
©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195641428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Software Engineering Ontology as Software Engineering Knowledge
Representation

P. Wongthongtham, N. Kasisopha, E. Chang, T. Dillon

Digital Ecosystems and Business Intelligence Institute,
Curtin University of Technology, Perth, Australia

E-mail: {p.wongthongtham, n.kasisopha, e.chang, t.dillon}@curtin.edu.au

Abstract

This paper aims to present software engineering
ontology as software engineering knowledge
representation for a multi-site software development. It
will not only facilitate the capturing of software
engineering knowledge but also enhance the sharing of
software engineering knowledge across geographically
multiple software development sites. The software
engineering ontology assists in defining information for
the exchange of semantic project data and is used as a
communication framework. Its end users are software
engineers sharing software engineering domain
knowledge as well as software engineering project
data.

1. Introduction

With the advent of the Internet, software

development has increasingly focused on the Internet

which enables a multi-site environment that allows

multiple teams residing across cities, regions, or

countries to work together in a networked distributed

fashion to develop the software. A realisation of the

advantages of multi-site software development has led

to major corporations moving their software

development to countries where employees are on

comparatively lower wages. It is this imperative of

financial gain that drives people and businesses to

multi-site development and the Internet which

facilitates it.

However, the globalization of software
development means that the problems of multi-site
development are increasing. Team members who
carry out the tasks and activities, team leaders who
control the tasks and activities, and managers who
manage the project and leaders, may or may not be at
the same site in a multi-site environment. These
people often have never met face-to-face, have

different cultural and educational backgrounds,
interpret methods in different ways, etc.

Additionally, software engineering training and
practice are quite different between cities and
countries. It can be difficult to communicate between
teams and among team members, if strict software
engineering principles and discipline are not
understood and followed. The inconsistency in
presentation, documentation, design and diagrams
could prevent access by other teams or members.
Sometimes, these issues (such as a diagram using
non-standard notation) are ignored because they are
not understood and no-one asks for clarification.

Despite this, software engineering has a
commonly understood body of knowledge and is an
easily learnt subject that includes some of the latest
technology and methodology which is easily
adopted. However, different teams could be referring
to different texts on software engineering. Teams or
team members use a particular text as their own
individual guide, and when they communicate, their
own knowledge base and terminology is different
from others. Often, the issues raised or debated are
related to inconsistency in understanding software
engineering theories and practice.

Consequently, several practical problems arise and

underlying issues need to be explored. Communication

is the real challenge that we face and that we need

different ways of tackling this through better

communication and conferencing systems and through

systems that help resolve differences between the

teams. Ontology is an important part of developing a

shared understanding across a project. As Davenport

and Prusak [1] mentioned, people cannot share

knowledge if they do not speak a common language.

Representing software engineering knowledge in the

form of ontology is helping to clear up ambiguities in

the terms used in the context of software engineering.

Third 2008 International Conference on Convergence and Hybrid Information Technology

978-0-7695-3407-7/08 $25.00 © 2008 IEEE

DOI 10.1109/ICCIT.2008.301

668

Third 2008 International Conference on Convergence and Hybrid Information Technology

978-0-7695-3407-7/08 $25.00 © 2008 IEEE

DOI 10.1109/ICCIT.2008.301

668

Fig. 1. Overview of software engineering ontology as data and knowledge warehousing.

2. Ontology vs Knowledge Representation

The term ‘Ontology’ is derived from its usage in

philosophy where it means the study of being or

existence as well as the basic categories [2]. Therefore,

in this field, it is used to refer to what exists in a system

model.

An ontology, in the area of computer science, is the

effort to formulate an exhaustive and rigorous

conceptual schema within a given domain, typically a

hierarchical data structure containing all the relevant

elements and their relationships and rules (regulations)

within the domain [3].

An ontology, in the artificial intelligence field, is an

explicit specification of a conceptualisation [4, 5]. In

such an ontology, definitions associate the names of

concepts in the universe of discourse (e.g. classes,

relations, functions) with describing what the concepts

mean, and formal axioms that constrain the

interpretation and well-formed use of these terms [6].

For example, by default, all computer programmes

have a fundamental ontology consisting of a standard

library in a programming language, or files in

accessible file systems or some other list of ‘what

exists’. However, the representations are sometimes

poor for some certain problem domains, so more

specialised schema must be created to make the

information useful and for this we utilise ontology.

An abstract view of representing the software

engineering knowledge is shown in Figure 1. The

whole set of software engineering concepts

representing software engineering domain knowledge is

captured in ontology. Based on a particular problem

domain, a project or a particular software development

probably uses only part of the whole set of software

engineering concepts. The specific software

engineering concepts used for the particular software

development project representing software engineering

sub-domain knowledge are also captured in ontology.

The generic software engineering knowledge represents

all software engineering concepts, while specific

software engineering knowledge represents some

concepts of software engineering for the particular

problem domain. For example, if a project uses purely

object-oriented methodology, then the concept of a data

flow diagram may not be necessarily included in

specific concepts. Instead, it includes concepts like

class diagram, activity diagram and so on. For each

project in the developmental domain, there exists

project data or actual data including project agreements

and project understanding. The project data especially

meets a particular project need and is needed with the

software engineering knowledge to define instance

knowledge in ontology. Note that the domain

knowledge is separate from instance knowledge. The

instance knowledge varies depending on its use for a

particular project and is diverse according to project

requirements, feasibility, etc. in each remote distributed

team. The domain knowledge is quite definite, while

the instance knowledge is particular to problem domain

and developmental domain in a project. Once all

domain knowledge, sub domain knowledge and

instance knowledge are captured in ontology, it is

available for sharing among remote software engineers

through the internet. All team members, regardless of

where they are, can query the semantically linked

669669

the semantically linked project data and use it as the

common communication and knowledge basis of

raising discussion matters, questions, analysing

problems, proposing revisions or designing solutions

and the like.

Software engineering domain knowledge
constructs should be sought in ontology, a well
founded model of reality. Ontology is used to
analyse the meaning of common conceptual
modelling constructs [7] which accurately reflect the
world. The notion of a concrete thing applies to what
software engineers perceived based on software
engineering domain knowledge. In this light, the
notion of ontology is a solution for software
engineering knowledge representation.

When the knowledge of the software engineering
domain is represented in a declarative formalism, the
set of software engineering concepts, their relations
and their constraints are reflected in the
representation which represents knowledge. Thus,
the software engineering ontology can be defined by
using a set of software engineering representational
terms. Then a conclusion from the knowledge of
what is can be determined.

In order for the software engineering domain
knowledge to be shared amongst software engineers
or applications, agreement must exist on the topics
about which information is being communicated.
The issue of ontological commitment is described as
the agreement about concepts and relationships
between those concepts within ontology [5]. When
the software engineering ontology is committed, it
means agreement exists with respect to the semantics
of the concepts and relationships represented.
Therefore, in order to know what the software
engineers are talking about, agreement is arrived at.
The software engineers agree to share knowledge in
a coherent and consistent manner.

The software engineering ontology is organised by

concepts, not words. This is in order to recognise and

avoid potential logical ambiguities. The software

engineering ontology has been developed for

communication purposes, thus, it could differ greatly

from other ontologies developed for different purposes.

The main purpose of the software engineering ontology

is to enable communication between computer systems

or software engineers in order to understand common

software engineering knowledge and to perform certain

types of computations. The key ingredients that make

up the software engineering ontology are a vocabulary

of basic software engineering terms and a precise

specification of what those terms mean. For software

engineers or computer systems, different interpretations

interpretations in different contexts can make the

meaning of terms confusing and ambiguous but a

coherent terminology adds clarity and facilitates a

better understanding. Software engineering ontology

has specific instances for the corresponding software

engineering concepts. These instances contain the

actual data being queried in the knowledge-based

applications. The software engineering ontology

includes the set of actual data or instances of the

concepts and assertions that the instances are related to

each other according to the specific relations in the

concepts. The main purpose of the software

engineering ontology is for enabling knowledge sharing

and reuse. In this sense, the software engineering

ontology is a specification used for making ontological

commitments. In practice, an ontological commitment

is an agreement that is consistent and coherent with

respect to theory specified by the software engineering

ontology.

3. Fundamentals for Modeling Software
Engineering Domain

Software engineering ontology is like other

ontologies in other domains which consist of instances,

properties and classes. Software engineering ontology

consists of instances representing specific project data,

properties representing binary relations held among

software engineering concepts/instances, and classes

representing the software engineering concepts

interpreted as sets that contain specific project data.

The software engineering ontology classes are built up

of software engineering concepts’ descriptions that

specify the conditions that must be satisfied by project

data in order for it to be a member of the classes.

The relationships between classes or instances

represented by data type property and object property

come from two different sources in software

engineering ontology. Data type property associates

classes or instances to an XML schema data type value

or an RDF literal. Object property associates a class to

a class or an instance to an instance. Association

between class and property does not always generate

the representation of a class as a bundle of owned

properties. In other words, software engineering

ontology classes have no owned software engineering

properties. They are independent of each other.

Software engineering ontology properties may have

sub-properties and it is possible to form hierarchies of

properties like classes. Sub-classes specialise their

super-classes in the same way that sub-properties

specialise their super-properties. The relationships

among classes are binary and have distinctive

670670

beginnings and ends. Object properties link ontology

class from the domain to ontology class from the range.

Data type properties link ontology class from the

domain to an XML schema data type value from the

range. It is possible to specify multiple classes as the

domain or the range for a property. If multiple classes

are specified, the domain or the range of the property is

understood to be the union of the classes. Software

engineering ontology supports a fixed defined extent

for an ontology class. It is used to define a class

description of the enumeration kind. Software

engineering ontology also supports fixed defined data

values of data range for a data type property. It

specifies the set of data values of the data range. In

software engineering ontology a property is defined by

default as having range and domain and both range and

domain can apply to any class in the software

engineering ontology. The scope of the property does

not limit and attach to the classes on which it is defined.

There is no direct linkage between association and

software engineering ontology class. The linkage is

mediated by a software engineering ontology property.

Most of the software engineering ontology classes

normally have software engineering ontology

properties, although this is not always true. Software

engineering ontology property may or may not be

owned by one or more software engineering ontology

classes. The property can even remain by itself without

the classes.

Software engineering ontology enriches the meaning

of properties through the use of property characteristics

as do other ontologies in other domains. The first

characteristic is functional properties which have a

maximum cardinality of one on its range. Another

property characteristic is inverse functional properties

which have a maximum cardinality of one on its

domain. Software engineering ontology allows

properties to be declared symmetric or transitive.

Software engineering ontology properties are used to

create restrictions which restrict the instances that

belong to a class. An ontology property can have its

range restricted when the property is applied to the

domain class, either that the range is limited to a class

only (allValueFrom) or that the range is one part of a

class (someValueFrom). Notice that in allValueFrom

restrictions, the range would not have been related with

other classes apart from a specified class. In software

engineering ontology, an ontology property can be

constrained by cardinality restrictions on the domain

giving the minimum (minCardinality), maximum

(maxCardinality), or exact (cardinality) specified

number of instances which can participate in the

relation. A hasValue restriction describes the set of

instances that have at least one relation along a

specified property to a specific instance.

4. The Software Engineering Ontology

A process of design in the software engineering

ontology refers to the process of design concepts,

concepts hierarchy, relations, and constraints in the

software engineering domain. Sources of software

engineering knowledge are from the software

engineering textbook of Ian Sommerville [8] and the

Software Engineering Body of Knowledge (SWEBOK)

[9] upon which we base our design. The software

engineering ontology contains 362 concepts and 303

relations. Figure 2 shows overview of a part of software

engineering ontology illustrating software engineering

concepts construction.

Due to limited space, we will illustrate the design
by choosing some specific examples of common
widely used concepts i.e. entity diagram and activity
diagram in this section. First example is an entity-
relationship diagram which represents conceptual
models of data stored in information systems [10]. In
an ontology model of entity-relationship diagrams,
there are three main basic components in the entity-
relationship diagrams i.e. entity, attributes, and
relationships which form three ontology classes i.e.
Entities class, Entity_Attributes class and
Entitiy_Relationships class respectively.
Entity_Attributes class can be classified as being
simple (i.e. Simple_Entity_Attribute class), composite
(i.e. Composite_Entity_Attribute class) or derived (i.e.
Derived_Entity_Attribute class). A simple attribute is
composed of a single component and a composite
attribute is composed of multiple components. In the
ontology model, cardinality restriction in relation
between Entity_Attribute classes defines attributes as
being either simple or composite. A derived attribute
is based on another attribute(s) and refers to relation
has_Derived_Attribute restricting at least one relation.
Key can be defined as attributes of super key,
alternate key, primary key, or candidate key. This
refers to relation Entity_Attribute_Key in the ontology
model and restricts to one of super key, alternate key,
primary key, or candidate key. An attribute can have
a single or greater-than-one value. In the ontology
model, cardinality restriction from relation
Entity_Attribute_Value defines having a single or
greater-than-one value. There are three main degrees
of relationships which are unary (i.e.
Unary_Entity_Relationship class), binary (i.e.
Binary_Entity_Relationship class), and complex (i.e.
Complex_ Entity_Relationship class). The complex

671671

relationship can be further divided into quaternary
(i.e. Quaternary_Entity_Relationship class) and ternary
(Ternary_Entity_Relationship class. In the ontology
model, cardinality restriction constrains the number
of entities that participate in a relationship. For
example, a unary relationship represents a
relationship of one entity or, more precisely, that
entity is self-linked. This means that in the ontology
view there is only one Entity in the relation
Relating_Entity and no Entity in the relation
Related_Entity. In an entity relationship, cardinality
can be specified as string which can be a string of 1
(one and only one), * (zero or more), 1..* (one or
more), 0..1 (zero or one) and so forth as shown in the
ontology model. Attributes can also be assigned to
relationships referring to relation
has_Attribute_on_Relationships in the ontology model.

An activity diagram shows the control flow from

activity to activity [10]. Mainly, activity diagrams

contain activities, transitions, swimlane, and objects

forming ontology classes of Activity, Transition,

Swimlane, and Object respectively. A locus of

activities is specified by a swimlane. This refers to

relation in_Swimlane in the ontology model. Every

activity belongs to exactly one swimlane; however,

transition may make it cross lanes. This means

maximum cardinality restriction in relation

in_Swimlane. Objects may be involved in the flow of

control associated with an activity diagram. This refers

to relations set_Object_Flow and its inverse,

get_Object_Flow. Transitions of activities are classified

into four main transitions. Firstly, normal transition

(i.e. Normal_Transition class) shows the path from one

activity to the next activity. This means that, ontology

class Normal_Transition that has a cardinality

cardinality restriction, restricts only the one activity in

the relations Related_Activity and Relating_Activity.

Secondly, special transition (i.e. Special_Transition
class) is further divided into an initial transityion (i.e.

Start_Transition class) and a stop transition

(Stop_Transition class). The initial transition is where

the activity diagrams start. This means that, class

Start_Transition has a cardinality restriction and

restricts at least one activity in relation

Related_Special_Activity but no activity in relation

Relating_Special_Activity. The stop transition is where

the activity diagrams stop. This means that class

Stop_Transition which has a cardinality restriction,

restricts at least one activity in relation

Relating_Special_Activity but no activity in relation

Related_Special_Activity. Thirdly, branch transition

which specifies alternate paths taken based on some

guard expression refers to ontology Branch_Transition
class. Lastly, concurrent transition (i.e.

Concurrent_Transition class) is further divided into a

fork transition (i.e. Fork_Transition class) and a join

transition (Join_Transition class). The fork transition

represents the splitting of a single flow of control into

two or more flows of control. This means that ontology

class Fork_Transition, that has a cardinality restriction,

restricts at least two activities in relation

Related_Concurrent_Activity and only one activity in

relation Relating_Concurrent_Activity. The join

transition represents the joining of two or more

incoming transitions and one outgoing transition. This

means that ontology class Join_Transition, which has

cardinality restriction, restricts at least two activities in

relation Relating_Concurrent_Activity and only one

activity in relation Related_Concurrent_Activity.

Software
Engineering

Software
Design

Software
Construction

Software
Testing

Software Tools

Requirements

Requirements
Elicitation

Requirements
Analysis

Requirements
Specification

Requirements
Validation

Software
Requirements

Design
Activities

Design
Methods

Architectural
Design

Structural
Design

Dynamic
Design

Function-
oriented
Design

Object-
oriented
Design

Data
Structure
Design

Component
-based
Design

Construction
Languages

Coding

Reuse

Configuration
Languages

Toolkit
Languages

Programming
Languages

Test Issues
Test Targets

Test
Objectives

Test
Techniques

Test Activities

Software
MethodsHeuristic

Methods

Formal
Methods

Prototyping
Method

Software
Engineering
Software
Engineering

Software
Design

Software
Construction

Software
Testing

Software Tools

RequirementsRequirements

Requirements
Elicitation
Requirements
Elicitation

Requirements
Analysis
Requirements
Analysis

Requirements
Specification
Requirements
Specification

Requirements
Validation
Requirements
Validation

Software
Requirements

Design
Activities

Design
Methods

Architectural
Design
Architectural
Design

Structural
Design
Structural
Design

Dynamic
Design
Dynamic
Design

Function-
oriented
Design

Function-
oriented
Design

Object-
oriented
Design

Object-
oriented
Design

Data
Structure
Design

Data
Structure
Design

Component
-based
Design

Construction
Languages

CodingCoding

Reuse

Configuration
Languages

Toolkit
Languages

Programming
Languages

Test Issues
Test Targets

Test
Objectives

Test
Techniques

Test Activities

Software
MethodsHeuristic

Methods

Formal
Methods

Prototyping
Method

Fig. 2. Overview of a part of software engineering ontology.

672672

5. Software Engineering Ontology as
Knowledge Representation

In this section, we illustrate how software

engineering ontology represents software engineering

knowledge to facilitate the communication framework

in multi-site software development environment.

Software engineering ontology presents explicit

assumptions concerning the objects referring to the

domain knowledge of software development. A set of

objects and interrelations and their constraints renders

their agreed meanings and properties. Knowledge /

Data warehousing through the software engineering

ontology eliminates misunderstandings,

miscommunications and misinterpretations. For

example to represent knowledge of an activity diagram

shown in Figure 3, following is a list of actions. Note

that the activity diagram used as example here is

derived from the book of Enterprise Java with UML

[11].

Fig. 3. An Activity diagram.

1. Adding new instances of class Activity named

‘Display Employees’, ‘Ask for New Employee

Data’, ‘Store New Data’, ‘Display Error’,

‘Record Error’, ‘Update View’, and ‘Display

Conflict’.

2. Adding new instance of class Start_Transition
relating relation Related_Activity with instance

of class Activity named ‘Display Employees’.

3. Adding new instance of class

Activity_Transition relating relation

Relating_Activity with instance of class

Activity named ‘Display Employees’ and

relating relation Related_Activity with instance

of class Activity named ‘Ask for New

Employee Data’.

4. Adding new instance of class

Activity_Transition relating relation

Relating_Activity with instance of class

Activity named ‘Ask for New Employee Data’

and relating relation Related_Activity with

instance of class Activity named ‘Store New

Data’.

5. Adding new instance of class

Branch_Transition relating relation

Relating_Activity with instance of class

Activity named ‘Store New Data’ and relating

relation Related_Activity with instances of

class Activity named ‘Update View’, ‘Display

Conflict’, and ‘Display Error’.

6. Adding new instance of class

Activity_Transition relating relation

Relating_Activity with instance of class

Activity named ‘Display Error’ and relating

relation Related_Activity with instance of class

Activity named ‘Record Error’.

7. Adding new instance of class Stop_Transition
relating relation Relating_Activity with

instance of class Activity named ‘Record

Error’.

Warehousing project data drawn based on a

consensus of domain knowledge of software

engineering formed in the software engineering

ontology, makes information explicit. Having attached

domain knowledge, it makes project data more

understandable, linear, predictable and controllable.

Users learn about some missing pieces that make sense

of the attentive interaction among users. Alarms can be

activated when there are some missing pieces while

sharing project data.

Fig. 4. An updated Activity diagram.

Warehousing software engineering knowledge and

project data formed into software engineering ontology

facilitates communication framework among software

engineers and provides consistent understanding of the

domain knowledge. For example, one would like to

communicate changes of project design of the activity

673673

diagram shown in Figure 3. Figure 4 shows an updated

activity diagram. As can be noted when comparing

Figure 3 and Figure 4, the software engineer has

revised the transition of activity ‘Update View’.

Originally, activity ‘Update View’ transited to activity

‘Ask for New Employee Data’. Revision has been

made by activity ‘Update View’ transited to activity

‘Notify Employee by Email’ and activity ‘Notify

Employee by Email’ transited to activity ‘Ask for New

Employee Data’. Functioning is as follows:

1. Delete instance of class Normal_Transition that
has relation Related_Activity with instance of
class Activity named ‘Ask for New Employee
Data’ and has relation Relating_Activity with
instance of class Activity named ‘Update
View’.

2. Add new instance of class Activity named
‘Notify Employee by Email’.

3. Add instance of class Normal_Transition that
links relation Related_Activity with instance of
class Activity named ‘Notify Employee by
Email’ and links relation Relating_Activity
with instance of class Activity named ‘Update
View’.

4. Add instance of class Normal_Transition that
links relation Related_Activity with instance of
class Activity named ‘Ask for New Employee
Data’ and links relation Relating_Activity with
instance of class Activity named ‘Notify
Employee by Email’.

This example shows that a user can communicate
about any project data that is captured as ontology
instances. The design of an activity diagram is
captured, and adheres to the concept of the UML
activity diagram in the software engineering domain
knowledge captured as software engineering
ontology. This enables a meaningful communication
about the design of activity diagram. Activity
diagrams, statechart diagrams and state transition
diagrams are related, thereby sometimes causing
confusion. While a statechart diagram focuses
attention on an object undergoing a process (or on a
process as an object), an activity diagram focuses on
the flow of activities involved in the process. The
activity diagram shows how these activities depend
on one another. Conclusively, in determining what
concept of project information is captured (statechart
diagrams or activity diagrams) or where that project
data resides (statechart diagrams or activity
diagrams), it is assumed that this is determined by
the member who specifies what the project data
really means in the context. Once users are
committed to the domain knowledge of activity
diagrams and recognise that it is mainly constituted

of activity and activity transitions and constraint
attached, the commitment enables people to discuss
the same topic (the topic of design of activity
diagram). Consequently, people can coordinate their
activities.

6. Conclusion

Software engineering knowledge and project data,
formed into software engineering ontology, helps
communications among remote team members and
provides consistent understanding of the domain
knowledge and project data. Software engineering
ontology, together with its instance knowledge, is
used as a communication framework within a
project, thereby providing rational and shared
understanding of project matters.

In this paper, we have analysed software
engineering ontology as knowledge and data
warehousing. We have presented the software
engineering ontology. We have only covered some
distinguished part of modelling domain knowledge
of software engineering as example. Deployment has
been discussed in aspects of knowledge and data
warehousing and communication framework.
However, there are many improvements that can be
made through future work. Future work could
consider software engineering ontology evolution. It
is the case of software engineering domain
knowledge changing with the introduction of new
concepts, and change in the conceptualisation as the
semantics of existing terms have been modified with
time. This is totally outside the scope of this study
because we assume that software engineering
domain knowledge is mature and has undergone no
further changes. Instead, instantiations in the
software engineering ontology change with
corresponding changes to the ontology.

7. References

1. Davenport, T.H. and L. Prusak, Working
Knowledge: How Organisations Manage What
They Know. 1998, Boston, MA: Harvard
Business School Press.

2. Witmer, G. Dictionary of Philosophy of Mind -
Ontology. 2004 [cited May 11, 2004];
Available from:
http://www.artsci.wustl.edu/~philos/MindDict/
ontology.html.

3. Wikipedia. Ontology (computer science) From
Wikipedia, the free encyclopedia. 2006 [cited
8 June 2006]; Available from:

674674

http://en.wikipedia.org/wiki/Ontology_%28co
mputer_science%29.

4. Gruber, T.R. A translation approach to
portable ontology specification. in Knowledge
Acquisition. 1993.

5. Gruber, T.R. Toward principles for the design
of ontologies used for knowledge sharing. in
International Workshop on Formal Ontology
in Conceptual Analysis and Knowledge
Representation. 1993. Padova, Italy: Kluwer
Academic Publishers, Deventer, The
Netherlands.

6. Beuster, G. Ontologies Talk given at Czech
Academy of Sciences. 2002 [cited; Available
from: http://www.uni-
koblenz.de/~gb/papers/2002_intro_talk_ontolo
gy_bang/agent_ontologies.pdf.

7. Wand, Y., V.C. Storey, and R. Weber, An
Ontological Analysis of the Relationship
Construct in Conceptual Modeling. ACM
Transactions on Database Systems, 1999.
24(4): p. 495-528.

8. Sommerville, I., Software Engineering. 8th ed.
2004: Pearson Education Limited.

9. Bourque, P. SWEBOK Guide Call for
Reviewers. 2003 [cited 29 May 2003];
Available from:
http://serl.cs.colorado.edu/~serl/seworld/datab
ase/3552.html.

10. Bourque, P., et al. Guide to the Software
Engineering Body of Knowledge. 2004 Feb.
16, 2005 [cited.

11. Arrington, C., Enterprise Java with UML.
2001, New York, USA: John Wiley & Sons,
Inc.

675675

