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Abstract: In this paper, by using a weaker assumption, we discuss the Hölder continuity

of solution maps for two cases of parametric generalized vector equilibrium problems under

the case that the solution map is a general set-valued one, but not a single-valued one.

These results extend the recent ones in the literature. Several examples are given for the

illustration of our results.
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1 Introduction

It is well known that the vector equilibrium problem (VEP, in short) provides a unified

model of several classes of problems, for example, vector variational inequality problems,

vector complementarity problems, vector optimization problems and vector saddle point

problems. Many authors (see [8, 9, 12, 17, 18]) have intensively studied different types of

vector equilibrium problems.
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The stability analysis of solution maps for equilibrium problems is an important topic

in optimization theory and applications. There have been many papers to discuss the

semicontinuity of solution maps (see [1, 4, 6, 7, 13, 15, 16]). However, there are only a few

results concerning the Hölder continuity of solution maps for the perturbed variational

inequality and equilibrium problems. In [22], by the orthogonal metric projection and

the linearity canonical pair 〈·, ·〉 in Hilbert spaces, Yen proved that the solutions of a

classical perturbed variational inequalities is unique in some neighborhood, and then ob-

tained Hölder continuity of the single valued solution map in the neighborhood. Based on

the concepts of strong monotonicity and Hölder continuity, Ait Mansour and Riahi [19]

obtained the uniqueness and Hölder continuity of the solutions in some neighborhood

for a parametric scalar equilibrium problem, which can be viewed as an extension and

the generalization of the well-known results on variational inequalities in [22]. In [11],

by virtue of the strongly pseudomonotone and Hölder continuous concepts, Bianchi and

Pini proved the solutions of a parametric scalar equilibrium problems also is unique in

some neighborhood and then obtained the Hölder continuity of the unique solution in

the neighborhood. In [2], Anh and Khanh generalized the main results of [11] to vector

case and obtained uniqueness and Hölder continuity of the solutions in some neighbor-

hood for two classes of perturbed generalized vector equilibrium problems. In [3], Anh

and Khanh further discussed uniqueness and Hölder continuity of the solutions for the

perturbed generalized vector equilibrium problems, which remarkably improve the results

in [11] and [2], and which become properly stronger than the the result of [22] when ap-

plied to variational inequalities. In [5], Anh and Khanh extended the results of [2, 3, 19]

to the case of the perturbed generalized vector quasiequilibrium problems, and obtained

the Hölder continuity and uniqueness of the solutions for perturbed generalized vector

quasiequilibrium problems. Obviously, all these results for Hölder continuity of the solu-

tions in a neighborhood are obtained under the case that the solutions is unique in the

neighborhood under very strong conditions.

For general perturbed (vector) equilibrium problems, it is well known that a solution

map is, in general, a set-valued one, but not a single-valued one. Until now there is no

paper to study Hölder continuity of the solution map when the solution map is a general

set-valued one for general perturbed (vector) equilibrium problems. Naturally, there is a

need to study the properties of the solution map in this case. So, in this paper, our aims

are to investigate the Hölder continuity of the solution maps, which are not single-valued

ones, for two classes of parametric generalized vector equilibrium problems in general
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metric spaces. We show the sufficient condition which guarantees the Hölder continuity

of the solution maps for the two classes of parametric generalized vector equilibrium

problems, and give some examples to illustrate that our main results are different from

the corresponding ones in [2, 11].

The rest of the paper is organized as follows. In Section 2, we introduce two classes of

parametric generalized vector equilibrium problems, and recall some definitions and their

properties. In Sections 3 and 4, we discuss the Hölder continuity of the solution maps

for the two cases of parametric generalized vector equilibrium problems respectively, and

provide remarks and examples to compare with recent results, respectively.

2 Preliminary Results

Throughout this paper, unless otherwise specified, let X, Y , Λ and M be four metric

spaces, and let E ⊂ X be a nonempty subset. We also assume that C ⊂ Y is a nonempty

closed convex cone of Y with intC 6= ∅, where intC denotes the interior of C.

Consider the following two classes of generalized vector equilibrium problems of finding

x̄ ∈ E such that

(GVEP1) F (x̄, y) 6⊆ −intC, ∀y ∈ E;

and of finding x̄ ∈ E such that

(GVEP2) F (x̄, y) ⊆ Y \ − intC, ∀y ∈ E,

where E is a subset of X and F : E × E → 2Y is a set-valued map.

When the set E and the set-valued map F are, respectively, perturbed by the parame-

ters λ ∈ Λ and µ ∈ M , we define the two classes parametric generalized vector equilibrium

problems of finding x̄ ∈ E(λ) such that

(PGVEP1) F (x̄, y, µ) 6⊆ −intC, ∀y ∈ E(λ),

and of finding x̄ ∈ E(λ) such that

(PGVEP2) F (x̄, y, µ) ⊆ Y \ − intC, ∀y ∈ E(λ),

where E : Λ → E and F : E × E ×M → 2Y are two set-valued maps.
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For each λ ∈ Λ, µ ∈ M , by S1(λ, µ) we denote the solution map of (PGVEP1), i.e.,

S1(λ, µ) = {x ∈ E(λ) : F (x, y, µ) 6⊆ −intC, ∀y ∈ E(λ)},

and for each λ ∈ Λ, µ ∈ M , by S2(λ, µ) we denote the solution map of (PGVEP2), i.e.,

S2(λ, µ) = {x ∈ E(λ) : F (x̄, y, µ) ⊆ Y \ − intC, ∀y ∈ E(λ)}.

Throughout this paper, we always assume that S1(λ, µ) 6= ∅ and S2(λ, µ) 6= ∅ in a

neighborhood of some point (λ̄, µ̄).

Now we recall some basic definitions and their properties which are needed in this

paper. In the sequel, B(0, δ) denotes the closed ball with center 0 ∈ X and radius δ ≥ 0,

and d(·, ·) denotes the distance in metric spaces.

Definition 2.1 [10] Let X and Y be two topological spaces, and G : X → 2Y be a

set-valued map.

(i) The map F is said to be upper semicontinuous at x0 ∈ X if, for every open set U

containing F (x0), there is a neighborhood N(x0) of x0 in X such that

F (x) ⊂ U, ∀x ∈ N(x0).

(ii) The map F is said to be lower semicontinuous at x0 if, for every open set U with

F (x0)
⋂

U 6= ∅, there is a neighborhood N(x0) of x0 in X such that

F (x)
⋂

U 6= ∅, ∀x ∈ N(x0).

Lemma 2.1 [10,20]

(i) If F is lower semicontinuous at x0 ∈ X if and only if for any y0 ∈ F (x0), and any net

{xα} satisfying xα → x0, there exists a net {yα} such that yα ∈ F (xα) and yα → y0.

(ii) Let F (x) be compact valued on X. Then F is upper semicontinuous at x0 if and only

if for any net {xα} ⊂ X such that xα → x0 and for every yα ∈ F (xα), there exist

y0 ∈ F (x0) and subset {yβ} of {yα} such that yβ → y0.

Definition 2.2 (Classical notion) A set-valued map G : M → 2X is said to be `.α-Hölder

continuous at µ0 if there is a neighborhood U(µ0) of µ0 such that, ∀µ1, µ2 ∈ U(µ0),

G(µ1) ⊆ G(µ2) + `B(0, dα(µ1, µ2)),

where ` ≥ 0 and α > 0.
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Definition 2.3 [2] Let G : X ×X → 2Y be a set-valued map.

(i) G is called h.β-Hölder strongly pseudomonotone of the first type in E ⊂ X if, ∀x, y ∈
E, x 6= y,

G(x, y) 6⊆ −intC ⇒ G(y, x) + hB(0, dβ(x, y)) ⊆ −C,

where h > 0 and β > 0.

(ii) G is called h.β-Hölder strongly pseudomonotone of the second type in E ⊂ X if,

∀x, y ∈ E, x 6= y,

G(x, y) ⊆ Y \ −intC ⇒ G(y, x) + hB(0, dβ(x, y)) ⊆ −C,

where h > 0 and β > 0.

(iii) G is called quasimonotone of the first type in E ⊂ X if, ∀x, y ∈ E, x 6= y,

G(x, y) ⊆ −intC ⇒ G(y, x) 6⊆ −intC.

(iv) G is called quasimonotone of the second type in E ⊂ X if, ∀x, y ∈ E, x 6= y,

G(x, y) 6⊆ Y \ −intC ⇒ G(y, x) ⊆ Y \ −intC.

Definition 2.4 [21] Let (E, d) be a metric space and H be a Hausdorff metric on the

collection CB(E) of all nonempty closed bounded subsets of E, which is defined as

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}, ∀A,B ∈ CB(E),

where d(a,B) = infb∈B d(a, b) and d(A, b) = infa∈A d(a, b).

3 Hölder Continuity of a Solution Map for (PGVEP1)

In this section, we mainly discuss the Hölder continuity of a solution map for a case of the

generalized vector equilibrium problem where both the set-valued map F and the subset

E are perturbed by parameters.

Proposition 3.1 Let F : E × E ×M → 2Y and E : Λ → E be given. Assume that the

solutions for the problem (PGVEP1) exist in a neighborhood N(λ̄)×U(µ̄) of the considered

point (λ̄, µ̄). Assume further that the following conditions hold:
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(i) For each λ ∈ N(λ̄), E(·) is compact;

(ii) For each λ ∈ N(λ̄), µ ∈ U(µ̄) and y ∈ E(λ), F (·, y, µ) is upper semicontinuous with

compact values.

Then, for any λ ∈ N(λ̄), µ ∈ U(µ̄), S1(λ, µ) is a compact subset in E(λ).

Proof. It suffices to show that S1(λ, µ) is closed in E(λ), since E(λ) is compact. Indeed,

take any sequence {xn} ⊂ S1(λ, µ) with xn → x0. It follows from the definition of the

solutions for the problem (PGVEP1) that {xn} ⊂ E(λ) and for any y ∈ E(λ), there exists

zn ∈ F (xn, y, µ) satisfying

zn ∈ F (xn, y, µ) ∩ Y \ −intC 6= ∅,∀n.

From the compactness of E(λ), we have x0 ∈ E(λ). By the upper semicontinuous of

F (·, y, µ) and the compactness of F (x0, y, µ), there exists z0 ∈ F (x0, y, µ) such that zn →
z0 (taking a subsequence {zni

} ⊂ {zn} if necessary). Noting the closedness of Y \ −intC,

we have zn → z0 ∈ Y \ −intC. Then,

z0 ∈ F (x0, y, µ) ∩ Y \ −intC. (1)

By the arbitrariness of y and (1), we get

F (x0, y, µ) 6⊆ −intC,∀y ∈ E(λ).

Thus, x0 ∈ S1(λ, µ) and the proof is complete. 2

Theorem 3.1 Assume that the solutions for the problem (PGVEP1) exist in a neigh-

borhood N(λ̄) × U(µ̄) of the considered point (λ̄, µ̄). Assume further that the following

conditions hold:

(i) E(·) is `.α-Hölder continuous at λ̄ with compact values;

(ii) There are neighborhoods N(λ̄) of λ̄ and U(µ̄) of µ̄ and constants h > 0, β > 0 such

that ∀(λ, µ) ∈ N(λ̄) × U(µ̄), ∀y ∈ ∆(λ, µ) = E(N(λ̄)) \ S1(λ, µ), ∃x̂ ∈ S1(λ, µ)

satisfying

F (y, x̂, µ) + hB(0, dβ(x̂, y)) ⊆ −C;

(iii) For each λ ∈ N(λ̄) and each x, y ∈ E(λ), F (x, y, ·) is m.γ-Hölder continuous at µ̄;
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(iv) For each λ ∈ N(λ̄), each x ∈ E(λ) and each µ ∈ U(µ̄), F (x, ·, µ) is n.δ-Hölder

continuous in E(N(λ̄)).

(v) For each λ ∈ N(λ̄), µ ∈ U(µ̄) and y ∈ E(λ), F (·, y, µ) is upper semicontinuous with

compact values.

Then, the solution map S1(·, ·) satisfies the following Hölder continuous condition, for any

(λ1, µ1) and (λ2, µ2) in a neighborhood of (λ̄, µ̄) :

H(S1(λ1, µ1), S1(λ2, µ2)) ≤ (
m

h
)

1
β d

γ
β (µ1, µ2) + (

`δn

h
)

1
β d

αδ
β (λ1, λ2). (2)

Proof. By virtue of Proposition 3.1, it follows from the assumptions (i) and (v) that for

each (λ, µ) ∈ N(λ̄)×U(µ̄), S1(λ, µ) is a compact subset on E(λ). Thus, it suffices to show

that the solution map S1(·, ·) satisfies the Hölder continuous condition.

Let (λ1, µ1), (λ2, µ2) ∈ N(λ̄)×U(µ̄). We shall divide into three steps for proving that

(2) holds.

Step 1 We prove that

H(S1(λ1, µ1), S1(λ1, µ2)) ≤ (
m

h
)

1
β d

γ
β (µ1, µ2). (3)

Obviously, if S1(λ1, µ1) = S1(λ1, µ2), we have that (3) holds. So we suppose S1(λ1, µ1) 6=
S1(λ1, µ2). There are two cases to be considered.

Case 1. S1(λ1, µ1) 6⊆ S1(λ1, µ2) and S1(λ1, µ1) 6⊇ S1(λ1, µ2). For any x(λ1, µ1) ∈
S1(λ1, µ1) \S1(λ1, µ2), by virtue of the assumption (ii), there exists x̂(λ1, µ2) ∈ S1(λ1, µ2)

such that

F (x(λ1, µ1), x̂(λ1, µ2), µ2) + hB(0, dβ(x(λ1, µ1), x̂(λ1, µ2))) ⊆ −C.

Then, ∀z 6∈ −intC,

dβ(x(λ1, µ1), x̂(λ1, µ2)) ≤ 1

h
H(F (x(λ1, µ1), x̂(λ1, µ2), µ2), {z}). (4)

Since x(λ1, µ1) ∈ S1(λ1, µ1), then

F (x(λ1, µ1), y, µ1) 6⊆ −intC, ∀y ∈ E(λ1).

Taking y = x̂(λ1, µ2), there exists

z0 ∈ F (x(λ1, µ1), x̂(λ1, µ2), µ1) \ −intC. (5)
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By virtue of (4), (5) and the assumption (iii), we can get

dβ(x(λ1, µ1), x̂(λ1, µ2)) ≤ 1

h
H(F (x(λ1, µ1), x̂(λ1, µ2), µ2), {z0})

≤ 1

h
H(F (x(λ1, µ1), x̂(λ1, µ2), µ2), F (x(λ1, µ1), x̂(λ1, µ2), µ1))

≤ m

h
dγ(µ1, µ2).

Noting the arbitrariness of x(λ1, µ1), one has

sup
x(λ1,µ1)∈S1(λ1,µ1)\S1(λ1,µ2)

inf
x(λ1,µ2)∈S1(λ1,µ2)

d(x(λ1, µ1), x(λ1, µ2)) ≤ d(x(λ1, µ1), x̂(λ1, µ2))

≤ (
m

h
)

1
β
d

γ
β (µ1, µ2).

Then, by the definition of metric d(·, ·), we have

sup
x(λ1,µ2)∈S1(λ1,µ2)

d(x(λ1, µ1), S1(λ1, µ2)) = sup
x(λ1,µ1)∈S1(λ1,µ1)\S1(λ1,µ2)

d(x(λ1, µ1), S1(λ1, µ2))

≤ (
m

h
)

1
β
d

γ
β (µ1, µ2). (6)

Using the same method of proof, we also have

sup
x(λ1,µ2)∈S1(λ1,µ2)

d(S1(λ1, µ1), x(λ1, µ2)) ≤ (
m

h
)

1
β
d

γ
β (µ1, µ2). (7)

Combining (6) and (7), we have that (3) holds.

Case 2. S1(λ1, µ1) ⊂ S1(λ1, µ2) or S1(λ1, µ1) ⊃ S1(λ1, µ2). Without loss of generality,

we assume that S1(λ1, µ1) ⊂ S1(λ1, µ2). From the definition of Hausdorff distance, one

has

sup
x(λ1,µ1)∈S1(λ1,µ1)

d(x(λ1, µ1), S1(λ1, µ2)) = 0. (8)

By using the same argument of Case 1, we have

sup
x(λ1,µ2)∈S1(λ1,µ2)

d(S1(λ1, µ1), x(λ1, µ2)) ≤ (
m

h
)

1
β
d

γ
β (µ1, µ2). (9)

Consequently, it follows from (8) and (9) that (3) also holds.

In a word, by Cases 1 and 2, we have that (3) holds.

Step 2 Now we show that

H(S1(λ1, µ2), S1(λ2, µ2)) ≤ (
`δn

h
)

1
β d

αδ
β (λ1, λ2). (10)
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Obviously, we only need to prove that (10) holds when S1(λ1, µ1) 6= S1(λ1, µ2). To be

similar to Step 1, we also consider two cases.

Case 1. S1(λ1, µ2) 6⊆ S1(λ2, µ2) and S1(λ1, µ2) 6⊇ S1(λ2, µ2). For any x(λ2, µ2) ∈
S1(λ2, µ2) \S1(λ1, µ2), by virtue of the assumption (ii), there exists x̂(λ1, µ2) ∈ S1(λ1, µ2)

such that

F (x(λ2, µ2), x̂(λ1, µ2), µ2) + hB(0, dβ(x̂(λ1, µ2), x(λ2, µ2))) ⊆ −C.

Then, ∀z 6∈ −intC,

dβ(x̂(λ1, µ2), x(λ2, µ2)) ≤ 1

h
H(F (x(λ2, µ2), x̂(λ1, µ2), µ2), {z}). (11)

By virtue of the assumption (i), there is x̄ ∈ E(λ2) such that

d(x̂(λ1, µ2), x̄) ≤ `dα(λ1, λ2). (12)

(We can assume that N(λ̄) is contained in the neighborhood where E(·) is `.α-Hölder

continuous.) By x(λ2, µ2) ∈ S1(λ2, µ2), there exists z̄ ∈ F (x(λ2, µ2), x̄, µ2) \ −intC. Con-

sequently, (11), (12) and the assumption (iv) together imply that

dβ(x̂(λ1, µ2), x(λ2, µ2)) ≤ 1

h
H(F (x(λ2, µ2), x̂(λ1, µ2), µ2), F (x(λ2, µ2), x̄, µ2))

≤ n

h
dδ(x̂(λ1, µ2), x̄)

≤ n

h
`δdαδ(λ1, λ2).

Since the arbitrariness of x(λ2, µ2), by the definition of d(·, ·), one has

sup
x(λ2,µ2)∈S1(λ2,µ2)

d(S1(λ1, µ2), x(λ2, µ2)) ≤ (
`δn

h
)

1
β d

αδ
β (λ1, λ2).

Using the same argument, we can also get

sup
x(λ1,µ2)∈S1(λ1,µ2)

d(x(λ1, µ2), S1(λ2, µ2)) ≤ (
`δn

h
)

1
β d

αδ
β (λ1, λ2).

Then, we have that (10) holds.

Case 2. S1(λ1, µ2) ⊂ S1(λ2, µ2) or S1(λ1, µ2) ⊃ S1(λ2, µ2). It follows from the proof of

Step 1 that (10) also holds.

Thus, by Cases 1 and 2 of Step 2, we have (10) holds.

Step 3 Finally, since

H(S1(λ1, µ1), S1(λ2, µ2)) ≤ H(S1(λ1, µ1), S1(λ1, µ2)) + H(S1(λ1, µ2), S1(λ2, µ2)),

it follows from (3) and (10) that (2) holds. Therefore, the proof is complete. 2
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Remark 3.1 It is well known that the solution map for (PGVEP1) is, in general, not

a single-valued one. Theorem 3.1 discusses Hölder continuity under the case that the

solution map is a general set-valued one for (PGVEP1). Since the assumption (ii) of

Theorem 3.1 is weaker than the assumption (ii) of Theorem 2.1 of [2], Theorem 3.1 is

different from Theorem 2.1 of [2]. The following example shows the case, where Theorem

3.1 is applicable, but Theorem 2.1 in [2] is not applicable.

Example 3.1 Let X = Y = R, Λ = M = [0, 1], C = R+, E(λ) = [λ2, 1] and F (x, y, λ) =

[−10, (y + 1)(x− λ)]. Direct computations show that

E(Λ) = [0, 1], S1(λ) = [λ, 1], ∀λ ∈ Λ,

and

∆(λ) = E(Λ)\S1(λ) = [0, λ), ∀λ ∈ Λ.

Obviously, for all λ ∈ Λ, E(λ) is 2.1-Hölder continuous with compact values; for all

x, y ∈ E(Λ), F (x, y, ·) is 2.1-Hölder continuous at any λ̄ ∈ Λ; for all x ∈ E(λ) and λ ∈ Λ,

F (x, ·, λ) is 1.1-Hölder continuous; for all λ ∈ Λ and y ∈ E(λ), F (·, y, λ) is continuous

with compact values. Take h = 1 and β = 1. For any λ ∈ Λ and ∀y ∈ ∆(λ) = [0, λ), we

take x̂ = λ ∈ S1(λ). Then, we have

F (y, x̄, λ) + hB(0, dβ(x̂, y)) = [−10, (λ + 1)(y − λ)] + B(0, |λ− y|)
= [−10, (λ + 1)(y − λ)] + B(0, λ− y)

= [−10 + y − λ, λ(y − λ)] ⊆ −C.

Hence, all assumptions of Theorem 3.1 hold and it is valid.

However, let x = 1, y = 0 and λ = 0. It is not hard to see that F (1, 0, 0) = [−10, 1] 6⊆
−intC. But for any h > 0,

F (0, 1, 0) + hB(0, 1) = [−10, 0] + hB(0, 1) = [−10− h, h] 6⊆ −C,

which implies that F (·, ·, 0) is not strongly h.β-Hölder pseudomonotone of the first type

in E(Λ). And take x = 0, λ = 1, and y = 1
2
. Then F (0, 1

2
, 1) = [−10,−3

2
], but F (1

2
, 0, 1) =

[−10,−1
2
], which implies that F (·, ·, 1) is not quasimonotone of first type in E(Λ) . There-

fore, the assumptions of Theorem 2.1 in [2] do not hold. Thus, Theorem 2.1 in [2] is not

applicable.

Remark 3.2 If the subset E ⊆ X is fixed, then S1(λ, µ) reduces to S1(µ) to (PGVEP1).

Thus the Hölder continuous condition of S1(·) can be obtained by applying Theorem 3.1

directly.
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4 Hölder Continuity of Solution Map for (PGVEP2)

In this section, we discuss the Hölder Continuity of a solution map for another case of the

generalized vector equilibrium problem where both the set-valued map F and the subset

E are perturbed by parameters. We first prove the following result.

Proposition 4.1 Let F : E × E ×M → 2Y and E : Λ → E be given. Assume that the

solutions for the problem (PGVEP2) exist in a neighborhood N(λ̄)×U(µ̄) of the considered

point (λ̄, µ̄). Assume further that the following conditions hold:

(i) For each λ ∈ N(λ̄), E(·) is compact;

(ii) For each λ ∈ N(λ̄), µ ∈ U(λ̄) and y ∈ E(λ), F (·, y, µ) is lower semicontinuous.

Then, for any λ ∈ N(λ̄), S2(λ, µ) is a compact subset in E(λ).

Proof. Since E(λ) is compact, it suffices to show that S2(λ, µ) is closed in E(λ). Indeed,

taking any sequence {xn} ⊂ S2(λ, µ) satisfying xn → x0, we need to show that x0 ∈
S(λ, µ). Since xn ∈ E(λ) and E(λ) is compact, we have x0 ∈ E(λ). For each y ∈ E(λ)

and z0 ∈ F (x0, y, µ), by assumption (ii), there exists zn ∈ F (xn, y, µ) such that zn → z0.

Since Y \ −intC is closed and F (xn, y, µ) ⊆ Y \ −intC, we get

z0 ∈ Y \ −intC. (13)

It follows from (13) and the arbitrariness of y and z0 that

F (x0, y, µ) ⊆ Y \ −intC,∀y ∈ E(λ).

Thus, z0 ∈ S2(λ, µ) and the proof is complete. 2

Theorem 4.1 Assume that the solutions for the problem (PGVEP2) exist in a neighbor-

hood N(λ̄) × U(µ̄) of the considered point (λ̄, µ̄). Assume further that (i), (iii) and (iv)

in Theorem 3.1 hold and (ii) and (v) are, respectively, replaced by

(ii’) There are neighborhoods N(λ̄) of λ̄ and U(µ̄) of µ̄ and constants h > 0, β > 0 such

that ∀(λ, µ) ∈ N(λ̄) × U(µ̄), ∀y ∈ ∆(λ, µ) = E(N(λ̄)) \ S2(λ, µ), ∃x̂ ∈ S2(λ, µ)

satisfying

F (y, x̂, µ) + hB(0, dβ(x̂, y)) ⊆ −C;

11



(v’) For each λ ∈ N(λ̄), µ ∈ U(µ̄) and y ∈ E(λ), F (·, y, µ) is lower semicontinuous.

Then, the solution map S2(·, ·) satisfies the following Hölder continuous condition, for any

(λ1, µ1) and (λ2, µ2) in a neighborhood of (λ̄, µ̄) :

H(S2(λ1, µ1), S2(λ2, µ2)) ≤ (
m

h
)

1
β d

γ
β (µ1, µ2) + (

`δn

h
)

1
β d

αδ
β (λ1, λ2).

Proof. For any (λ, µ) ∈ N(λ̄)×U(µ̄), by the definitions of the solutions for the problems

(PGVEP1) and (PGVEP2), we know S2(λ, µ) ⊆ S1(λ, µ). By the similar method of

Theorem 3.1, the solution map S2(·, ·) satisfies the Hölder continuous condition. This

completes the proof. 2

Now we give an example to illustrate that (ii’) in Theorem 4.1 is essential.

Example 4.1 Let X,Y,C be given as in Example 3.1. Let Λ ≡ M = [1, 2], E(λ) =

[λ− 1, 1] and F (x, y, λ) = [λx(x− y), +∞).

Obviously, for all λ ∈ Λ, E(λ) is 1.1-Hölder continuous with compact values; for all

x, y ∈ E(Λ), F (x, y, ·) is 1.1-Hölder continuous at any λ̄ ∈ Λ; for all x ∈ E(λ) and λ ∈ Λ,

F (x, ·, λ) is 2.1-Hölder continuous; for all λ ∈ Λ and y ∈ E(λ), F (·, y, λ) is continuous.

So all assumptions of Theorem 4.1 hold except for the assumption (ii’). It follows from

the direct computations that

E(Λ) = [0, 1], S2(1) = {0, 1} and S2(λ) = {1},∀λ ∈ (1, 2].

Hence S2(·) is even not lower semicontinuous at λ = 1. The reason is that the assumption

(ii’) is violated. Indeed, if x̄ = 0, for any h > 0, there exists y = 1
2
∈ ∆(1) = (0, 1) such

that

F (y, x̄, 1) + hB(0, dβ(x̂, y)) = [
1

2
(
1

2
− 0), +∞) + hB(0, |0− 1

2
|)

= [
1

4
, +∞) + hB(0,

1

2
)

= [
1

4
− h

2
, +∞) 6⊆ −C;

if x̄ = 1, for any h > 0, there exists y = 1
2
∈ ∆(1) = (0, 1) such that

F (y, x̄, 1) + hB(0, dβ(x̂, y)) = [
1

2
(
1

2
− 1), +∞) + hB(0, |1− 1

2
|)

= [−1

4
, +∞) + hB(0,

1

2
)

= [−1

4
− h

2
, +∞) 6⊆ −C.

Therefore, (ii’) is violated.
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Remark 4.1 (1) If Y = R, C = R+ and F is a single-valued map, then the prob-

lems (PGVEP1) and (PGVEP2) reduce to the parametric scalar equilibrium problem

(EPλ,µ) considered in [11]. Note that the assumption (ii) in Theorem 3.1 ( or (ii,)

in Theorem 4.1) is the same as corresponding one of Theorem 4.2 in [11]. If the as-

sumption (i) of Theorem 4.2 in [11] holds, i.e., f(·, ·, µ) is strongly pseudomonotone,

the assumption (ii) in Theorem 3.1 ( or (ii,) in Theorem 4.1) is obviously satisfied.

Since the solution set S1(λ, µ) is single-valued as a result of the proof of in [11], the

condition (v) in Theorem 3.1 ( or (v,) in Theorem 4.1) holds. So, Theorem 3.1 and

Theorem 4.1 generalize Theorem 4.2 in [11].

(2) Furthermore, let E(λ) = E. The problems (PGVEP1) and (PGVEP2) reduce to the

parametric scalar equilibrium problem (EPµ) considered in [11]. Theorem 3.1 and

Theorem 4.1 also generalize Proposition 3.3 in [11]. The following example shows

the case, where our Theorem 3.1 and Theorem 4.1 are applicable, but Proposition

3.3 in [11] is not applicable.

Example 4.2 Let X,Y,M,C be given as in Example 3.1. Let E = [0, 1] and F (x, y, µ) =

(y + 1)(x− µ2). It follows from the direct computations that

S1(µ) = [µ2, 1], ∀µ ∈ M,

and

∆(µ) = E \ S1(µ) = [0, 1− µ2), ∀µ ∈ M.

It follows from Example 3.1 that all conditions of Theorem 3.1 and Theorem 4.1 are

satisfied. Then, Theorem 3.1 and Theorem 4.1 are applicable. However, let x = 1, y = 0

and µ = 0. It is not hard to see that F (1, 0, 0) = 1, and for any h > 0, F (0, 1, 0) = 0 6≤
−h, which implies that F (·, ·, 0) is not strongly h.β-Hölder pseudomonotone. Therefore,

Proposition 3.3 in [11] is not applicable.
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