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Abstract 

This paper aims to present software engineering 
ontology as software engineering knowledge 
representation for a multi-site software development. It 
will not only facilitate the capturing of software 
engineering knowledge but also enhance the sharing of 
software engineering knowledge across geographically 
multiple software development sites. The software 
engineering ontology assists in defining information for 
the exchange of semantic project data and is used as a 
communication framework. Its end users are software 
engineers sharing software engineering domain 
knowledge as well as software engineering project 
data.  

1. Introduction 

With the advent of the Internet, software 

development has increasingly focused on the Internet 

which enables a multi-site environment that allows 

multiple teams residing across cities, regions, or 

countries to work together in a networked distributed 

fashion to develop the software. A realisation of the 

advantages of multi-site software development has led 

to major corporations moving their software 

development to countries where employees are on 

comparatively lower wages. It is this imperative of 

financial gain that drives people and businesses to 

multi-site development and the Internet which 

facilitates it.  

However, the globalization of software 
development means that the problems of multi-site 
development are increasing. Team members who 
carry out the tasks and activities, team leaders who 
control the tasks and activities, and managers who 
manage the project and leaders, may or may not be at 
the same site in a multi-site environment. These 
people often have never met face-to-face, have 

different cultural and educational backgrounds, 
interpret methods in different ways, etc.  

Additionally, software engineering training and 
practice are quite different between cities and 
countries.  It can be difficult to communicate between 
teams and among team members, if strict software 
engineering principles and discipline are not 
understood and followed. The inconsistency in 
presentation, documentation, design and diagrams 
could prevent access by other teams or members.  
Sometimes, these issues (such as a diagram using 
non-standard notation) are ignored because they are 
not understood and no-one asks for clarification.  

Despite this, software engineering has a 
commonly understood body of knowledge and is an 
easily learnt subject that includes some of the latest 
technology and methodology which is easily 
adopted. However, different teams could be referring 
to different texts on software engineering.  Teams or 
team members use a particular text as their own 
individual guide, and when they communicate, their 
own knowledge base and terminology is different 
from others. Often, the issues raised or debated are 
related to inconsistency in understanding software 
engineering theories and practice.   

Consequently, several practical problems arise and 

underlying issues need to be explored. Communication 

is the real challenge that we face and that we need 

different ways of tackling this through better 

communication and conferencing systems and through 

systems that help resolve differences between the 

teams. Ontology is an important part of developing a 

shared understanding across a project. As Davenport 

and Prusak [1] mentioned, people cannot share 

knowledge if they do not speak a common language.  

Representing software engineering knowledge in the 

form of ontology is helping to clear up ambiguities in 

the terms used in the context of software engineering. 
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Fig. 1. Overview of software engineering ontology as data and knowledge warehousing.  

2. Ontology vs Knowledge Representation 

The term ‘Ontology’ is derived from its usage in 

philosophy where it means the study of being or 

existence as well as the basic categories [2].  Therefore, 

in this field, it is used to refer to what exists in a system 

model. 

An ontology, in the area of computer science, is the 

effort to formulate an exhaustive and rigorous 

conceptual schema within a given domain, typically a 

hierarchical data structure containing all the relevant 

elements and their relationships and rules (regulations) 

within the domain [3].  

An ontology, in the artificial intelligence field, is an 

explicit specification of a conceptualisation [4, 5].  In 

such an ontology, definitions associate the names of 

concepts in the universe of discourse (e.g. classes, 

relations, functions) with describing what the concepts 

mean, and formal axioms that constrain the 

interpretation and well-formed use of these terms [6].  

For example, by default, all computer programmes 

have a fundamental ontology consisting of a standard 

library in a programming language, or files in 

accessible file systems or some other list of ‘what 

exists’.  However, the representations are sometimes 

poor for some certain problem domains, so more 

specialised schema must be created to make the 

information useful and for this we utilise ontology. 

An abstract view of representing the software 

engineering knowledge is shown in Figure 1.  The 

whole set of software engineering concepts 

representing software engineering domain knowledge is 

captured in ontology.  Based on a particular problem 

domain, a project or a particular software development 

probably uses only part of the whole set of software 

engineering concepts.  The specific software 

engineering concepts used for the particular software 

development project representing software engineering 

sub-domain knowledge are also captured in ontology. 

The generic software engineering knowledge represents 

all software engineering concepts, while specific 

software engineering knowledge represents some 

concepts of software engineering for the particular 

problem domain.  For example, if a project uses purely 

object-oriented methodology, then the concept of a data 

flow diagram may not be necessarily included in 

specific concepts. Instead, it includes concepts like 

class diagram, activity diagram and so on. For each 

project in the developmental domain, there exists 

project data or actual data including project agreements 

and project understanding. The project data especially 

meets a particular project need and is needed with the 

software engineering knowledge to define instance 

knowledge in ontology.  Note that the domain 

knowledge is separate from instance knowledge.  The 

instance knowledge varies depending on its use for a 

particular project and is diverse according to project 

requirements, feasibility, etc. in each remote distributed 

team.  The domain knowledge is quite definite, while 

the instance knowledge is particular to problem domain 

and developmental domain in a project.  Once all 

domain knowledge, sub domain knowledge and 

instance knowledge are captured in ontology, it is 

available for sharing among remote software engineers 

through the internet.  All team members, regardless of 

where they are, can query the semantically linked 
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the semantically linked project data and use it as the 

common communication and knowledge basis of 

raising discussion matters, questions, analysing 

problems, proposing revisions or designing solutions 

and the like. 

Software engineering domain knowledge 
constructs should be sought in ontology, a well 
founded model of reality.  Ontology is used to 
analyse the meaning of common conceptual 
modelling constructs [7] which accurately reflect the 
world.  The notion of a concrete thing applies to what 
software engineers perceived based on software 
engineering domain knowledge.  In this light, the 
notion of ontology is a solution for software 
engineering knowledge representation. 

When the knowledge of the software engineering 
domain is represented in a declarative formalism, the 
set of software engineering concepts, their relations 
and their constraints are reflected in the 
representation which represents knowledge.  Thus, 
the software engineering ontology can be defined by 
using a set of software engineering representational 
terms.  Then a conclusion from the knowledge of 
what is can be determined. 

In order for the software engineering domain 
knowledge to be shared amongst software engineers 
or applications, agreement must exist on the topics 
about which information is being communicated.  
The issue of ontological commitment is described as 
the agreement about concepts and relationships 
between those concepts within ontology [5]. When 
the software engineering ontology is committed, it 
means agreement exists with respect to the semantics 
of the concepts and relationships represented. 
Therefore, in order to know what the software 
engineers are talking about, agreement is arrived at. 
The software engineers agree to share knowledge in 
a coherent and consistent manner. 

The software engineering ontology is organised by 

concepts, not words.  This is in order to recognise and 

avoid potential logical ambiguities.  The software 

engineering ontology has been developed for 

communication purposes, thus, it could differ greatly 

from other ontologies developed for different purposes. 

The main purpose of the software engineering ontology 

is to enable communication between computer systems 

or software engineers in order to understand common 

software engineering knowledge and to perform certain 

types of computations.  The key ingredients that make 

up the software engineering ontology are a vocabulary 

of basic software engineering terms and a precise 

specification of what those terms mean.  For software 

engineers or computer systems, different interpretations 

interpretations in different contexts can make the 

meaning of terms confusing and ambiguous but a 

coherent terminology adds clarity and facilitates a 

better understanding. Software engineering ontology 

has specific instances for the corresponding software 

engineering concepts.  These instances contain the 

actual data being queried in the knowledge-based 

applications.  The software engineering ontology 

includes the set of actual data or instances of the 

concepts and assertions that the instances are related to 

each other according to the specific relations in the 

concepts.  The main purpose of the software 

engineering ontology is for enabling knowledge sharing 

and reuse.  In this sense, the software engineering 

ontology is a specification used for making ontological 

commitments. In practice, an ontological commitment 

is an agreement that is consistent and coherent with 

respect to theory specified by the software engineering 

ontology. 

3. Fundamentals for Modeling Software 
Engineering Domain  

Software engineering ontology is like other 

ontologies in other domains which consist of instances, 

properties and classes. Software engineering ontology 

consists of instances representing specific project data, 

properties representing binary relations held among 

software engineering concepts/instances, and classes 

representing the software engineering concepts 

interpreted as sets that contain specific project data.  

The software engineering ontology classes are built up 

of software engineering concepts’ descriptions that 

specify the conditions that must be satisfied by project 

data in order for it to be a member of the classes. 

The relationships between classes or instances 

represented by data type property and object property 

come from two different sources in software 

engineering ontology.  Data type property associates 

classes or instances to an XML schema data type value 

or an RDF literal.  Object property associates a class to 

a class or an instance to an instance.  Association 

between class and property does not always generate 

the representation of a class as a bundle of owned 

properties.  In other words, software engineering 

ontology classes have no owned software engineering 

properties.  They are independent of each other.  

Software engineering ontology properties may have 

sub-properties and it is possible to form hierarchies of 

properties like classes.  Sub-classes specialise their 

super-classes in the same way that sub-properties 

specialise their super-properties.  The relationships 

among classes are binary and have distinctive 
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beginnings and ends.  Object properties link ontology 

class from the domain to ontology class from the range.  

Data type properties link ontology class from the 

domain to an XML schema data type value from the 

range.  It is possible to specify multiple classes as the 

domain or the range for a property.  If multiple classes 

are specified, the domain or the range of the property is 

understood to be the union of the classes.  Software 

engineering ontology supports a fixed defined extent 

for an ontology class.  It is used to define a class 

description of the enumeration kind.  Software 

engineering ontology also supports fixed defined data 

values of data range for a data type property.  It 

specifies the set of data values of the data range.  In 

software engineering ontology a property is defined by 

default as having range and domain and both range and 

domain can apply to any class in the software 

engineering ontology.  The scope of the property does 

not limit and attach to the classes on which it is defined. 

There is no direct linkage between association and 

software engineering ontology class. The linkage is 

mediated by a software engineering ontology property. 

Most of the software engineering ontology classes 

normally have software engineering ontology 

properties, although this is not always true.  Software 

engineering ontology property may or may not be 

owned by one or more software engineering ontology 

classes.  The property can even remain by itself without 

the classes. 

Software engineering ontology enriches the meaning 

of properties through the use of property characteristics 

as do other ontologies in other domains.  The first 

characteristic is functional properties which have a 

maximum cardinality of one on its range.  Another 

property characteristic is inverse functional properties 

which have a maximum cardinality of one on its 

domain.  Software engineering ontology allows 

properties to be declared symmetric or transitive.  

Software engineering ontology properties are used to 

create restrictions which restrict the instances that 

belong to a class.  An ontology property can have its 

range restricted when the property is applied to the 

domain class, either that the range is limited to a class 

only (allValueFrom) or that the range is one part of a 

class (someValueFrom).  Notice that in allValueFrom 

restrictions, the range would not have been related with 

other classes apart from a specified class.  In software 

engineering ontology, an ontology property can be 

constrained by cardinality restrictions on the domain 

giving the minimum (minCardinality), maximum 

(maxCardinality), or exact (cardinality) specified 

number of instances which can participate in the 

relation.  A hasValue restriction describes the set of 

instances that have at least one relation along a 

specified property to a specific instance. 

4. The Software Engineering Ontology  

A process of design in the software engineering 

ontology refers to the process of design concepts, 

concepts hierarchy, relations, and constraints in the 

software engineering domain. Sources of software 

engineering knowledge are from the software 

engineering textbook of Ian Sommerville [8] and the 

Software Engineering Body of Knowledge (SWEBOK) 

[9] upon which we base our design. The software 

engineering ontology contains 362 concepts and 303 

relations. Figure 2 shows overview of a part of software 

engineering ontology illustrating software engineering 

concepts construction. 

Due to limited space, we will illustrate the design 
by choosing some specific examples of common 
widely used concepts i.e. entity diagram and activity 
diagram in this section. First example is an entity-
relationship diagram which represents conceptual 
models of data stored in information systems [10].  In 
an ontology model of entity-relationship diagrams, 
there are three main basic components in the entity-
relationship diagrams i.e. entity, attributes, and 
relationships which form three ontology classes i.e. 
Entities class, Entity_Attributes class and 
Entitiy_Relationships class respectively.  
Entity_Attributes class can be classified as being 
simple (i.e. Simple_Entity_Attribute class), composite 
(i.e. Composite_Entity_Attribute class) or derived (i.e. 
Derived_Entity_Attribute class).  A simple attribute is 
composed of a single component and a composite 
attribute is composed of multiple components.  In the 
ontology model, cardinality restriction in relation 
between Entity_Attribute classes defines attributes as 
being either simple or composite.  A derived attribute 
is based on another attribute(s) and refers to relation 
has_Derived_Attribute restricting at least one relation.  
Key can be defined as attributes of super key, 
alternate key, primary key, or candidate key.  This 
refers to relation Entity_Attribute_Key in the ontology 
model and restricts to one of super key, alternate key, 
primary key, or candidate key.  An attribute can have 
a single or greater-than-one value.  In the ontology 
model, cardinality restriction from relation 
Entity_Attribute_Value defines having a single or 
greater-than-one value. There are three main degrees 
of relationships which are unary (i.e. 
Unary_Entity_Relationship class), binary (i.e. 
Binary_Entity_Relationship class), and complex (i.e. 
Complex_ Entity_Relationship class).  The complex 
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relationship can be further divided into quaternary 
(i.e. Quaternary_Entity_Relationship class) and ternary 
(Ternary_Entity_Relationship class.  In the ontology 
model, cardinality restriction constrains the number 
of entities that participate in a relationship.  For 
example, a unary relationship represents a 
relationship of one entity or, more precisely, that 
entity is self-linked.  This means that in the ontology 
view there is only one Entity in the relation 
Relating_Entity and no Entity in the relation 
Related_Entity.  In an entity relationship, cardinality 
can be specified as string which can be a string of 1 
(one and only one), * (zero or more), 1..* (one or 
more), 0..1 (zero or one) and so forth as shown in the 
ontology model.  Attributes can also be assigned to 
relationships referring to relation 
has_Attribute_on_Relationships in the ontology model. 

An activity diagram shows the control flow from 

activity to activity [10].  Mainly, activity diagrams 

contain activities, transitions, swimlane, and objects 

forming ontology classes of Activity, Transition,

Swimlane, and Object respectively.  A locus of 

activities is specified by a swimlane.  This refers to 

relation in_Swimlane in the ontology model.  Every 

activity belongs to exactly one swimlane; however, 

transition may make it cross lanes.  This means 

maximum cardinality restriction in relation 

in_Swimlane.  Objects may be involved in the flow of 

control associated with an activity diagram.  This refers 

to relations set_Object_Flow and its inverse, 

get_Object_Flow. Transitions of activities are classified 

into four main transitions.  Firstly, normal transition 

(i.e. Normal_Transition class) shows the path from one 

activity to the next activity.  This means that, ontology 

class Normal_Transition that has a cardinality 

cardinality restriction, restricts only the one activity in 

the relations Related_Activity and Relating_Activity.

Secondly, special transition (i.e. Special_Transition
class) is further divided into an initial transityion (i.e. 

Start_Transition class) and a stop transition 

(Stop_Transition class).  The initial transition is where 

the activity diagrams start.  This means that, class 

Start_Transition has a cardinality restriction and 

restricts at least one activity in relation 

Related_Special_Activity but no activity in relation 

Relating_Special_Activity.  The stop transition is where 

the activity diagrams stop.  This means that class 

Stop_Transition which has a cardinality restriction, 

restricts at least one activity in relation 

Relating_Special_Activity but no activity in relation 

Related_Special_Activity.  Thirdly, branch transition 

which specifies alternate paths taken based on some 

guard expression refers to ontology Branch_Transition
class.  Lastly, concurrent transition (i.e. 

Concurrent_Transition class) is further divided into a 

fork transition (i.e. Fork_Transition class) and a join 

transition (Join_Transition class).  The fork transition 

represents the splitting of a single flow of control into 

two or more flows of control.  This means that ontology 

class Fork_Transition, that has a cardinality restriction, 

restricts at least two activities in relation 

Related_Concurrent_Activity and only one activity in 

relation Relating_Concurrent_Activity.  The join 

transition represents the joining of two or more 

incoming transitions and one outgoing transition.  This 

means that ontology class Join_Transition, which has 

cardinality restriction, restricts at least two activities in 

relation Relating_Concurrent_Activity and only one 

activity in relation Related_Concurrent_Activity.

Software 
Engineering

Software 
Design

Software 
Construction

Software 
Testing

Software Tools

Requirements

Requirements 
Elicitation

Requirements 
Analysis

Requirements 
Specification

Requirements 
Validation

Software 
Requirements

Design 
Activities

Design 
Methods

Architectural 
Design

Structural 
Design

Dynamic 
Design

Function-
oriented 
Design

Object-
oriented 
Design

Data 
Structure 
Design

Component
-based 
Design

Construction 
Languages

Coding

Reuse

Configuration 
Languages

Toolkit 
Languages

Programming 
Languages

Test Issues
Test Targets

Test 
Objectives

Test 
Techniques

Test Activities

Software 
MethodsHeuristic 

Methods

Formal 
Methods

Prototyping 
Method

Software 
Engineering
Software 
Engineering

Software 
Design

Software 
Construction

Software 
Testing

Software Tools

RequirementsRequirements

Requirements 
Elicitation
Requirements 
Elicitation

Requirements 
Analysis
Requirements 
Analysis

Requirements 
Specification
Requirements 
Specification

Requirements 
Validation
Requirements 
Validation

Software 
Requirements

Design 
Activities

Design 
Methods

Architectural 
Design
Architectural 
Design

Structural 
Design
Structural 
Design

Dynamic 
Design
Dynamic 
Design

Function-
oriented 
Design

Function-
oriented 
Design

Object-
oriented 
Design

Object-
oriented 
Design

Data 
Structure 
Design

Data 
Structure 
Design

Component
-based 
Design

Construction 
Languages

CodingCoding

Reuse

Configuration 
Languages

Toolkit 
Languages

Programming 
Languages

Test Issues
Test Targets

Test 
Objectives

Test 
Techniques

Test Activities

Software 
MethodsHeuristic 

Methods

Formal 
Methods

Prototyping 
Method

Fig. 2. Overview of a part of software engineering ontology.  
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5. Software Engineering Ontology as 
Knowledge Representation  

In this section, we illustrate how software 

engineering ontology represents software engineering 

knowledge to facilitate the communication framework 

in multi-site software development environment. 

Software engineering ontology presents explicit 

assumptions concerning the objects referring to the 

domain knowledge of software development. A set of 

objects and interrelations and their constraints renders 

their agreed meanings and properties. Knowledge / 

Data warehousing through the software engineering 

ontology eliminates misunderstandings, 

miscommunications and misinterpretations. For 

example to represent knowledge of an activity diagram 

shown in Figure 3, following is a list of actions. Note 

that the activity diagram used as example here is 

derived from the book of Enterprise Java with UML 

[11]. 

Fig. 3. An Activity diagram.  

1. Adding new instances of class Activity named 

‘Display Employees’, ‘Ask for New Employee 

Data’, ‘Store New Data’, ‘Display Error’, 

‘Record Error’, ‘Update View’, and ‘Display 

Conflict’.  

2. Adding new instance of class Start_Transition
relating relation Related_Activity with instance 

of class Activity named ‘Display Employees’. 

3. Adding new instance of class 

Activity_Transition relating relation 

Relating_Activity with instance of class 

Activity named ‘Display Employees’ and 

relating relation Related_Activity with instance 

of class Activity named ‘Ask for New 

Employee Data’. 

4. Adding new instance of class 

Activity_Transition relating relation 

Relating_Activity with instance of class 

Activity named ‘Ask for New Employee Data’ 

and relating relation Related_Activity with 

instance of class Activity named ‘Store New 

Data’. 

5. Adding new instance of class 

Branch_Transition relating relation 

Relating_Activity with instance of class 

Activity named ‘Store New Data’ and relating 

relation Related_Activity with instances of 

class Activity named ‘Update View’, ‘Display 

Conflict’, and ‘Display Error’. 

6. Adding new instance of class 

Activity_Transition relating relation 

Relating_Activity with instance of class 

Activity named ‘Display Error’ and relating 

relation Related_Activity with instance of class 

Activity named ‘Record Error’. 

7. Adding new instance of class Stop_Transition
relating relation Relating_Activity with 

instance of class Activity named ‘Record 

Error’. 

Warehousing project data drawn based on a 

consensus of domain knowledge of software 

engineering formed in the software engineering 

ontology, makes information explicit.  Having attached 

domain knowledge, it makes project data more 

understandable, linear, predictable and controllable.  

Users learn about some missing pieces that make sense 

of the attentive interaction among users. Alarms can be 

activated when there are some missing pieces while 

sharing project data.  

Fig. 4. An updated Activity diagram.  

Warehousing software engineering knowledge and 

project data formed into software engineering ontology 

facilitates communication framework among software 

engineers and provides consistent understanding of the 

domain knowledge.  For example, one would like to 

communicate changes of project design of the activity 
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diagram shown in Figure 3.  Figure 4 shows an updated 

activity diagram.  As can be noted when comparing 

Figure 3 and Figure 4, the software engineer has 

revised the transition of activity ‘Update View’. 

Originally, activity ‘Update View’ transited to activity 

‘Ask for New Employee Data’.  Revision has been 

made by activity ‘Update View’ transited to activity 

‘Notify Employee by Email’ and activity ‘Notify 

Employee by Email’ transited to activity ‘Ask for New 

Employee Data’.  Functioning is as follows: 

1. Delete instance of class Normal_Transition that 
has relation Related_Activity with instance of 
class Activity named ‘Ask for New Employee 
Data’ and has relation Relating_Activity with 
instance of class Activity named ‘Update 
View’. 

2. Add new instance of class Activity named 
‘Notify Employee by Email’. 

3. Add instance of class Normal_Transition that 
links relation Related_Activity with instance of 
class Activity named ‘Notify Employee by 
Email’ and links relation Relating_Activity 
with instance of class Activity named ‘Update 
View’. 

4. Add instance of class Normal_Transition that 
links relation Related_Activity with instance of 
class Activity named ‘Ask for New Employee 
Data’ and links relation Relating_Activity with 
instance of class Activity named ‘Notify 
Employee by Email’. 

This example shows that a user can communicate 
about any project data that is captured as ontology 
instances.  The design of an activity diagram is 
captured, and adheres to the concept of the UML 
activity diagram in the software engineering domain 
knowledge captured as software engineering 
ontology.  This enables a meaningful communication 
about the design of activity diagram.  Activity 
diagrams, statechart diagrams and state transition 
diagrams are related, thereby sometimes causing 
confusion.  While a statechart diagram focuses 
attention on an object undergoing a process (or on a 
process as an object), an activity diagram focuses on 
the flow of activities involved in the process.  The 
activity diagram shows how these activities depend 
on one another.  Conclusively, in determining what 
concept of project information is captured (statechart 
diagrams or activity diagrams) or where that project 
data resides (statechart diagrams or activity 
diagrams), it is assumed that this is determined by 
the member who specifies what the project data 
really means in the context. Once users are 
committed to the domain knowledge of activity 
diagrams and recognise that it is mainly constituted 

of activity and activity transitions and constraint 
attached, the commitment enables people to discuss 
the same topic (the topic of design of activity 
diagram).  Consequently, people can coordinate their 
activities. 

6. Conclusion 

Software engineering knowledge and project data, 
formed into software engineering ontology, helps 
communications among remote team members and 
provides consistent understanding of the domain 
knowledge and project data. Software engineering 
ontology, together with its instance knowledge, is 
used as a communication framework within a 
project, thereby providing rational and shared 
understanding of project matters.  

In this paper, we have analysed software 
engineering ontology as knowledge and data 
warehousing.  We have presented the software 
engineering ontology.  We have only covered some 
distinguished part of modelling domain knowledge 
of software engineering as example. Deployment has 
been discussed in aspects of knowledge and data 
warehousing and communication framework. 
However, there are many improvements that can be 
made through future work. Future work could 
consider software engineering ontology evolution. It 
is the case of software engineering domain 
knowledge changing with the introduction of new 
concepts, and change in the conceptualisation as the 
semantics of existing terms have been modified with 
time. This is totally outside the scope of this study 
because we assume that software engineering 
domain knowledge is mature and has undergone no 
further changes. Instead, instantiations in the 
software engineering ontology change with 
corresponding changes to the ontology. 
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