified energy in terms of total 
energy per unit volume compared to conventional Modified 
mould. After compacting, the specimen was carefully 
removed from the mould. Immediately, after the specimen 
was removed from the mould, it was reweighed and 
wrapped with the plastic to prevent loss of moisture and 
then, the wrapped specimen was left overnight before it 
was transferred to the bottom platen of the triaxial cell.   
 
Static triaxial tests 

 
The drained triaxial compression tests were conducted 

to determine Mohr-Coulomb shear strength parameters (c 
and φ) of HCTCRB. The specimens were tested under the 
unsaturated condition (at the compaction condition) and 
suctions were not measured during triaxial testing. In these 
tests, the specimen response was measured at three 
different constant confining pressures: 50kPa, 100kPa, and 
150kPa. These tests were carried out by using the same 
triaxial equipment and system used for the measurement of 
resilient modulus and permanent deformation. 
 
Resilient modulus tests 

 
The standard method of Austroads APRG 00/33-2000 

(Voung and Brimble 2000) for Repeated Load Triaxial Test 
Method was followed for the resilient modulus tests and the 
permanent deformation tests. The UTM-14P digital servo 
control testing machine which has an ability to conduct 
resilient modulus tests and permanent deformation tests 
was used in the Geomechanics Laboratory, Department of 
Civil Engineering, Curtin University of Technology. Fig.2 
shows the apparatus performed in the testing process. 

 
The specimens were placed within the triaxial cell and 

positioned between the base plate and crosshead of the 
testing machine. The dynamic axial stress came from a 
feedback-controlled high pressure air actuator capable of 
accurately applying a stress pulse following the acting 
stress of the standard. A confining pressure was generated 
by a closed loop controlled actuator to simulate the lateral 
pressure acting on the surrounding materials, as would 
occur in a road. The confining pressure was applied by air 
pressure. The machine conveyed a vertical dynamic force 
of rectangular waveform with a period of 3 secs and a load 
pulse of 1sec duration, in accordance with the standard 
requirements and is demonstrated in Fig.3. 

 
The load cell, the confining pressure, and the externally 

linear variable differential transducer (LVDT) on the top of 
the triaxial cell, which was used to measure deformations 
over the entire length of the specimen, were measured by 
the control of a control and data acquisition system (CDAS) 
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which provided the control signals, signal conditioning, 
data acquisition. The CDAS was communicated with the 
computer, which provided the interfacing with the testing 
software and stored the raw test data. These enabled the 
resultant stress and strain in the sample to be determined.  

 

 
 

Fig. 2  Triaxial test machine used in this study. 
 
 

1.0s 2.0s

Lo
ad

Time (Seconds)

Loading

Unloading

Fd (dynamic)

 
Fig. 3  Illustration of the vertical force waveform. 

 
In accordance with this standard, the specimens were 

applied sequentially by the difference of the 65 stress stages 
to check the elastic condition of each specimen throughout 
the multiple loading stress stages as shown in Fig.4. This 
process simulates the complicated traffic loading acting on 
pavement. Before performing the resilient modulus process, 
a pre-conditioning stage was carried out to allow the end 
caps to bed into the specimen and allow the applied stresses 
and resilient strains to stabilise under the imposed stress 
condition. For these reasons, 1000 loading cycles of 
pre-conditioning were used and for each stress stage after 
pre-conditioning, 200 loading cycles were applied to the 
specimens. 
 
Permanent deformation tests 
 

New specimens were prepared following the same 
method as the resilient modulus specimens, described in 
item 3.1. Permanent deformation testing was calculated in 
accordance with Austroads – APRG 00/33 standard (Voung 
and Brimble 2000). In this testing, the specimens were 
loaded with three stress stages, each involving 10,000 
cycles at a stress condition of specific dynamic deviator 
stress and static confining pressure as shown in Table 2. 
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Fig. 4  Applied stresses and its stress stages of the 

resilient modulus tests. 
 
Table 2  Stress levels for permanent deformation of 

base materials following Austroad-APRG 
00/33 standard 

 
Permanent Deformation Stress Levels 

Stress 
Stage 
Num

ber 

Base 
Confining 

pressure,σ3 
(kPa) 

Dynamic 
deviator stresses,σd 

(kPa) 
1 50 350 
2 50 450 
3 50 550 

 
RESULTS AND DISCUSSION 

 
Static triaxial tests 

 
Static triaxial tests by means of the drained triaxial 

compression tests were perform to obtain information on 
the cohesion, c, and the internal friction angle, φ, of 
HCTCRB. These tests also established the failure line of 
HCTCRB to determine the maximum stress level which 
could be applied on this material, so that the limited uses of 
HCTCRB would be known. The confining pressures of 
50kPa, 100kPa, and 150kPa were applied on the tested 
specimens in each test. The characteristics of each test are 
summarized in Table 3. This should be noticed that the dry 
unit weight and the water content of HCTCRB were 
slightly less than the fresh crushed rock values (MDD= 
2.27ton/m3 at OMC=5.5%) after the 7-day hydration 
period. 
 
Table 3  Characteristics of the static triaxial tests on 

HCTCRB 
 

T
est 

Confin
ing 

pressure 
(kPa) 

Wet 
unit 

weight 
(ton/

m3) 

Dry 
unit 

weight 
(ton/

m3) 

Wate
r 

content* 
(%) 

1
2
3

50 
100 
150 

2.22 
2.19 
2.19 

2.12 
2.09 
2.10 

4.52 
4.64 
4.48 

 
* Water content of the sample after the hydration period of 
7 days. 
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Figure.5(a) depicts the relationship of the deviator 
stress and the axial strain at the three selected confining 
pressure. It also can be observed that the static deviator 
stress initially increases with increasing the axial strain 
until it reaches the peak strength. For a higher confining 
pressure, apparently, the peak strength becomes higher and 
strain corresponding to the peak strength becomes higher, 
as well. All three curves in Fig.5(a) exhibit that after the 
peak strength taken place, the postpeak regime, during 
which the stress reduces with increasing strain. This 
characteristic is similar to that of dense granular materials 
and is normally described as strain softening. The 
strain-softening process is concomitant with the generation 
of large deformations, which caused geometrically 
non-linear effects to become important.(Suiker, Selig et al. 
2005). 

 
The peak strength of HCTCRB in these tests was 

interpreted by means of a Mohr-Coulomb failure law that 
the cohesion, c, and the internal friction angle, φ, are 
considered in a failure relationship, a straight line fitted to a 
Mohr envelope (Lamb and Whitman 1979). 

 
Figure.5(b) shows the static triaxial test results of 

HCTCRB on the p-q diagram. On this diagram, the 
Mohr-Coulomb failure was defined in terms of principle 
stresses (principle stresses have been written as σ1= the 
major principle stress and σ2=σ3 = the intermediate or 
minor principle stress). The deviator stress, q= (σ1- σ3), was 
plotted against the mean applied stress, p = (σ1+2σ3)/3. The 
results shown in Fig.6 indicate that the Mohr-Coulomb 
failure envelope (corresponding to the peak stresses) is 
linear for the stress range tested and has the characteristic 
in p-q stress space: Mp=q/p=1.723 with a deviator stress 
intercept, qc = 239kPa. In the conventional Mohr-Coulomb 
stress space, thus the properties failure correspond to an 
internal friction angle (φ) at peak strength of 42° and 
apparent cohesion (c) of 177kPa. 

 
The results of the static triaxial test of HCTCRB show 

that it performs the cohesive granular material behaviors. 
HCTCRB is not the non-cohesive granular material like the 
general non-cohesive granular materials such as sands and 
gravels. The behaviors of HCTCRB strongly depend upon 
both degrees of cohesion and internal friction angle. 

 
Resilient modulus tests 

 
The resilient modulus determined from the RLT test is 

defined as the ratio of the repeated axial deviator stress to 
the recoverable or resilient axial strain as shown in Fig.6 
and equation (1): 

 
                                                                                                    (1) 

 
Where Mr is the resilient modulus, σd is the repeated 

deviator stress (cyclic stress in excess of confining 
pressure), and εr is the resilient (recoverable) strain in the 
vertical direction. 

 
Figure.7 shows the results of the resilient modulus 

which are plotted against with the bulk stress (σ1+σ2+σ3). 
Generally, the resilient modulus is non-linear with respect 
to the magnitude of applied stresses. Fig.7 also shows the 
results of resilient modulus of HCTCRB can be modeled 
reasonably by using The K-Theta (K-θ) model(Hick and 
Monismith 1971). 

The representative K-θ model of HCTCRB is exhibited in 
equation (2). 
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Fig. 5(a)  The static triaxial test results 
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Fig. 5(b)  The static triaxial test results 

 

 
Fig. 6  Resilient Modulus determination from test 

results (Kim and Kim 2006) 
 

591.0
1 684.72 θθ == k

r kM    (2) 
 
Where: Mr is Resilient modulus in MPa; θ is bulk Stress 

(σ1+σ2+σ3) where (σ1=σ3); σ1 is major principal stress (axial 
stress); σ3 is minor principal stress (confining stress); k1= 
7.684 and k2= 0.591 are   regression coefficients. 

d
r

r

M σ
ε

=
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R2 = 0.8999
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Fig.7  The resilient modulus results. 

 
Permanent deformation tests 

 
Figure.8 (a) and (b) shows the typical results of the 

permanent deformation test in terms of relationship 
between permanent deformation and loading cycles for 
HCTCRB. The various test values could be extracted from 
Fig.8(a) for uses in assessing the potential for permanent 
deformation. Furthermore, from Fig.8(a), it can be noted 
that the permanent deformation of HCTCRB is not 
dominated by the applied load in the testing range because 
when the applied loads increase from loading stage 1 to 
loading stage 3, the permanent deformation of HCTCRB 
did not increase dramatically. In contrast, the number of 
loading cycles seemed to be more influential to the 
permanent deformation values. Fig.8(b) exhibits the 
comparison of the measured permanent deformation values 
and the predicted values for a proposed permanent 
deformation model of HCTCRB. Fig.8(b) indicates that the 

permanent deformation can be modeled quite reasonably 
for HCTCRB by using the model suggested by Sweere, 
G.T.H from SAMARIS(SAMARIS 2004). The proposed 
permanent deformation model of HCTCRB is shown in 
equation (3). 

 
074.0*223.573* NNA Bp ==ε     (3) 

 
Where: εp is permanent deformation in Micrometers; 

A=573.223 and B=0.074 are regression constants; and N is 
the number of loading cycles 
 
CONCLUSIONS 

 
The mechanical behavior of Hydrated Cement Treated 

Crushed Rock Base (HCTCRB) which is normally used for 
a base course material in Western Australia were 
investigated by means of static and repeated loading triaxial 
tests. The repeated loading triaxial tests were carried out in 
terms of the resilient modulus test and the permanent 
deformation test to provide insight into the resilient and 
permanent deformation characteristics of this material 
under the real conditions of traffic loading simulated in 
these tests.  

 
It has been shown that HCTCRB can be characterized 

as an apparently cohesive granular material which has the 
cohesion (c) of 177kPa and the internal friction angle (φ) of 
42°over the stress range significant for pavement behavior. 
Based on the Austroads – APRG 00/33 test standard, the 
resilient modulus characteristics could be modeled using 
the K-θ model. The permanent deformation characteristics 
could be modeled by using the Sweere’ s model.  
.
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Fig. 8  Permanent deformation results and its model 
 

  



/ JOURNAL OF THE SOUTHEAST ASIAN GEOTECHNICAL SOCIETY / DECEMBER 2009 230

ACKNOWLEDGEMENTS 
 
The authors wish to express their gratitude to the 

Centre of Sustainable Resource Processing (CSRP) for the 
financial support and Western Australia Main Roads for a 
lot of assistance to the research group. 

 
 

REFERENCES 
 

AUSTRALIAN STANDARD. (1997). "Portland and 
blended cements."   Retrieved September, 2006, from 
http://www.saiglobal.com. 

 
AUSTRALIAN STANDARD AS 3972-1997. (1997). 

"Porthland and blended cements."   Retrieved 
September, 2006, from 
http://www.saiglobal.com.dbgw.lis.curtin.edu.au/online
/autologin.asp. 

 
COCKBURN CEMENT. (2006). "General Specification 

( COCKBURN GERNERAL PURPOSE PORTLAND 
CEMENT-TYPE GP)."   Retrieved November, 2006, 
from 
http://www.cockburncement.com.au/productinfo/range/
specifications/Cockburn%20GP.pdf. 

 
HICK, R. G. AND C. L. MONISMITH (1971). "Factors 

influencing the resilient response of granular 
materials." Highway Research Record No. 345: pp. 
15-31. 

 
KIM, D. AND J. R. KIM (2006). "Resilient behaviour of 

compacted subgrade soils under the repeated triaxial 
test." Construction and Building Materials 21: pp. 
1470-1479. 

 
LAMB, T. W. AND R. W. WHITMAN (1979). Soil 

Mechanics, SI Version, John Wiley & Sons. 

 
MAIN ROADS Western Australia. (1997). "Dry 

density/moisture content relationship: modified 
compaction fine and medium grained soils."   
Retrieved December, 2006, from 
http://www.mainroads.wa.gov.au/NR/mrwa/frames/stan
dards/standards.asp?G={1532D87F-C1AC-4386-9968-
5E5F4FD002E5}. 

 
MAIN ROADS Western Australia. (2003). "Crushed Rock 

Base Basecourse."   Retrieved December, 2006, from 
http://www.mainroads.wa.gov.au/NR/mrwa/frames/stan
dards/standards.asp?G={1532D87F-C1AC-4386-9968-
5E5F4FD002E5}. 

 
MAIN ROADS Western Australia. (2006). "Test Method 

(Aggregate)."   Retrieved September, 2006, from 
http://www.mainroads.wa.gov.au/NR/mrwa/frames/stan
dards/standards.asp?G={1532D87F-C1AC-4386-9968-
5E5F4FD002E5}. 

 
SAMARIS (2004). Selection and evaluation of models for 

prediction of permanent deformations of unbound 
granular materials in road pavement, Sustainable and 
Advanced MAterials for Road InfraStruture: 55p. 

 
SUIKER, A. J., E. SELIG, ET AL. (2005). "Static and 

Cyclic Triaxial Testing of Ballast and Subballast." 
Journal of Geotechnical and Geoenvironmental 
Engineering Vol. 131, No 6, pp771-782. 

 
VOUNG, B. T. AND R. BRIMBLE (2000). Austroads 

Repeated Load Triaxial Test Method-Determination of 
Permanent Deformation and Resilient Modulus 
Characteristics of Unbound Granular Materials Under 
Drained Conditions. APRG DOCUMENT APRG 
00/33(MA), Austroads. 

 

 
 


