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ABSTRACT
This paper deals with the independence measure problem.
Over the last decade, many Independent Component Analy-
sis (ICA) algorithms have been proposed to solve the blind
source separation (BSS) of convolutive mixture. However
few performance indices can be found in the literature. The
most used performance indices are described hereafter and
three new performance indices are also proposed.

1. INTRODUCTION

We are involved in Passive Acoustic Tomography (PAT)
problem. It is well known that Acoustic Tomography can be
applied in many civil or military applications as : Mapping
underwater surfaces, meteorological applications, to improve
sonar technology. Recently, the Passive Acoustic Tomogra-
phy (PAT) has taken an increased importance mainly for the
three following reasons : Submarine Acoustic Warfare ap-
plications, Ecological reasons (it doesn’t perturb underwater
ecological system) and Economical and logistical reasons.

In PAT applications, the emitted signals are natural or ar-
tificial signals of opportunity. Therefore, PAT applications
can be considered as a serious challenge to the classical
Active Acoustic Tomography (AAT), since the parameters
(number, position, etc.) of emitted signals as well as thesesi-
gnals are unknown. In such scenario, the received signals are
the mixture of some acoustic signals of opportunity. Blind
Source Separation (BSS) algorithms obviously are of great
importance to our project, see [1].

In the literature, one can find a huge number of Inde-
pendent Component Analysis (ICA) algorithms to solve BSS
problem. Most of them are dedicated to the separation of ins-
tantaneous (i.e. echo free) channel. In our application, the
underwater acoustic propagation channel can be modeled by
a convolutive mixture (i.e a multi path and a Multi-Input-
Multi-Out FIR channel with huge filter order≥ 6000). It is
well known that the BSS of convolutive mixture can lead us
to the original sources up to a permutation and scalar filter :

ŝ1(n) = h1(z)∗ s1(n)+h2(z)∗ s2(n) (1)

wheres2(n) represents a mixture of all the sources ex-
cept the first ones1(n). The filterhi(z) = hi(0)+hi(1)z−1 +
· · ·+ hi(mi)z−mi are the residual separation filter. In the fol-
lowing, we denote byNsig the source number and byNs
the number of available samples. The separation is consi-
dered achieved when ever the norm of the residual error
h2(z) ∗ s2(n) becomes much less than the one of the separa-
ted signalh1(z) ∗ s1(n). In addition, we should mention that
the identification or the classification of underwater acoustic
signals is very hard because these signals are non-stationary

and non-intelligible Gaussian or close to Gaussian signals. In
this context, the classification of ICA algorithms according to
the separation quality becomes a difficult and important task.
Previously, we proposed [2] a survey of the performance in-
dices used in instantaneous mixture case. In this paper, the
real acoustic convolutive model is considered. The most used
performance indices are described hereafter and three new
performance indices are also proposed.

2. MODIFIED CROSSTALK

The crosstalk is the inverse of Signal to Noise Ratio
(SNR) and it is widely used as a performance index for the
BSS algorithms of instantaneous mixture, see [2] and the re-
ferences therein. By definition the crosstalk index of the first
estimated signal, is given by :

Dr(ŝ1,s1) = 10log10

(

E{(ŝ1−s1)
2}

E{s2
1}

)

(2)

here E stands for the expectation. To apply the crosstalk,
one should have the original source. Therefore this perfor-
mance index cannot be applied in real situation where the
source are unknown. However it is very useful in simulations.

It is clear that the last definitionDr is useless for the BSS
convolutive mixture, see equation (1), since it doesn’t take
into consideration the power ratio between the filtered ver-
sion of the signalξ1 = h1(z) ∗ s1(n) and the residual error
h2(z)∗ s2(n).

Hereafter, we suggest a modified definition for the cross-
talk. At first, one should apply (2) asDr(ŝ1,ξ1). Secondly an
estimatedh1(z) should be obtained usings1(n) and the es-
timated signal ˆs1. To estimateh1(z), one can minimize the
Least Mean Square (LMS) errorζ :

ĥ1 = min
h

E(ŝ1−h∗ s1)
2 = minh ζ (3)

Let Hi = (hi(0) · · ·hi(mi))
T and Si =

(si(n) · · ·si(n−mi))
T , the convolutive product in equa-

tion (1) becomes a simple scalar product :

h1(z)∗ s1(n) = HT
1 S1

Using the independence properties of the sources, one
can easily prove that :

ζ = (H1−H)TE
(

S1ST
1

)

(H1−H)+HT
2 E

(

S2ST
2

)

H2

= εT
HΣ1εH +HT

2 Σ2H2 (4)

= E(ŝ1)
2 +HTΣ1H −HTE(S1ŝ1)−E(ŝ1ST

1 )H (5)
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whereεH = H1 −H andΣi = E
(

S1ST
1

)

is an invertible
definite positive matrix. The second term of (4) doesn’t de-
pend onH. Therefore, one can prove that the optimal value
of H is given by :

Hopt = Σ−1E(S1ŝ1) (6)

Our experimental results show that for low order chan-
nel filter (less than 20) this performance index can be used
efficiently. When the order of channel is larger than 20,
computing time becomes more important. Unfortunately, we
couldn’t get good results using this performance index on our
acoustic sounds and underwater channel.

3. MUTUAL INFORMATION

Mutual information is used as criteria in many ICA al-
gorithms [3, 4]. According to [5], mutual information is one
of the best independence indices. The mutual information is
defined as following :

I(pU) =

∫

pU(V) log
pU(V)

ΠN
i=1pui (vi)

dV (7)

whereU = (u1, · · · ,un)
T is a random vector andPU(V)

(resp.pui (vi)) are the joint (resp. marginal) probability den-
sity function (PDF). In the context of BSS problem, the joint
and the marginal PDF are unknown but they can be estimated
[6].

To estimate the mutual information in our project, we
used a method proposed recently by Pham [7]. In his me-
thod, the integral is replaced by a discrete sum and the PDF
are estimated using kernel methods. In [7], spline functions1

of third order have been used as kernel function. Finally, the
mutual information estimator is given by :

Î(u1, · · · ,un) = ∑
i

π̂U(i) log

(

π̂U(i)
Πkπ̂uk(ik)

)

(8)

Here π̂U(i) is the joint PDF estimator and̂πuk( j) is the
marginal PDF estimator. Even though we got good results
with stationary signals, we couldn’t get similar results for
underwater acoustic signals.

4. QUADRATIC DEPENDENCE

Mutual information isn’t the only independence index
used in the literature. To measure the independence among
the components of a random vectorX = (x1, · · · ,xn)

T , the
authors of [9] make a comparison between the joint PDF
of the vectorX and the marginal PDF product of its com-
ponentsxi . Using similar approach, Kankainen in [10] pro-
pose an independence index based on the quadratic depen-
dence measure and the First Characteristic Function (FCF),
i.e. Φ(Ω) = E{exp( jΩT

X)}. In [8], Achardet al.proposed
a method to apply the last independence index in the context
of nonlinear blind source separation problem.

1Spline function of orderr is the PDF of the sum ofr uniform inde-
pendent random variablesui ∈ [−0.5,0.5]. For example, the spline function
of third order is defined as :

K3(u) =







3
4 −u2 If |u| ≤ 1

2
(1.5−|u|)2

2 If 0.5≤ |u| ≤ 1.5
0 Elsewhere

The quadratic independence measureD(X) is a compa-
rison between the joint FCF and the product of the marginal
FCF, [10] :

D(X) =

∫

|Φ(Ω)−Πn
k=1Φ(Ωi)|2h(Ω)dΩ (9)

Hereh is an integrable function fromRn to R. If the com-
ponents of the vectorX are independent in their set than the
joint FCF is equal to the product of the marginal FCF (i.e.
Φ(Ω) = ∏n

i=1 Φ(Ωi)) andD(X) = 0. Functionh should sa-
tisfy the following two conditions, see [10] :

– h is a non zero almost every where and a positive func-
tion.

– For analytical FCFΦ(Ω), h should be positive around
zero and vanish elsewhere.

Achardet al. in [8] proposed the followingh :

h(Ω) =
n

∏
i=1

∣

∣

∣

∣

√σXi ΦK(σXi Ωi)√
2π

∣

∣

∣

∣

2

(10)

HereK is a square integrable kernel function that its Fourier
transform should be non zero almost every where andσXi is a
scale factor (i.e. a positive function only depends on the PDF
of Xi). Using the energy conservation theorem of Parseval,
Achardet al. in [8] shows that equation (9) can be replaced
by the following function :

Q(X) =
1
2

∫

Rn
D(T)2dT (11)

whereD(T) = E
[

∏n
i=1K

(

ti − xi
σi

)]

−∏n
i=1E

[

K

(

ti − xi
σi

)]

.

The authors of [8] prove that Q(X) = 0 ⇔
xi are indenpendent from each other. In [11], Achard
estimatesQ as following :

Q̂(X) =
1
2

Ê{F(X)}+
1
2

n

∏
i=1

Ê{ f (xi)}− Ê

{

n

∏
i=1

f (xi)

}

Here f (xk) = 1
Ns∑Ns

i=1K

(

xk−Xk(i)
σk

)

,

F(X) = 1
Ns ∑Ns

i=1 ∏n
k=1 K

(

xk−Xk(i)
σk

)

, Xk(i) is the ith sample of

the kth component ofX andÊ is the empirical mean. Func-
tion K can be chosen from the following functions, [11] :

1. Gaussian KernelK1(x) = exp(−x2)

2. Square Gaussian KernelK2(x) = 1
(1+x2)2

3. The inverse of Square Gaussian Kernel second derivative
functionK3(x) = − 4−20x2

(1+x2)2

In our experimental studies, best results were obtained
using the Gaussian Kernel. In fact, the Gaussian Kernel
gives the largest possible difference between the quadratic
independence measure applied on a vectorA with i.i.d uni-
formly independent components and the quadratic indepen-
dence measure applied on a vectorB = MA, M is a full rank
mixing matrix. Using 2000 samples and random signals, we
foundD(A) = −68 andD(B) = −28.



Signals Mixture Model NL-Decorrelation of Sources NL-Decorrelation of Mixed Signals
i.i.d Kernel ’Gaussian’ -23.4 Kernel ’Gaussien’ -5.8319

Uniform PDF Instantaneous Kernel ’poly’ -25.5 Kernel ’poly’ 8.1
Kernel ’hermite’ -22.4 Kernel ’hermite’ -20.4

4 Acoustic Signals Instantaneous Kernel ’poly’ -33.4 Kernel ’poly’ 3.2
2000 samples Convolutive Kernel ’poly’ -14.9817

4 Acoustic Signals Instantaneous Kernel ’poly’ -31.3 Kernel ’poly’ 8.8
4∗105 samples Convolutive Kernel ’poly’ -13.2

TAB . 1 – NL-Decorrelation applied on source and mixed signals using different kernels, Gaussian, Polynomial and Hermite
functions.

The main drawback of such performance index is the im-
portant computing time, few minutes are needed to get the re-
sults over a random signals of 2000 samples. In our applica-
tion, the underwater acoustic signals are very close to Gaus-
sian signals that means a huge number of samples (over a
million samples) are needed to achieve the separation of such
signals. Therefore, we couldn’t consider this performancein-
dex in our project.

5. NON-LINEAR KERNEL DECORRELATION

The authors of [12, 13] propose an ICA algorithm as well
as an independence measure based on the concept of Non-
linear Decorrelation. To achieve the source separation, the
authors minimize the followingF-correlationfunctionρF :

ρF = max
f ,g∈F

Corr( f (X),g(Y))

= max
f ,g∈F

Cov( f (X),g(Y))
√

Var( f (X))Var(g(Y))
(12)

We call Corr(X,Y), Cov(X,Y) and Var(X) respectively
the correlation, the covariance and the variance ofX and
Y. We should mention here thatF is a vectorial space of
all functions applied fromR to R. It is known that when
F contents all Fourier transform basis (i.e. the exponential
functions exp( jwx) with w∈ R) thanρF = 0 means the inde-
pendence of the random variablesX andY.

The algorithm of [12] can be considered as Canoni-
cal Correlation Analysis (CCA) which is a generalized ver-
sion of classical Principal Component Analysis (PCA). It
is well known that PCA can be done using an EigenVa-
lue Decomposition (EVD) of decorrelation matrices. Accor-
ding to [12], CCA can be considered as the EVD of a huge
NsigNs×NsigNsdecorrelation matrix.

According to [12], the best choice of the two non-linear
functions f and g can be done using Mercer Kernel func-
tions2. K(X,Y) should also have the translation invariance
property, the convergence property inL2(Rm) and isotropic
property. One possible kernel is the Gaussian kernel propo-
sed by the authors of [12] :

K(x,y) = exp

(

− 1
2σ2‖x−y‖2

)

(13)

2A bilinear functionK(X,Y) from a vectorial space X (for exampleRm)
to R is said to be a Mercer kernel iff its Gram matrix is a semi-positive
matrix. By definition the Gram matrix of basis vectorsX1, · · · ,Xm of a m
dimensional vectorial space X with respect to a bilinear function K(X,Y) is
the matrix given byGi j = K(Xi ,Xj ).

Table 1 shows Experimental results obtained by applying
NL-Decorrelation on source signals and mixed signals using
three different kernels, Gaussian, Polynomial and Hermite
functions. We should notice that for acoustic signals better
results are obtained using polynomial kernel. Our experi-
mental studies show that this performance index can be ap-
plied successfully in our project. However, computing time
and needed memory become very important when the num-
ber of samples is over 500000 samples. Finally, we should
mention that the difference between the NL-Decorrelation of
the sources and the mixed signals depends on the original
signals, the chosen kernel, as well as the mixing model and
parameters.

6. SIMPLIFIED NON-LINEAR DECORRELATION

Using similar approach to the previous one [12, 13], we
propose here a simplified performance index based on the
concept of non-linear covariance matrix. Let us define the
following matrix ϒ = (ρi j ) as the non-linear covariance ma-
trix :

ρi j =
E (〈 f (xi)〉c〈g(x j)〉c)

√

E
(

〈 f (xi)〉2
c

)

E
(

〈g(x j)〉2
c

)

(14)

whereX = (xi) is a random vector,f (x) andg(x) are two
non-linear functions, and〈x〉c = x−E{x}. If the components
of X are independent from each other than we can prove that
ϒ becomes a diagonal matrix. using the last definition, we
suggest the following performance index :

c = 20log

( ‖Off(ϒ)‖2

‖diag(ϒ)‖2

)

(15)

Here diag(M) is a diagonal matrix which has the same
principal diagonal of matrixM and Off(M) = M−diag(M).
The two functionsf and g are chosen from the following
functions :

1. ’Gauss’ : Gaussian kernel.

2. ’poly’ : 6 order polynomial Kernel which the coefficients
are the components of an unitary vector.

3. ’atan’ : Saturation kernel using arc-tangent function.

4. ’tanh’ : Saturation kernel using hyperbolic tangent func-
tion.

Our experimental studies (see table 2) show the effec-
tiveness of this performance index to deal with underwater
acoustic signals and channels. The main drawback of this
performance index is that the obtained values depend on the



Signals Mixture Model NL-Decorrelation of Sources NL-Decorrelation of Mixed Signals
i.i.d Kernel ’Gaussian’ -66.3211 Kernel ’Gaussian’ -40.6513

Uniform PDF Instantaneous Kernel ’poly’ -49.2054 Kernel ’poly’ -6.6205
uniform Kernel ’atan’ -63.2202 Kernel ’atan’ -0.0802

Kernel ’tanh’ -52.5625 Kernel ’tanh’ 0.1597
4 Acoustic Signals Instantaneous Kernel ’atan’ -40.7142 Kernel ’atan’ 1.5864

2000 samples Convolutive Kernel ’atan’ -31.8532
4 Acoustic Signals Instantaneous Kernel ’tanh’ -86.6931 Kernel ’tanh’ 1.0391

4∗105 samples Convolutive Kernel ’tanh’ -57.4885

TAB . 2 – Simplified NL-Decorrelation applied on source and mixedsignals using different kernels.

kind and number of the original independent signals. There-
fore this performance index can only be used in simulations
where the original sources are known.

7. INDEPENDENCE MEASURE BASED ON THE
FIRST CHARACTERISTIC FUNCTION

In the last few decades, many signal processing resear-
chers were involved in independence measurement problem.
In [9] and to measure the independence among random si-
gnals, the authors proposed a joint PDF estimator. In [14],
the authors propose a study and an estimatorΦn(t) of First
Characteristic Function (FCF)Φ(t) :

Φn(t) =
1
n ∑

i

exp(
√
−1tXi) (16)

HereX is a random iid signal withn samples andXi is
the ith realization ofX. The authors proved that : IfYn(t) =
{Φn(t)−Φ(t)}√n is the residual estimation error thanYn(t)
is a zero-mean complex Gaussian random variable. They also

proved that Prob
{

limn→∞ sup|t|<T |Φn(t)−Φ(t)| = 0
}

=

1 ∀T ∈ R.
We mentioned before that the joint FCF of a random vec-

tor X = (x1, · · · ,xn)
T is equal to the product of the margi-

nal FCF of its components iff these components are inde-
pendent from each other. Using the previous property of the
FCF, Feuerverger in [15] proposed an independence measure
based on the FCF of two random signalsX andY :

Tn =
π2

n2 ∑
i j

g(X′
j −X′

i )g(Y′
j −Y′

i )

−2π2

n3 ∑
i jk

g(X′
j −X′

i )g(Y′
j −Y′

k)

+
π2

n4 ∑
i jkl

g(X′
j −X′

i )g(Y′
k −Y′

l ) (17)

whereg is an adequately chosen function (see [15] for
further details),X′ = Φ−1

(8X−3
8n+2

)

is the approximation of
the score function ofX, andΦ(X) is the PDF of zero mean
and unite variance Gaussian signal. Our experimental studies
show that the computing time is the main drawback of this
performance index. We should mention that for stationary si-
gnals, this performance index is a consistence one. Unfor-
tunately, the last nice property is useless in our application
since the acoustic signals are non-stationary signals.

Recently, Murata in [16] proposed a simplified test to
measure the independence between two random signals. This
independence measure is also based on the estimation of the
cross FCF :

ΦXY
n (t,s) =

1
n ∑

i

exp( jtXi + jsYi) (18)

If X andY are independent thanΦXY(t,s) = ΦX(t)ΦY(s).
Murata’s independence measure is defined by the following
equation :

∫

R2

∥

∥{ΦXY
n (t)−ΦX

n (t)ΦY
n (s)}

√
nk(t,s)

∥

∥dtds (19)

k(t,s) is a bounded estimation window. Let Re(X) and
Im(X) denote the real and the imaginary part ofX. Using the
fact thatZn(t,s) becomes asymptotically Gaussian, Murata
proved that the following random variable :

T(t,s) = (Re(Zn(t,s)) Im(Zn(t,s)))Σ−1
(

Re(Zn(t,s))
Im(Zn(t,s))

)

is a central chi-squared random variable of second order.
Σ is a specific 2×2 symmetrical matrix based on the variance
and the covariance of the components ofZn(t,s), further de-
tails can be founded in [16]. Using the fact thatT(t,s) is
a central chi-squared random variable, one can easily prove
that Prob{T(t,s) ≤ 5.9915} = 0.95. Our experimental stu-
dies show that :

– The norm ofZn(t,s) often gives better results than the
minimum value ofT(t,s).

– The obtained values depend on the original sources.
This inconvenient is common to previous performance
indices.

– For beta random variable, good results have been ob-
tained. On the other hand, we noticed bad results for
uniform random signals.

– For acoustic signals, we noticed good results for ins-
tantaneous mixture and bad ones for convolutive mix-
tures.

– Computing time is important.



8. CROSS-CUMULANTS

As we mentioned before that the previously described
performance indices cannot be applied in real situations
where the original signals are unknown because the perfor-
mance values depend on the sources. Therefore, we deve-
lop here a real situation performance index based on cross-
cumulant :

Perfc=
Cum(1,3)(X,Y)2 +Cum(3,1)(X,Y)2

Var(X)Var(Y)
(20)

HereCum(1,3)(X,Y)2 is the average of Cum(1,3)(X,Y)2

which is obtained using a sliding estimation window, see
[17]. The index of equation (20) is limited to two signals.
To generalize this index to the case of multi-signals, we can
use the following :

PerfCG(X) = Off(Γ) (21)

whereΓ = (Perfc(Xi ,Xj)) and Off(Γ) = ∑i 6= j γ2
i j . Finally,

we should mention that good results have been obtained
using this performance index on instantaneous or convolutive
mixture of acoustic signals. However, the computing time is
relatively important.

9. CONCLUSION

In this paper, a survey of major performance indices of
blind source separation of convolutive mixture is addres-
sed. Four well known and widely used performance indices
are described here. Besides, three new performance indices
have been developed. The advantages and the drawbacks of
these performance indices are given here. All the simulations
have been done using simulated signals and real underwater
acoustic signals. These performance indices are used to clas-
sify the various Independent Component Analysis algorithms
of the literature according to their separation achievement in
passive acoustic tomography context. As it has been mentio-
ned before, some of these indices show satisfactory resultsin
our application. Many of the last mentioned indices are time
consuming. Up to now, the simplified non-linear decorrela-
tion is the most adapted performance index to our applica-
tion.
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