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Abstract

The primary contribution of this paper focuses on the development of novel numerical and
analytical studies of the modal damped vibration energy harvester using the cantilevered
piezoelectric unimorph beam with arbitrary proof mass offset under input base transverse
motion. The key equations of electromechanical finite element discretisation for the
piezoelectric element with thin electrode layers are revealed and simplified, indicating the
most relevant numerical technique in the application for the power harvester research. Full
derivations of the electromechanical vibration with damping effects using the extended
Lagrangian principle have been developed to give matrix and scalar forms of the coupled
system equations. To evaluate the performance of the numerical studies, the analytical
closed-form boundary value equations of the physical system have also been developed using
the extended Hamiltonian principle. The results from the electromechanical frequency
response functions (EFRFs) derived from numerical and analytical studies show excellent
agreement with experimental studies. The benefit of numerical techniques is that they can
give effective and quick predictions in analysing parametric design optimisation and physical
properties for various piezoelectric materials whereas the analytical techniques can provide a
very challenging process for developing the derivations and for analysing the complex smart
structure. However, the new analytical method presented here shows complete equations of
the electromechanical vibration of the piezoelectric structure with dynamical proof mass
offset and damping effects providing complementary study for validating the numerical
technique. Moreover, the parametric studies using the optimal power harvesting responses
enable the identification of the performance for the piezoelectric materials and the particular
piezoelectric and proof mass geometries before conducting the micro-fabrication process for
emerging micro-sensor power harvesting applications.
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1. Introduction

The usage of piezoelectric materials has become important for capturing mechanical
energy from the surrounding vibration environment and converting it into electrical energy
that enables sensor devices to be completely self-sustaining. Many vibration environments
from the machines and infrastructure, including biomechanical human motion, have relatively
low frequency vibration excitation that can be used for matching the system response from
the piezoelectric structure in order to maximise the power output. For this reason, the
development of various mathematical studies has been an important role for modelling
electromechanical vibration responses of power harvesters. This includes the comprehensive
analytical studies of the optimal power harvesting behaviour with the load resistance using
the electromagnetic system [1] and the piezoelectric materials [2]. Moreover, the majority of
piezoelectric power harvesters using laminated beams with broad ranges of case studies have
been investigated using various analytical techniques such as electromechanical lumped
parameter models and electrical equivalent system [3]-[4], analytical approach using weak
form techniques [5]-[8], assumed-mode methods [9], transfer matrix method [10] and closed
form techniques [11]-[13].

The attached proof mass onto the typical cantilever piezoelectric unimorph and bimorph
beams including MEMS devices have been broadly used for high power generation in the
lower frequency range, since it can create high elemental strain in the piezoelectric element
due to the transverse bending motion for electrical energy generation. Instead of receiving
high demand for exploring the recent applications of power harvesting research such as
piezo-MEMS devices and the galloping piezoaeroelastic power harvester, the development of
the accurate mathematical techniques seems to receive fewer attentions. For example, piezo-
MEMS power harvesters from previous works generally include experimental studies with
oversimplified analytical solution and ignore the dynamical proof mass offset [14]-[16].
Moreover, the piezoaeroelastic power harvesting beam whose dynamic motion is induced
from the galloping effect, also ignores the effect of dynamical proof mass offset of the bluff
body where the simplified solutions can also be found in the use of lumped parameter models
[17]-[18].

Moreover, development of the numerical studies of the electromechanical power
harvesting devices has currently received only minor attention. The most notable research

articles for the smart structure finite element analysis can be found in studies of piezoelectric
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active control systems. The fundamental concepts of these previous works can be used for the
current energy harvesting research studies. The active controlled smart structure system with
integrated finite element analysis was formulated using the variational principle [19]- [20].
More details of the active control system using various numerical methods can be found in
the published literature reviews [21]. Further active control finite element studies have been
extensively investigated using feedback gain control [22], negative velocity feedback control
[23] and shunt circuit techniques [24]. In the numerical power harvesting application, the use
of piezoelectric material-based ANSYS software with the 3D coupled field solid element has
been developed to analyse the electromechanical equivalent circuit parameters where SPICE
software was further used for investigating the circuit simulation for power harvesting
prediction [25]-[26]. Recently, a new numerical technique of electromechanical finite
element vibration modelling which is applicable to the MEMS devices has been developed
for predicting power harvesting where the system responses align with the current

experimental studies [27].

In this paper, the comprehensive studies of the vibration power harvesters using
parametric geometry design and the physical properties of the piezoelectric structures are
explored using the proposed two mathematical studies namely, the electromechanical finite
element methods and the analytical closed-form boundary value techniques. At this stage,
there are no other previous works developing these complete approaches for modelling the
parametric identification and optimisation studies. Recent new numerical work from the
authors in [27] is extended to outline the key equations and include the damping effects at the
beginning of derivation of the electromechanical dynamic equations. This study reveals that
the equation-based modal damped vibrations of the electromechanical piezoelectric structure
have the technical parameter correlations between mechanical system (elasticity with
mechanical stress and internal damping stress, air damping, and dynamic motions),
electromechanical system (electrical displacement, electrical stress and electric-polarity field)
and electrical system (resistive shunt circuit). These technical correlations can be seen in the
development of the electromechanical discretisation (mechanical and electrical discretised
element) and formulation of the electromechanical matrix dynamic equations using the
Lagrangian principle and the electromechanical scalar dynamic equations for formulating
EFRFs. Moreover, the novel analytical studies are also developed using the closed-form
boundary value method outlining the functional energy forms using the variational principle

in order to derive the integro-differential equations of the piezoelectric structure with
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dynamical proof mass offset. Further technical relations between the numerical and analytical
methods can be seen in the use of the same technical parameter correlations while only
requiring the change of the local transformation in terms of the kinematic motions of the
piezoelectric structure with dynamical proof mass offset. Moreover, the EFRFs from the two
methods used in the computational process give very similar result. The benefits of the two
methods are also discussed in terms of the level of difficulty, capability, accuracy, and
effectiveness. Overall, the proposed two mathematical techniques are compared with each
other giving good agreement with the experimental results. The numerical study can be
further used for analysing the optimal power harvesting frequency responses and the
frequency bandwidth of the parametric geometry design and properties of the piezoelectric
materials and proof mass geometries. For this point, the prediction of the power harvesting
performance can conveniently be simulated before conducting the fabrication process of the

micro-power harvesting sensor device for future applications.

2. Formulations of Electromechanical Finite Element Vibration System
The extended linear piezoelectric unimorph beam constitutive equations based on the 3-1
mode of piezoelectric constant operation, 3-3 effect of piezoelectric permittivity and internal
damping stress can be formulated as,
T~ cP(s P8 - ek,
D; = 33151(2) +e5 E5
£35= £33 —€q Uy OF £33 =el—dyy "G and ey =d; 7. 1)
The linear-elastic constitutive relation for the substructure can also be formulated as,
T = (s + cPsP) @
Note that some parameters as shown in Egs. (1) and (2) use superscripts 1 and 2 to represent

the substructure and piezoelectric layers, respectively. Here, the strain field for each layer of

the beam can be formulated as,

o*w(x,t)
ox?

where the parameters T, S, S, E and D represent stress, strain, strain rate, electric field, and

S, (x,t)=-z : @)

electric displacement, respectively. Moreover, coefficients c, e, andg indicate elastic

constant, piezoelectric coefficient, and permittivity at constant strain, respectively. Note that
the notations of the piezoelectric structure are written according to the IEEE standards [28].



Parameter cq indicates damping coefficient due to internal friction. Variable z is the distance

from the neutral axis to each layer.

2.1. Electromechanical finite element discretisation

The piezoelectric unimorph considered here consists of piezoelectric and substructure
layers including thin electrode layers as shown in Fig. 1. The unimorph structure with
arbitrary proof mass offset under base excitation can be connected with the two wires
attached on the electrode layers for generating one single voltage output through variable
load resistance. In this case, for numerical modelling, the global finite element equations of
the system in Fig. 2a-b are based on the mechanical discretised element and the electrical

discretised element where this is called the electromechanical discretisation [27].

A few previous research works focusing on the use of proof mass offset on the piezoelectric
beam structures have been investigated using different case studies. In [7], the dynamical
proof mass offset was analysed using D'Alembert's principle, where other research works
with comprehensive analytical piezoelectric beam structure do not provide the concept of
obtaining the analytical solution of the proof mass offset [6], [29]. In this paper, dynamics of
the arbitrary proof mass offset can be analysed using the rigid-body kinematic equations for
formulating the kinetic energy and the non-conservative external work of the system. The
benefit of positioning the proof mass with offset distance away from its centroid at the end of
the beam is that it can avoid direct contact between the proof mass and the relatively brittle

piezoelectric element and the detail of derivations can be found in [27].

Moreover, the solution form of the discretised elemental beam with four-degrees-of-
freedom as shown in Fig. 2b can be formulated using the first-order Hermite interpolation of

the cubic relative displacement function to give,
w(x,t) =@ (x)u’(t) . (4)
Parameters of the shape function @ and the elemental displacement vector u for each node

can be formulated as,

u(t)=[u, up u; u,]", (%)

where,



Lo = Xeus —Xeo Up(t) =wy(t) . u,(t)=6,(t),

us(t) = w, (t) . u,(t) =0, t). (6)
The strain-displacement relationship in terms of the vector displacement can be expressed as,
S,(x,t)=—z P (x)uc(t) (7

where the differential form of the shape function ¥ of the strain displacement relationship can
be formulated as,

v ()= 20 w0 w0 vl ®

where ¥, (x)= dquilz(x) , P, (x)= 4, (x) v, (x)= &2 (x) v, (x)= dquj:g(x)

The discretised electric field E can be assumed to be linear along the thickness of the

piezoelectric material for inducing electrical potential ¢ over the piezoelectric element. The
electric field can be formulated as,

E,=—Vgt(zt)=—2°(zv©® (1), 9)
where ¢°(zt)=9°(zMe(t) is the electrical potential with linear assumption and

9(9)(z)=(z—zn+hp)/hp is the shape function over the interval z,—h, <z<z, and

~cifhrelPhyt+2cihchy

7 = .. . . .
" Z(Cl(i)hs +Cl(12)hp) indicates the distance from the asymmetric neutral axis to the

top layer of the unimorph. Symbol Vv is a gradient operator for the first derivative of the

shape function with respect to the thickness direction, giving Q°(z)=d 9°(z)/dz=1/h, .

The stress fields in the partial differential shape function forms can be expressed by
substituting Egs. (7) - (9) into the first part of Eq. (1) and Eqg. (2) to give,
T = — 26w (x)uc (t) -z we (x)uc t),

T2 = 2w (x)us (t)- zcPcPwe (x)ue (t)+ e, @(2 Ve (t) (10)



The electric displacement vector of the piezoelectric component can be formulated by

substituting Egs. (7)-(9) into the second part of Eq. (1) to give,

D, = —265 P (X)u®(t) - £52°(2)ve (1) . (11)

2.2. Lagrangian electromechanical finite element equations

The extended Lagrange equations for deriving the electromechanical discretised finite
element dynamic equations of the piezoelectric power harvester can be formulated as,

don om o oo
dtou® ou®
dom om . o 12
dt ave ave
where I1 = KE-PE+WE, F, _ Wk , Fq = OWF and Fy _oPD
ou® ove ou®

The extended Lagrangian electromechanical equation can be formulated as,

d OKE OPE_OWE OWF oPD _
dt oo°  ou®  out  au®  au® | PEWE e{uf,v¢and KE, PD e{ut}
OPE_OWE_OWF __ WF efu,ve

ov® ov®  ov®

. (13)

It is important to note here that since the unimorph beam with proof mass offset was operated
under input base excitation, the mathematical expressions of the functional energies implied
from Eqg. (13) were reduced due to the relative displacement w(x,t) defined as the difference
between absolute displacement wans(X,t) and base excitation Waase(t). The Kinetic energy can

be formulated from the mass densities of the unimorph layers and proof mass offset as,

1 Xe+1

KE== | Ip() (xt) (Xt)dA dx+= T JP(Z)W(X,t)TW(X,t)dA(Z)dx
x, AW x, A2

e

+ |éip XCW(Xe+1 ’t)T é(xe+1 't) +% I(gipw(xﬁ—l ’t)T W(Xe+1’ ) % |tlp0( e+l’ )T 0.(Xe+1 7t) (14)

Note that full derivation of Eq. (14) can be found in [27] where equation (14) excludes rotary
inertia effect of the unimorph. Parameters Igp and Igp can be seen in Appendix A. The

potential energy due to stress-strain-electric-damping stress relation for the unimorph layers

can be formulated as,
i @’ AW 1% 2T 4 a2
j S T dx+2j ,81 T,“dAYdx. (15)

AW x. A®

e e

1
2
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The electrical energy term for the piezoelectric element can be formulated as,
WE =—j [E;" D;dA®@dx . (16)
x, A

The non-conservative work on the system due to the input base excitation and electrical
charge output can be stated as,

T 1pYwt) dAD dx v (1) - | [P w(xt) d AP dx Vi, (1)
X, A X, A2
- I(tJip Xca(xe+1 1t)T Wbase (t)_ I(tJipW(Xe+1 ’t)T Wbase (t)+q(e)(t)v(6)(t)' (17)

The power dissipated by air friction on the unimorph and the proof mass offset using
Rayleigh’s dissipation function can be stated as,

PD=-= [ [e,phi(xt) (xt)dA()dx——j jcvp vi(xhir(xt)d A® d x

2 5 A 2 5, A

oo . 1 s . 1 oy .
—Cy I(glp Xca(XeJrl !t)W(Xe+1 't) - E Cy I (t)lpW(Xe+1 ,t)W(Xe+1 ’t) - E Cy I ;Ipa(xeﬂ ’t)e(xe+1 ’t) : (18)

Note that since the structure is under dynamic motion, the damping coefficient due to air
friction cy is also considered. So far, two damping coefficients have been introduced into the
system as presented in Egs. (1), (10) and (18). The power dissipation due to air damping
occurs due to the kinetic energy of the structure at particular times creating air friction. The
expressions given from Egs. (3), (7), (8), (10) and (11) can be substituted into Eqgs. (14)-(18)
to give two electromechanical dynamic equations using Eq. (12). After simplifying, the first
damped electromechanical dynamic equation due to the transverse bending form can be

expressed as,

X

e+l e+1

[p9 @) @ ()i (t)oAVax + ”p o°(x)7 ) (x)i®()da?

X, AW

T
. do . o dd(x do®(x.,q) ..
2 0o L2t 0T 0o L) A2 )

+22cHelhpre (x ) () ue (t)+ 22 PelPwe (x e (x) us(t) + f Ip(l)Qe( X)"c,@°(x)ue (t)d AV d x
xe AW

T [P0 0@ ) A 0+ 21800, ] et

xe A

. e T e
T O e e




+1

+X:jAmzzél( we (e (x) ue (1) AY dx+JA£z ey (e (¢ ue(t)d A® d x
%XXfALzeslw °(2)* (t)d AR )dx—— j [ W) 2% (2)ve(t)d A9 d x
Xxj A(l)p x)" d AW d v, (t) Xj ! )pZQe(x)TdA(z)debase(t)
1, d“’deiLe ) 0120 @) (19)

The second electromechanical dynamic equation due to the electrical form can be expressed
as,

1 Xes Xes1
-5 j [2e3,2°(2)" ¥*(x)u (t)dA X—E [ [zeq Q¢ ) v e(x)ue(t)dA(Z)dx
xe A2 Xe AR
— J‘ J‘833 0l\z t)dA dX q ( ) . (20)
Equation (20) can be modified by differentiating with respect to time to give,
1 Xes1 Xes1
-5 [ [20(2) ex ¥(x)u (t)A® dx—— | fz!) " e, ¥(x)u(t)dA)dx
Xe A(Z) Xe A 2)
Xet1
— [ [e@) 2(2)v(t)dAPax- is(t)=0 . (21)
xe AR

The expressions given from Egs. (19) and (21) can be further simplified to give the local

element matrices of damped electromechanical dynamic equations as,
me olfae@)] |C° O |[we@)] [ke pglfus@)| [F

ng()}* IS e L L I @)
0 of[*t) |pe pg |lV() 0 0 |Ivé(t) |ip

S 2 e

e=” (i) i“q§2x 1 (x Dy (x)2 Dy(x 3(X) Dy (X)dy(x

v i:zlp 8 XI D3(X)py(x) P3(x)Dr(x)  P(x) ¢3(X)<P4(X)
D4 ()1 (x) Py(X)Pp(x) Py(X)B3(x)  Dy(x)

where

( Xe1 )2 By (X )gbz (Xe.) ( Xen )gp3 (Xeut ) Dy (X, ), (Xe+1 )
L+ tip D) (Xeu1 JP1 (Xerr) By (Xery ) Dy (Xer1 P (Xer1) Do (Xeya )P4 (Xer)
" Dy (X1 )1 (Xer1) Py (Xeur )P (X1 ) By (X e+1) Dy (Xe1 )P4 (%o )

Dy (X, )1 (Xe+1 ) Dy (Xed )P (X)) @ ( Xes1 JPs(Xeur) D, (X1 )




d &, (x,, d®, (X, d &, (x,. dd,(Xey) |
gzj1(Xe+1) 1d(xe 1) q§1(xe+1) ;(Xe 1) @1(Xe+1) Z(Xe 1) ¢1(Xe+1) ii(xe 1)
i P, (Xe+1) d gptj(zm) 2, (Xe+1) d (152())(( e+1) P, (Xe+1) d (pij(:eﬂ) P, (Xe+1 ) d qﬁg(;( e+1)
+215°x,
d o, (X, d D, (X, d D, (X, d d,(X,,
¢3(Xe+l) tj(Xe 1) ®3 (Xe+1) f‘j(xe 1) QS(Xe+1) ::j((j 1) 453 (Xe+1) Z((: 1)
dd;(X,, dd,(X,, dd,(X,, dd, (X,
_¢4(Xe+1) ld(xe 1) ¢4(Xe+1) zd(xe 1) gzj4(Xe+1) er 1) q§4(xe+1) A(lixe 1)_
ddj (Xe+1) ddj (Xe+1) d@ (Xe+1) d¢2 (Xe+1) d¢ (Xe+1) d¢3 (Xe+1) d¢l(xe+l) d®4 (Xe+1ﬂ
dx dx dx dx dx dx dx
d¢2(xe+1)d (Xe+1) do (xe+1)dd52(xe+1) d‘pz(xeﬂ)d‘ps( 1) d@z(xeﬂ)d‘pzt(xeﬂ)
4|l dx d x dx dx dx dx dx
2 dcb3(xe+1)d (Xe+1) do (Xe+1)d¢2(xe+1) d¢3(xe+1)d¢3( 1) dq§3(x6+1)dd53(xe+1) '
dx dx dx
d¢4( e+1)d¢1( e+1) d‘p4( e+1)d¢2(xe+1) ng4( e+1)d¢3( e+1) dq§4(xe+1)d®4(xe+1)
dx dx dx dx dx dx dx dx |
Py ooyl Cod e e xd o)
dx? dx dx? dx? dx? dx? dx?
d° b(x) d* @y (x) [dz‘pz(x)]z d° 0y (x) d° dg(x) - d” By(x) 0 By(x)
N Kest 2 2 2 2 2 2 2
Ke:i I(,)El(,l)J. dx dx dx dx dx2 dx dx dx |
=1 i | dg()d® oi(x) d° dg()d®dp(0) [ d”B5(x) d° (1) d 4 (x)
G dx? dx? dx? dx? dx? dx?
2oy x)d2ay() d2oy(x)d20,(x) Aoy d2yx)  (d2a,(x))
dx? dx? dx? dx? dx2 dx? dx?
X o (x)F Di(Xjop(x) Pr(x)D5(x) y(x)py(x)
Cezzn: ¢, pial) | Gp(X)0r(x)  DoxfF Dy(x)p3(x) P(x)py(x) dx
i=1 x| Pa(X)01(x) Ba(xjpp(x)  By(x)  By(x)pylx)
04(x)01(x) P4(0)0y(x) Dy(xJp3(x)  Py(x)

( Xes1 )¢1
4 ( Xe+1 )¢1

)2 ( e+1)¢2
Itlp 452( e+1)¢1(xe+1)
(
(

Xe+1 ) ¢3 ( e+l )¢2 Xe+1 )
Xe+1) D,(X ( el )@2 Xe+1)

(
( e+1)
(
(
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D, (Xe1 )P3(Xerr)

( Xet1 )@4
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(X1 JP3(Xe1)  Pr(Xesn )P4 (%)
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do, (X, do,(x d &, (x,. dd,(Xe) |
gzj1(Xe+1) ;(Xe l) ¢1(Xe+1) ;(Xeﬂ) ®1(Xe+1) Z(Xe l) q§1(xe+1) g(xeﬂ)
dd, (X, dd, (X, dd,( X, dd, (X,
R CCR L P S N S A P T
+20,19"% d,(x..,) d,(x,..) d,(x,.,) 4, (%)
®3 (Xe+1) tj Xe+1 @3 (Xe+1) 2d Xe+1 453 (Xe+1) :; Xe+1 ®3 (Xe+1) ::j Xe+1
d (X, dd,(x d d,4(x do,(x
_¢4(Xe+1) tj(xe l) q§4(xe+1) z(xeﬂ) gD4(Xe+1) Z(XM) ¢4(xe+1) g(XEJrl)_
d¢1(xe+1)d‘p1(xe+1) d‘pl(xeu)d‘pz (Xe+1) d@l(xe+1)dcb3( e+l) d¢1(xe+1)d¢4(xe+1)_
dx d(< dx dx dx dx dx
d¢2(xe+1)d®1 Xe+1) d¢2<xe+l)d¢2(xe+l) do, (Xe+1)d ( e+1) d¢2(xe+l)d¢4(xe+1)
Lo | dX dx dx dx dx dx dx
vz d¢3(xe+l)d¢1<xe+1) d¢3(xe+l)d@2(xe+1) d‘ps(xeﬂ)d ( 1) dq33(xe+1)dq§3(xe+1)
dx dx dx dx dx
d¢4(xe+1)d(p1( e+1) d¢4( e+1)dq§2(xe+1) d¢4( e+1)d¢3( e+1) d‘p4(xe+1)d‘p4(xe+1)
dx dx dx dx dx dx dx dx
o)) d2ay(x)d20y(x) 2y (x)d2ds(x) o2 by (x)d2y(x)
dx dx2 dx2 dx2 dx2 dx2 dx2
2
d2 @, (x) d2 &y (x) [dzcbz(x)] A2, (x) d2 dg(x) A2y (x) d2 by (x)
. Zn: I(i)Cl(il)c((ji)XM dx?>  dx? dx? dx? dxz2 dx?  dx? iy
=1 x| P og()d*oy(x) d®dy(x)d?p(x) [ d® Ba(x) d° @3(x) d° &, (x)
dx2 dx2 dx2 dx2 dx dx2 dx2
A2, (x)d? @y (x) d2dy(x)d? dy(x) d d,(x) d? d5(x) d2q54(x)2
| dx2 dx2 dx2 dx2 dx2 dx2 dx2 |
or C°®=c,M®+cyK?,
pee:_g*‘ Ie(p)g(p)dA(p)XT A dy(x) d?By(x) d2b(x) d@a(x) |, |
p=1 A<p>31 X, dx? dx? dx? dx?
T
T m Y1l 42, (x) d2db,(x) d2da(x) d2db,(x
TS| [ oPlaPlga®) | 12( ) 22( ) 32( ) 42( )| axl.
p=1| Alp x, L dx dx dx dx
m 2
[93: Z( ILGESS) (p) dA( )J F _Q Wbase()
p=1
n Xei
QGZ[P( [ [®1(x) @,(x) @5(x ]de]
i=1 X,
+|tipx |:d¢l(xe+1) d¢2(Xe+l) d¢3(xe+1) d¢4(xe+l)i|T
0 Te d x dx d x d x
+|ct)ip [¢1(Xe+1) @Z(Xe+1) ¢3(Xe+1) cp4(Xe+1)]T- (23)
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where M€ is the local mass matrix and K€ is the local stiffness matrix. Parameters ¢y and cq

are the total Rayleigh damping coefficient of the structure, respectively. Other parametersp, ,
P, , and F indicate local electromechanical coupling matrices, local capacitance matrices, and
local mechanical forces, respectively. Moreover, variable i, is the local current output, u is

the local mechanical coordinate, and v is the local voltage output. Note that the effects of the
rotary inertia of the proof mass and offset parameters are taken into account where previous

major published works have ignored this case.

2.3. Global matrices of electromechanical dynamic equation
The global matrix forms of the structure with proof mass offset can be formulated using
the generalised dynamic equations for each element of the structure to give,

M u(t3+( C u(t1))+(n|< u(t1)>+ P, v(t3: F

(nmxnm)(nm>< nmxnm)(nm>< mxnm)(”mx nmxne) N (nmxl)

P, u(t) + Py v(t) =i, . (24)

(nexny ) (MexD)  (ngxn, ) (Nd)  (n,x1)

Note that Eq. (24) consists of mechanical and electrical forms corresponding with the global
matrices with the scripts nm and ne, respectively. Here, the mechanical matrices correspond
with the mechanical degrees of freedom of the structure for each node whereas electrical

matrices correspond with electrical degrees of freedom for each element.

2.4. Solution techniques using the orthonormalised global scalar forms

The solution form of Eq. (24) can be formulated in terms of the normalised modal vector

and time-dependent displacement generalised coordinate as,

U(t) =@y, (t)+ @,8, (t)+ ...+ @y 18 1 () + @an (t) = galt) . (25)
Since parameter ¢ = [@1 @2 ... ¢m] IS assumed to be a normalised modal matrix, the condition
must meet the orthonormality relation with ¢ "Mg=1. Let ¢ = c,U and parameter c, is the
unknown arbitrary constant for each eigenvector while U is the known value of each
eigenvector for each particular degree of freedom or eigenvalue. Therefore, it can be
formulated as 1=c,2UTMU such that c,=1/( UTMU)Y2. Finally, the normalised eigenvector or

modal matrix can simply be formulated as p=U/( UTMU)Y2,

12



Equation (24) can be further formulated by substituting Eq. (25) and premultiplying the result

by @' . The result of which can simply be formulated as,
' Mii(t)+ 9" Caa(t)+ @  Kealt)+ o' Pyv(t)=9'F ,
P, @a(t) + Poy(t) =i,(t) | (26)
where orthonormalised parameters from Eq. (26) can be stated as,
o Mp=1, ¢ Ko=0w? (oTqu = cv(q)T M(o)+ Cyq (¢T K¢)= cyl +cdw2 =2{m
Py=¢'Py, Pj =Pjp, Q=p'Q . 27)
It should be noted that the first part of Eq. (27) represents the orthornormality property of the
mechanical dynamic equations that show diagonal matrices. For this case, equation (26) can
be simplified as,
A(t) + 2¢ma(t) + w®a(t)+ Pyy(t) = — Qe (t),
Pya(t)+ Pou(t) =i,(t). (28)
Global scalar form of the electromechanical dynamic equations can be further formulated
using Eq. (28) in order to obtain the series form of the multimode FRFs. In this case, the first

discretised electromechanical piezoelectric dynamic equation can be formulated in terms of

the multi degree of freedom (multimode) system r=123,....,NDOF and the number of
normalised piezoelectric elements s=1,23,....,NELP as,

.. . 2 I A A A e

al(t)+ 20, a’lal(t)"' Wy al(t)+ P11V1(t)+ P12V2(t)+' ot Plsvs(t) = _Qlwbase(t)'

dy (t) +20,0,8, (t) + w22a2 (t)+ |321V1('[)+ iszzvz (t)+‘ ot FA)sts (t) = _szbase(t)’

NELP n
4 (t)+ 20, 0,4, (t) + o,%a, (t)+ Y Pv(t)= -0 W), r=12,..NDOF.  (29)
s=1
The second form of the discretised electromechanical piezoelectric dynamic equation can be

formulated as,
ﬁllal(t)+ FA)lzaz (t)+' e I:A)srar (t)+ PDlvl(t) = iPl(t)

F321a1(t)+ F322a2 (t)+' e F’Ssrar (t)+ PpaVs (t) =ipy (t)
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&, (t) + PogVq(t) = ipg(t) , s=1,23,....,NELP. (30)

]
>

r=1
The internal parallel connection in terms of the electrical discretised elements using
Kirchhoff's voltage law (KVL) and Kirchhoff's current law (KCL) must be formulated in the

scalar form as,

vi()=va(t) = .= vs(t)=v(t) o ipy(t)+ipa(t) + o tips (t)=ip(t) - (31)
Voltage output related to the external load resistance can be formulated as,
V(t) = iP(t)Rload ' (32)

Equation (30) can be reformulated after applying the second part of Eq. (31) to give,
NDOF NELP . NELP . .
Z z Psrar(t)+ ZPDsVs(t) = 'P(t) . (33)
r=1 s=1 s=1
In this stage, after applying mathematical derivations using Egs. (29)-(33), the multimode
FRFs of the distributed piezoelectric unimorph can be formulated. Employing the first part of
Egs. (31) and (32) into Egs. (29) and (33), respectively, the result of which can be further
solved using Laplace transforms giving the result in matrix form. The first voltage multimode

FRFs can be formulated to give,

~ NELP .

NDZOF Qr jC() Sgl PSF
V(jw) _ 1 o -—0’+ j20,0,0 . (34)
_wzwb ejwt - _ NELP . NELP
ase N%I:‘P_ ; 1 N%)F jw 32‘_1 P, SZ:_l P
joPps — =~ o)
s=1 bs Rload r=1 a)rz —602 + jZCra)ra)

The multimode FRF of the electric current output related to the input base transverse

acceleration can be stated as,

. NELP,
npor  Qrie 2Py
1 s=1
'p(J ) _ Rioad 1o o2 —w?+ j20 0r . (35)
2 jot NELP NELP
— @ Whaee € . n A

NELP 1 Noor 1¢ % Pr % Prs

D jwPps — - > = 2 =

s=1 Rioad r=1 o -0+ j2l oo

The power harvesting multimode FRF related to the input transverse acceleration can be

formulated as,

14



. NELP_
1 NDOF Qr jo zpsr

: > =1
Pp (ja)) _ VRioad r=1 wrZ —w?+ j2l oo . (36)
( 2 plot )2 N NELP _ NELP
J— a) W -
base N%P NI%)F Jo Z Psr Z:l I:’rs
ijD — — —
| s=1 ) Rioad r=1 a)rz—w2+ j2{ oo i

The optimal load resistance can be formulated by differentiating Eq. (36) with respect to load

resistance and the differentiable power function can be set to zero to give,

o UX() +Y ()
Ricas = X (@ +Y (o) ! @37

where
NELP . NELP . NELP NELP
©) NELP npor @ 2 Por 2 Prs(wr - ) ) NDOF @ Z Ps(20,0,0)
X(w)= Y wPps— > —2=L sl yYlwo)= D) = 1 . (38)
s=1 S r=1 (wr2 -0’ +(26rwrw)2 r=1 (wr -0 )2+ ZCrwrw)z

It should be noted the optimal multimode FRF of power harvesting can be formulated by
substituting back the optimal load resistance in Eq. (36). Moreover, the multimode FRF

representing the transverse displacement relative to the input transverse acceleration can be

obtained as,
NELP 1 ).
. Y. joPps — ———(Q;
ay (]w) _ 1 s=1 Rioad
2 jot — 22 NELP _ NELP
—®“Wpase € o -0+ j2( ;o o . A B
base r r®r NELP . NDOE jo P z Prs . (39)
ijPDs _ _ Z 5 s:l2 : s=1
s=1 Rioad r=1 oy -0+ j2{ oo

In terms of EQgs. (4) and (25), the characteristic transverse motion of the unimorph beam can
be reformulated to give,
w(xt)=@°(x) ¢° alt)=2 ()() Z fr(xart) (40)
(1><4) (4><r)(r><1) (1><r) ( rx1 r=1
The FRF multimode relative transverse displacement related to the input base acceleration at

any position along the unimorph beam (x) can be formulated using Egs. (39) and (40) as,

N%P 1 ).

JoPps — —— Qr

W(X, i a)) _ NDZ(:)F A% (X) s=1 Rioad

2 jot 2 2. - NELP _ NELP

— 0" Wpage € r=1 | o -0+ j2( o0 . R A (41
NELP 1 npor ¢ Z_:l Per Z_:l Prs (41)
ijst_ - Z 2 = 2 _S_

| s=1 load r=1 o -0+ j2{ 00
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The absolute transverse displacement and velocity FRFs can be also be formulated as,

Waps (%ij0) 1 w(xjo)

2 ot
®°  — 0 W'

Wabs(x’jw_) _ i i W(X’ja))_ ) (42)
_a)zwbaseejwt Ja) _Cozwbaseejwt
The transverse displacement response of the proof mass offset can be formulated over the

interval L<x<L+L,, as,

tip

dw(L, e do®(L)| .
s Ly ) Ly P @ 2 o ot

(1x4 (1X>§) (4xr)(rx1)
NDOF
—28(L+Lyplalt)= 3 28 (L+ Lgp ar (1) . (43)
(xr) (1) r=

The multimode transverse displacement FRFs for the proof mass offset can also be

formulated in terms of Egs. (39) and (43) to give,

NELP 1 ).
. joPps — ——|Q
W(L+ Ltip,]w) B NDOF /]»er(l_+ Ltip) Sgl Ds Rload r
2 jot 2 2 - NELP _ NELP
— 0 Wpgse € r=1 |0 -0+ j2( o0 . . . (44
NELP . nNpor 1¢ 2 Po 2 Prs (44)
i PR — _ s=1 s=1
ZJC‘) Ds R Z 2 2 .
L s=1 load r=1 o -0+ j2{ 00

The absolute transverse displacement and velocity FRFs at any position along the proof mass

offset can be formulated as,
Wabs(L_"L{ip!ja))_ . 1 W(L+Ltip!jw)

2 jot 2 2 jot
— W Whase€ w — 0" Whase€

Wabs(L+Ltip’jw) 1 +ij(L+Ltip’jw)

2 jot i 2 jot
— @ Wy,ee€ Jo — @ Wy,ee€ . (45)

3. Formulations of Electromechanical Closed-Form Boundary Value Method

This section focuses on the analytical method of electromechanical closed-form boundary
value method for formulating the system responses of the unimorph beam with arbitrary

proof mass offset using the Hamiltonian principle which can be formulated as,

[0(La +W¢ )dt = [(5KE — OPE + SWE + SWF +WD)dt =0 W, < el 49

t t } L, € {KE, PE,WE}
t, t,
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Note that each term of Eq. (15) can be formulated in Eqgs. (47)-(51). With these parameters,
the similar forms can also be found in numerical methods as shown in Egs. (14)-(18). The
only difference between the parameters shown in these equations is that the local element

length of structure x,,, for the numerical method as shown in Fig. (2b) can be transformed

into L for analytical method.

The kinetic energy of the structure can be reformulated as,

L L )

I p" H dx

0 (1) 0 (2)

+ e L P(L, (L t) + % IIPW(L,t)? + % 13PO(L,t). (47)

Note that detail of the mathematical equations for the dynamical beam structure and proof
mass offset as shown in the kinetic energy can be found in [27]. The potential energy due to
the stress-strain-electric-damping stress relation for the unimorph layers can be formulated as,
_1t o @)y
= [ [sTPdAbdx + = jjSl dx. (48)
0 AW A2)

The electrical energy term for the piezoelectric element can be formulated as,
1 L
WE = = [E; D,dAP dx . (49)
20 A0

The non-conservative work on the system due to the input base excitation and electrical
charge output can be stated as,

L L
——j()p xtdA d X Wy (t) j(j xtdA)debase(t)
0 Al 0A?

— X (t)ipe(l-vt)wbase (t) = | (t)ipW(Lvt)Wbase (t)+ q(e)(t)v(e)(t)- (50)
The power dissipated by air friction on the unimorph and proof mass offset using Rayleigh’s
dissipation function can be stated as,

L L
lj [c Y ()dx—ij ¢, pDir(x,t)? d A dx
20 A 20 A
— %cCy 1 PO, (L, t)—%c\,lé'p w(L,t)? —%cvlgpe(u) (51)

or Eq. (51) can be modified into the work done due to air friction using the relation

MD—%&‘);V ye { w(x, )g\;v(L,t),w(L,t)} to give,

OWD = jjc\,p) (x,t)d AY d xow(x,t)-
0AY

O —r

¢, pDhir(x,t)d A® d xo w(x,t)—x.c, | oL, tow(Lt)
A2
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— %Gy 1 0PW(L,1)00(L,t) — ¢, 1 IPw(L, thow(L,t) - ¢, 15PA(L,t)6(L,Y). (52)
Detail of derivation of functional form for damping relations can be seen in the next stage.

The functional forms L,and W; from Hamiltonian’s principle shows characteristic virtual

multi-variable in relation to the variational principle. The functional forms L,and W, can be

stated as,
L - L{v‘v(x,t), (L) ,awét’t)?z;vx(j’t) ,E(z,t)j | 53)
W, =W, (W(X,t), awébt) ,W(L,t),v(t)J | (54)

Equations (53) and (54) can be further formulated using the total differential equations as,

Virtual kinetic energy based on the generalised
velocities of structure and tip mass offset

oL oL oL A
0Ly = — 2~ ow(x,t) + —2~ow(L,t) +,6‘5(6‘N(L,t)j
aw(x,t) aw(L,t) oW X
a — (L)
OX
Virtual potential energy based on the generalised
strain  and the generalised strain rate Virtual electrical energy
due to internal damping based on the electric field
/—/%
oL 2 oL
+ a4 9 W(2)<,t) + &_SE(zt) (55)
5 o2w(x,t) X OE(zt)
8)(2
Virtual work based onthe generalise d
displacement due to air damping
sw; = 2PD (Sw(x,t)+L(S[@(L,t)j+&5w@,t)
aw(x,t) oW X aw(L)
3 —(L,t)
OX
Virtual work based on generalise d displacem ent Virtual work based on
of the structure and proof mass offset generalise d voltage
ow ow ow ow
T sw(xt) +f(5(aW(L,t)j+f(5w(L,t) v L) . (56)
ow(xt) ow ox ow(L) ov(t)
0 a—(L,t)
X

Note that the first to third terms in Eq. (56) indicate the differential form of power — work

relations due to air friction that can be proved. Let the functional form of power dissipation

be 6Py =Q¢dy V ye{vv(x,t),;ﬂ(L,t),w(L,t)} and let the variation of work done on the
X

system be JW,=Q,dy, such that f:W,; —{y}gives the total differential form

W :%@N ye{w(x,t),;—a\;v(L,t),W(L,t)}where Qs :% is applied friction force on

18



the system. To meet the Hamiltonian principle as shown in equation (46), 0W; must be the

dependent variable. Moreover, the contribution of damping stress due to internal friction in

the elemental structure can be seen in Eq. (55) at the sixth term.

In terms of Egs. (55) and (56), equation (46) can be further formulated using integro-
differential equations and extended using the variational principle in order to meet the
continuous differentiable functions in the elemental structure including its boundary
conditions in terms of virtual displacement, rotation and electrical voltage. After
simplification, the reduced integro-differential equation of the electromechanical modal

damped vibrational piezoelectric structure can be formulated as,

‘fﬁ{nomnnowbasea)cvuow(x,t)cdcs 7 Zle) -, 2P v

ilo ox? | ox? ox2 | ox

—{x 13 %+ L3PW(L )+ Xy 18P 8"V(g)'z’t)ﬂzv|(§"°w(L,t)+ |5‘pwbase} sw(L,t)

L
+[cd Cs 2[8 W(X,t)j-i-cs 2(aV\I—(X’t)ﬂéw(x,t)1 —{I 5P %wt Xg | §PVilpase + X 1P w(L,t)
0

x| ox?

L

X ox2 ox

awlx.t)" _[Cd o, FWx) o 62W(x,t)] 5 alxt)

b

_{j {ﬂ o%w(x,) _ch(t)de - q(t)}év(t)}dt o, -

0 ox?
It is important to note here that equation (57) shows the complete equation with the effect of
arbitrary proof mass offset and damping components. Parameters I, Igp, Igp, Cs, Coand u

can be found in Appendices A, B and C. Note that the reduced equation must meet the
mathematical lemma of the variational method of duBois-Reymond’s theorem for each
virtual displacement field. The first constitutive electromechanical damped dynamic equation

can be formulated as,

) . . 0% [ *wi(x.t 0% [ 0°w(xt
Iw(X,t): ToWI(X,t) + 1 oWl aee (t) + €, ToW(X,t) +C4 C axz[ 8x(2 )]+CS ax2£ 8x(2 )j:O.(SS)

The second constitutive electromechanical dynamic equation can be formulated as,

ov(t) : JL‘(—u(az(\;VT(;(’t)+va(t)]dx+q(t):O. (59)
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The boundary conditions can also be reduced to give,

w(0,t)=0 %:o,

ow(L,t): X 15P _&N(g)lz,t) +IPH(L, L)+ 1 5Py + X, C, 1P _8W§)I;,t)

+c, 1 3Pw(L t)

ox|  ox2 Sox| ox2

ow(L,t ip... ip... ip OW(L,t ip OW(L,t ip..
0 (gx ): Xe | WL, )+ X | o P Wipgge + 157 #H\,Igp éx )+ch\, 1oPwi(L,t)
2.z 2
+6,C. 0 W(_,';'t)+cs 0 W('Z"t)+ w(t)=0. (60)
OX OX

Note that since the system is under base excitation as shown in Fig. 1, Egs. (58)-(60) reduced
from Eq. (57) described the unimorph smart structure with a proof mass offset operating
under the dynamical motion where the mathematical expressions of the dynamical system
was reduced due to the relative displacement w(x,t) defined as the difference between
absolute displacement waps(X,t) and base excitation Wpase(t). Details of the kinematic equations
can be found in [27]. It is clearly seen that damping effects due to air friction and internal
friction on the system also contribute not only to the constitutive electromechanical damped
dynamic equation, but also in the boundary conditions where most published papers either in
the piezoelectric power harvester or other integrated piezoelectric applications have not

included derivations of the damping effect and normally have added it into the final

constitutive equations for simplicity as formulated into Rayleigh damping c,, =c,M, +¢,K,,

or normalised Rayleigh damping form c,, =c,d,, +der25rq = 2{, w,d, . Note that since

the piezoelectric beam is vibrated on the air, the air damping coefficient occurs due to the
kinetic energy from the velocity of the beam motion creating air particle friction whereas the
strain-rate damping occurs due to the internal friction of the material during vibrational
motion [30]. Note that the air damping coefficient is sometimes called the mass proportional
damping coefficient whereas internal friction damping coefficient is sometimes known as the
structural stiffness proportional damping coefficient, reflecting the Rayleigh damping
coefficient [31]. As shown in the electromechanical damping derivations in the finite element
modelling previously, the analytical techniques proposed here also associate with the

Rayleigh damping derivations.
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The closed-form analytical method using the electromechanical dynamic equations associated
with the boundary conditions can be further formulated using the convergent eigenfunction

forms which can be formulated as,
wixt) = > W, (x)w, (t). (61)

Equation (61) is sometimes called mode superposition which depends on the normalised
mode shapes and generalised time dependent coordinates. Note that the normalised mode
shape can be found in Appendix D. The new forms of equations (58)-(60) can be expressed
using the normalised eigenfunction series. In terms of Eq. (58), the first electromechanical

equation can be reformulated using (61) and the results can be multiplied with w,(x) giving,

o'—.r—

W, (M, (X dx+jcVIOW (0, (X ()+fcdc5d_zz[M)wq(x)w,(t)dx

0 dx d x?
d?W, (x) L B
£C e ( .~ )Wq(x)wr(t)dx+£IOWq(x)Wbase(t)dx_O. (62)

The second electromechanical dynamic equation from Eq. (59) can be further formulated by

applying (61) and differentiating it with respect to time to give,

S W()dxw )+ fC, dxv(t)+ ip(t)= 0. (63)

The boundary conditions from Eq. (60) can also be further formulated by substituting Eq.
(61) as,

wW.(0)=0 , =0 ,

190 W (L) ey 0 (i) 1P, + 187 SV )4 18740, (L)

dx dx
—¢,C, %{dzzﬁfz(L)Jwr (t)-C, %(%j\m (t)=0,
Xe | VA (L)W(E)+ X | PVl +17 dVZrX(L)W(t)+ ¢, 1P dVZrX(L) W(t)+ ¢, X 16™WU (L)(t)
+¢4Cq sz\;’(fz(L) (t)+C, dz%fz(")w(m u(t)=0. (64)

In terms of orthogonality relation, the third and fourth terms of Eq. (62) needs to be further

manipulated by using partial integration, the result of which can be further formulated by
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applying the boundary conditions from the first part in Eqg. (64). The resulting coupled
stiffness-damping differential equation can be written as,

Fd? (AW ()] Cond (AW (L) ,

'([d? ng }Nq(x)dX<C3Wr(t)+cdcswr(t))_a[dT q(L)(CsWr(t)+CdCsWr(t))

- dzwr(L)dwq(L)(C w, (t)+cyCow, (t))+ szv(/r )dzwq(x)dx(C w, (t)+c,C oW, (). (65)
dX2 d x s d . dX2 dX2 sV d“>sVr

In terms of conditions implied in the second and third equations of Eq. (64), equation (65)
can be formulated as,

T d—zz(%}% (X)dX(C W, (t)+ Gy C e ()= 1§ "Wy (L Wi +16° W, (LW, (L), (1)

OdX
AW (L) o AW (L) o dWq (L) dW
+x 18P drx( )Wq(L)wr+xC|g'pwr(L) dqx Wy + % 1P dqx lpage + XcCy I 3P () W, (L)i(t)

+ ¢ 15V, (LW, (L) + ¢, 157 dw, (L )dwq(l')w(t)+ xccvlg‘pV\?r(L)qu( )W(t)

dx dx d x
o ()WL) (L) ) 5%, () W () |
* I ' d X dX (t)+ H d X V(t)+ _([ d XZ d X2 d X(CSWr (t)+CdCsWr (t)) (66)

Corresponding to Eg. (66), equation (62) can be reformulated to give,

F1 oM, GV () i (£)-+ 182V, (L, (Lt 6) + 10 9V (L)w (L, (1)

et O ) o1, () b (0

+ X 1P W, (L)

1 (L (L0 6,1 S0 N (L) 1500, 1)

A

dw, (L L 2\ (x) d2W
|tlp dW( ) q( )v'v(t)+jchSd Wr(X) q(x)
dx dx 0 dx2 dx2

d xw, (t)

Y

L d2W, (x) 47 Wq (%)
0 d x? d x?

dW, (L)
dx

v(t)

d xw, (t)+

Lo .. tipy £) .. tip qu(L) .
= _I IO\Nq (X)d XWbase(t) - I0 Wq (L)Wbase(t)_ XCIO waase(t) : (67)
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Since parameters w,(x) and w,(x) indicate normalised mode shapes, the orthonormality

property from Eq. (67) can be proved by applying the orthogonality property of the

mechanical dynamic equations to give,

Lo e i (1w io dW, (L), o AW (L)
[ 1oW, (x W (x)d x +|gpverQWVq(L)4-xc|gp-—?fé—)vvq(L)4—xclgpvvr(L) J;
0
dW (L) dW, (L 0if re
+15° v (1) AWy )zérq 5 n (68)
dx dx lifr=q
L d2W, (x)d* W, (x) ) 0 if r=q
[Cs > dX =0 g =1 5 : (69)
0 dx dx o if r=g

Two Rayleigh mechanical damping coefficients can separately be formulated from Eq. (67)
by applying orthonormality. The mass proportional damping terms due to air friction can be
formulated as,

L o (1 \f tip AW, (L),
Icv oW (Mg (x)d x + ¢y 15 PW (LW (L) + %y |0|pd—rXWq(|—)
0

(70)

+Xcly |(t)ip\/\7r(|-)

dWg(L)  ip oW, (L) dWq(L) 0 if r=q
PO T T

The stiffness proportional damping terms due to internal friction of damping stress for the

laminated piezoelectric structure from Eqg. (67) can be formulated as,

L 2\4) 2\\] i
W_(x)d“W,(x 0 if rz
J-Cd CS d r2(X) q2( )dX — Cd a)rzérq :{ , q (71)
0 dx dx cqo,” if r=q
Therefore, Rayleigh mechanical damping coefficient can simply be reduced as,
Crq = Cydpq +Cq 0 0pq = 20,0, 0pq (72)

where ¢, and c, indicate mass proportional damping coefficient and stiffness proportional
damping coefficient, respectively. Corresponding to Egs. (68)-(69), equation (67) can now be
reformulated by including the Rayleigh mechanical damping from Eq. (72), the result of
which can be coupled with Eq. (63) to give the normalised closed-form electromechanical

transverse dynamic equations with input base excitation as,

wr (t) + 2Z—‘/I’ a)l’ V.vl' (t) + a)rzw(t)+ Pr V(t) = _QI' Wbase (t) !

5P 1) + Poy(t)+ L 0. ©

r=1 load

23



It is noted that because equation (73) has been normalised, the parameters P., P., Py, and

Q, can be reduced as,

dw © oL d?W,(x)
P i I—) = - 7 dX,
e BB
L L - . \/
P, =[C,dx, Q = [1oW, (x)d x+ 15PW, (L) + % 15" —dVZfX(L). (74)
0 0

The second multi-mode FRF is the transverse motion with respect to input motions. If base-
input transverse motion is ignored, the FRF of transverse motion related to the base input
longitudinal motion can be obtained as,

. 1
. JoPp+ ]Q
wy (jo) _ 1 [ Rioad )

2 2, 0 B
-0+ j2{,oro| . 1 o PP,
Ol Py B . 12 r.r
Rioad oo — 0+ j20, 00

. (79)

2 jot
— 0" Wpgge oy

The multi-mode FRF of transverse displacement with respect to input base transverse

acceleration can be obtained as,

. 1
. . JoPp + ]Qr
w(x, jo) __ i W (x) [ Rioad (76)
—wzwbaseejwt r—1 wrz—w2+ j2(opw Py + 1 = jo PP,
Rioad rzla)rz —0’+ j2lorw
The absolute transverse displacement and velocity FRFs can be also be formulated as,
Wabs (X’ja)) — _i_'_ W(X,ja))
2 jot 2 2 jot !
- WbaseeJ w - WbaseeJ
W (X, jo 1 . WX, jw
a2bs( J Jz)t — _+Jw 2( J )jwt (77)
— W Wppaee€ Jo — W Wpase€

The multi-mode FRF of transverse displacement with respect to input base transverse
acceleration can be obtained as,

I® av, (x) 1
W, (L)+ L r jo P
W(L+L' ,Jw) © [ L)+ Lip dx ] (Jw DF R Qr
tip __Z load (78)
— 0 Wt T 02— 0%+ j20 00 Py + 1 < jo PPy
load rzlwrz—wz-l— j2{orw

The absolute transverse displacement and velocity FRFs at any position along the proof mass

offset can be formulated as,
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Wops (L + L 1 j0) 1 wWL+Lg,jo)
eja)t __2+ 2 eja)t

2
— @ Whgaee

v'vabs(L+Ltip,jco)_ L+ij(L+Ltip’jw)
B a)ZWbaseejwt Ja) - C‘)zwbaseejwt . (79)
The multi-mode FRF between electric voltage output and the input base transverse

acceleration can be obtained as,

5 joPQr
vp(ja))_ _ Tol-0’+ 20 o0 | (80)
—a)zwbaseejwt . 1 = jo PP,

ijD+ - 5 > .
load (0 —0°+ J2{;0r0

The multi-mode FRF of the electric current output related to the input base transverse

acceleration can be derived, where the base input longitudinal acceleration is omitted to give,

1 < jwlerr
ip(jw) 3 Rioad rzla)rz—w2+ j2{ o0 (81)
2 jot . A
- 0 Wpasee joPp+ 1 e Jo PPy

load rzla)rz —0?+ 2 opw

The multi-mode FRF of power harvesting related to the input transverse acceleration can be

derived as,
— w ] R _2
1 JoPrQy
Pp(jw) _ VRioad 10" =0’ + j2 opo (82)
2 jot © iwP '
(—w wbaseel“’ )2 joPp + 1 _ Joo PPy
i load rzla)rz—wz-l— j2lr o0

To obtain the optimal multi-mode FRF power harvesting, equation (82) can be differentiated
with respect to load resistance and the differentiable power function can be set to zero to give
the optimal load resistance. Corresponding to Eq. (82) the optimal load resistance can be

formulated as,

o AX@P V(o)

load — X (o) (a)2 ' (83)

where

“eT Z(wr ) (ZCrwrw)z
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It should be noted that the optimal load resistance can be substituted back into Eq. (82) to

give the optimal power harvesting.

4. Result and Discussion

Comprehensive case studies of the numerical and analytical validations including the
experimental results are discussed using the electromechanical FRFs with variable load
resistance. This section discusses three important parts. For the first part, the computational
capability of the novel numerical techniques in comparison with analytical models is
discussed in terms of the dynamic system responses. This also includes the experimental
validation. For the second part, the proposed numerical techniques enable the prediction of
optimal power harvesting response and frequency bandwidth for identifying the performance
obtainable by varying the piezoelectric thickness and physical property optimisations with
distributed piezoelectric element. For the third part, the proposed numerical techniques
enable the prediction of optimal power harvesting response for identifying the parametric
design optimisations with segmented piezoelectric elements.

4.1. Numerical, analytical and experimental validations of the modal damped vibrations of
the distributed piezoelectric unimorph with the proof mass offset.

This section discusses validation of three different studies using the numerical, analytical
and experimental results for the modal damped vibration response of the distributed
piezoelectric unimorph beam with the proof mass offset. The selected piezoelectric properties
made from PZT PSI-5A4E (Piezo Systems, Inc) are listed in Table 1. The input base
transverse acceleration onto the cantilevered piezoelectric unimorph beam was chosen to be 1
m/s2. In Fig. 3, the device length L and width b with piezoelectric thickness h, and
substructure (brass) thickness hs were set to 60 mm, 6 mm, 0.127 mm and 0.5 mm,
respectively. The proof mass configurations of the piezoelectric structure were calculated
according to the geometry and material property made from steel where the dimensions of
proof mass with length I, thickness ht and width w: (width) were set to 15 mm, 10 mm and 6

mm, respectively. Offset distances of proof mass X, and z, can be found in Appendix A. Note

that the extra length of the substructure glued on the proof mass was assumed to be a body

mass contributing the proof mass offset. Moreover, the complete experimental setup as
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shown in Fig. 4 was utilised for further validations. The results shown in Fig. 5a include the
absolute tip velocity FRFs at the first mode using the three different methods show very good
agreement under the variable load resistance. As can be seen, the higher amplitudes can be
achieved at the short and open circuit resonance frequencies of 18.5 Hz and 18.9 Hz when the
load resistances approach the lower and higher values (from short to open circuit load

resistances), respectively.

Further validations of the electromechanical FRFs can be seen in Figs. 5b-5d. Since our
main concern is to present the validations of the novel mathematical studies (numerical and
analytical) with special emphasis on the modal damping of the normalised dynamic systems
of the piezoelectric unimorph beam and tip offset, the trends of electromechanical FRFs can
be found to very similar with the established facts of the previous analytical literatures [7]-
[9]. In electromechanical FRFs, the damping effects of the system consist of mechanical
damping, electromechanical damping and electrical damping [8]. Mechanical damping ratio
at first mode (1=0.0162 was identified by fitting the results obtained from the measurement
and theoretical methods using the velocity FRF with the load resistance approaching to short
circuit in order to obtain accurate results. On the other hand, the electromechanical damping
effect can be found in the piezoelectric coupling and piezoelectric capacitance that can be
seen in Eqgs. (29) and (33) whereas the electrical damping can be found in the resistive shunt
circuit. Again, the voltage, current and power FRFs with the variable load resistance given
from the numerical and analytical methods gave very accurate results compared to the
experimental results. The shifting frequencies from short to open circuit load resistances can
also tune the amplitude levels for each FRFs. Moreover, Fig. 6a shows that the maximum
power amplitude can be captured at certain levels of the increasing velocity amplitude with
different frequency responses when the load resistance moves from short to open circuits. In
other words, the maximum power harvesting does not mean the system response has
maximum velocity. More noticeably, maximum power can be achieved at frequencies
between 18.43 Hz and 19.05 Hz. For better indication, the highest power output as shown in
Fig. 5d can be seen at the short and open circuit resonance frequencies at precise values of
18.5 Hz and 18.9 Hz, respectively. By viewing a particular location as shown in Fig. 6b, the
power amplitudes at off-resonances, with the load resistance moving from short to open
circuits, increase gradually until reaching the highest level and then decrease to the lowest
level, followed by increasing velocity amplitudes. However, when the system response

approaches the short and open circuit resonance frequencies, the power amplitudes with the
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load resistance moving from short to open circuits, increase rapidly with a slight decrease of
velocity amplitude before reaching the highest level of power, and then decrease slowly to
the minimum point, followed by increasing velocity amplitude. Moreover, Fig. 6b also shows
that the maximum power amplitude trends with different frequency responses can be seen at
certain levels of decreasing current amplitude when the load resistance moves from short to
open circuits. At this particular situation, the highest power tends to approach the short and
open circuit resonance frequencies with a gradual decrease of velocity amplitudes, followed

by increasing load resistances from short to open circuits.

As mentioned previously, the proposed novel numerical technique introduced the 1-D
laminated beam element where most of the multi-physics finite element softwares only
provide the 2-D and 3-D coupled-field elemental attribute facilities for meshing piezoelectric
beam structures [32]- [33]. The proposed electromechanical finite element vibration shows
considerable convenience, once the matrix equations of the electromechanical discretised
element were developed and analysed using a MATLAB program. The technical challenge
depends on the computational efficiency in developing the auto-generation computing
program codes for the multi-element formulation. Once the program codes were developed
and tested for correctness, the proposed numerical technique can be used for analysing the
parametric case studies with different geometrical aspects and physical properties as further
discussed in the next section. As a result, it shows reliable and convenient computational
process. In Table 2, it can be seen that the CPU time of power harvesting FRFs was slightly
higher than the natural frequency because the FRFs using Eq. (36) requires an iterative
process that depends on the frequency step size, number of degrees of freedom and
piezoelectric elements. Note that the computer system for running the simulation was an Intel
core i7-4770 CPU 3.40 GHz with 16 GB RAM. In this paper, the power FRFS with 9

different load resistance values have used frequency step of 0.1 Hz spanning from 10 Hz — 30
Hz. Moreover, iterating the natural frequency using the expression, (K —wZM)J IS quite

straightforward because Matlab has common commands for analysing eigenvectors (d) for
mode shapes and eigenvalues for natural frequencies (v) from the global matrix A using
[d,v]=eig(A). Overall, the computational cost during the process of each iteration for 50
elements only takes less than 10 seconds for the power FRFs and 3 seconds for the natural

frequencies.
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On the other hand, the analytical technique as the exact analytical method depends on the
solutions of the partial differential equations with the proper boundary conditions where
dynamic response of the electromechanical piezoelectric structures depends on identifying
the frequency equations and eigenfunction solutions. Once these are identified, the
electromechanical FRFs can be formulated and analysed. However, the computational
process will be challenging, if the geometrical parameters (length, thickness, properties, etc)
are varied. Moreover, if the complex structures such as the segmented piezoelectric structures
onto the substructure are applied, the computational process will be even more tedious and

challenging.

4.2. Parametric design and physical properties of the modal damped vibrations of the
distributed piezoelectric unimorph with the proof mass offset.

Discussion on the optimal power harvesting FRFs using different physical piezoelectric
properties are presented using the numerical technique for identifying the optimal frequency
bandwidths and for analysing the vibration characteristics of the parametric design
optimisation. Note that mechanical damping ratio {1=0.0162 as shown in section 4.1 was
used on this case where it was obtained using the chosen Rayleigh damping coefficients of
2.856 rad/s (cv) and 6.727e-5 s/rad (cq). The investigation of the optimal power harvesting
FRFs using different material properties from Table 3 can be seen in Fig. 7a, where each
material shows different operating frequency bandwidths and resonance frequencies. This
can be seen clearly in Fig. 7b, the frequency bandwidths for each optimal power output show
the different size due to strong effect of different piezoelectric electromechanical coupling.
As can be seen, the PZN-PT material shows very high piezoelectric constant resulting in the
strongest electromechanical coupling where the operating frequency bandwidth give the
highest value among other piezoelectric materials because there are two peaks of equal
amplitude from the PZN-PT optimal power response resulting in the wider frequency band.
On the other hand, PVDF shows the weakest electromechanical coupling due to very low
piezoelectric constant. Note that the example in [34]-[35] also shows the similar application
of discussing strong and weak electromechanical coupling using different piezoelectric
constants where the studies also show relevancy of this section using our novel theoretical
studies. At this point, the frequency bandwidths for each piezoelectric power harvesting
device show benefit for identifying the performance of the electromechanical system.

Moreover, parametric design of piezoelectric thickness with the chosen piezoelectric
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materials can also be used to widen the frequency bandwidth as shown in Figs. 8a-d. Only
piezoelectric thickness was varied where other physical properties and geometries remain
constant. It is clearly seen that increasing piezoelectric thickness may also contribute to
increase in the frequency bandwidth. The optimal power harvesting FRF as shown in Fig. 8
was calculated using Egs. (36) and (37). It can be seen that the transition between weak and
strong electromechanical couplings occurs when the piezoelectric thickness increases
slightly. For example, for the PZN-PT material with the particular piezoelectric thicknesses,
the two amplitude peaks of the optimal power FRF was obtained using the optimal load
resistances. It means that the power FRF amplitudes with certain load resistance coincident
with the two peaks of the optimal power FRF have different resonances for each single peak.
For this point, the lower resonance frequency for the first amplitude peak is obviously the
same as the natural frequency of the mechanical system. Moreover, the higher resonance
frequency for the second peak is actually a shifting frequency due to the effect of the
electromechanical system consisting of piezoelectric coupling and capacitance and resistive
shunt circuit. In essence, the natural frequency and eigenvectors only depend on the
characteristics of the mechanical system since they are obtained from the expression,
(K-o®M)U . Moreover, for coupled system behaviour from the power harvesting system, the
nature of the mechanical system of the piezoelectric structure can be affected by the nature of
the electromechanical system of the piezoelectric itself including the addition of the load
resistance. Therefore, the behaviour of the two amplitude peaks of the piezoelectric structure
has strong electromechanical coupling. The lower and higher resonance frequencies for the
two peaks are sometime called the short and open circuit resonances, respectively. Note that
the short circuit resonance is the same as the natural frequency of the system [2, 8, 10, 27]. If
the thickness of piezoelectric is reduced until giving single peak of amplitude, the resonance
frequency of the optimal power FRF is the same as the natural frequency of the mechanical
system having the equivalent eigenvectors. At this point, the piezoelectric structure has weak
electromechanical coupling. Nevertheless, the actual eigenvectors including eigenvalues
reduced from mechanical system can be used as reference for investigating the behaviour of

electromechanical frequency response.

Further detail of frequency bandwidth differences for each piezoelectric material can be
seen in Fig. 9a. As a function of thickness, the maximum power amplitude as shown in Fig.
9b can also be obtained for each material. Only PVDF material shows the lowest amplitude

value although the thickness increases. Note that if the input vibration applied onto the
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piezoelectric unimorph beam is kept constant, further increasing piezoelectric thickness
might result in a decrease of the optimal power amplitude significantly and also might
invalidate the thin beam Euler-Bernoulli condition (ratio between beam length to thickness at
the minimum order of 20). Further studies of the effect of the piezoelectric thickness
including other parametric designs in the system response of the optimal power harvesting

can be discussed in the next stage.

4.3. Parametric design of PSI-5A4E of the modal damped vibrations of the segmented
piezoelectric unimorph with the proof mass offset.

Parametric design-based electromechanical optimal power harvesting using the variations
of piezoelectric length (xqiv), thickness (hp) and capacitance (Pp) and proof mass length (lsip)
can be further explored in order to identify the particular locations of the maximum power
using the numerical technique. It is noted that the geometry of the substrate as given earlier
remains constant where the segmented piezoelectric coverage was measured from the base to
the end of the beam as shown in Fig. 10. For this case, piezoelectric material PSI-5A4E was
chosen because the material was also used in the experimental studies as given section 4.1.
Note that the identification of maximum power using parametric geometrical design was
based on the given formula of numerical studies as shown in Eqgs. (36)-(37) where it shows
the optimal power harvesting FRF based on the optimal load resistance. In Figs. 11a-d, the
region of producing maximum power harvesting using the parametric design can be seen by
increasing piezoelectric thicknesses and lengths of the portion of the piezoelectric segment
lengths between 48 mm and 60 mm with the thicknesses between 0.127 mm and 0.197 mm.
In that region, the maximum power harvesting with the frequency ranges from 15 Hz to 20
Hz and damping ratios from 0.016 to 0.018 can be identified with the higher internal
capacitance reaching up to 90 nF. Note that varying mechanical damping ratio based on the
parametric geometrical design was calculated using the chosen Rayleigh damping
coefficients of 2.856 rad/s (cy) and 6.727e-5 s/rad (cq). This shows that the input base
transverse motion onto the piezoelectric beam structure can create the bending motion of the
elemental beam resulting in the induction of the electric and polarity fields of the
piezoelectric element to be even more sensitive. At this case, the piezoelectric coupling with
3-1 mode of operation is the most suitable response for generating the maximum power
output under bending mode. However, low power output can be obtained, if the piezoelectric

thickness and length increase continuously because that will result in larger dynamical ratio
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between stiffness and mass of the piezoelectric structure producing higher resonance

frequency with very low damping ratio.

Further parametric studies using the variances of the proof mass length and piezoelectric
length can also be seen in Figs. 12a-c. The power outputs of the system responses show
maximum level with lower resonance frequencies and larger mechanical damping ratios
when increasing the volume of the proof mass and the piezoelectric segment lengths at the
certain dimension. The largest mechanical damping ratio can be obtained when the volume of
proof mass increases with reduction of piezoelectric length resulting in the lowest resonance
frequency with a relative higher power amplitude. Note that since the increasing proof mass
geometry contributes to the mass matrix of the numerical solution, it directly affects the mass
proportional Rayleigh damping coefficient giving the larger mechanical damping ratio. It is
obvious to see that the resonance frequency can be larger value, if the volume of the proof
mass reduces slightly. However, in this case, the optimal power amplitude does not give the
maximum value. It can be arguably stated that most of the typical power harvesting devices
have attached the proof mass in order to give higher power amplitude, especially to tune the
lower frequency response that fits to the vibration environment. Overall, the investigation of
the parametric design of the power harvester device with variable proof mass and
piezoelectric geometries can be used to identify the maximum power output with low

resonance frequency.

5. Conclusion

Expressions of mathematical techniques using electromechanical finite element analysis
and analytical closed-form boundary value method have been presented in this paper with
particular emphasis on the modal damped vibration system responses of the piezoelectric
power harvesting with dynamical proof mass offset. Matrix electromechanical finite element
dynamic equations reduced from the extended Lagrangian principle were further formulated
using orthonormalised scalar forms to give EFRFs of voltage, current, power and velocity.
On the other hand, analytical equations reduced from the variational principle based on the
integro-differential equations were also further developed using the orthonormalised closed-
form boundary value methods to give EFRFs of voltage, current, power and velocity. Note
that EFRFs reduced from numerical and analytical techniques show distinct equations that

facilitate computational processes. The numerical techniques provide the benefits for

32



analysing the electromechanical energy harvesters with different geometry and scalability of
devices that can reduce the complexity of solving the analytical techniques based on the
integro-differential equations associated with their boundary conditions. The only challenge
of the numerical techniques is the process of developing computational program codes, for
example using the Matlab software. Once these codes show capability and accuracy of
displaying the results from their post-processing systems, the numerical techniques can
provide effective and quick predictions for analysing various case studies. On the other hand,
the analytical techniques proposed here provide complementary methods for the use of

validation as required by numerical techniques.

The result shows that the system responses from numerical and analytical studies give
excellent agreement to that of experimental result. Further parametric geometrical design and
physical properties of the piezoelectric power harvesters have been presented using numerical
EFRFs. The result shows that the analysis of the optimal frequency bandwidth can be a useful
technique for investigating weak and strong electromechanical effects and optimal responses
of the various piezoelectric properties including different geometrical designs of piezoelectric
structure and proof mass. These parametric studies provide the benefit for identifying the
maximum power output, low resonance frequency and larger frequency bandwidth because
the studies can be used to identify the performance of the device based on the best-fit

amplitude from the vibration environment.

Appendix A. Mass moment of inertias of the unimorph beam and proof mass offset

Coefficient mass moments of inertia can simply be formulated based on geometry and
material property of the piezoelectric bimorph. The zeroth mass moment of inertia of the
unimorph beam was given as,

I = pUpWp® 4 )@@ (A1)
The mass moment of inertias of the proof mass offset as shown in Fig. 3 can be formulated.
Note that the extra unimorph beam length also contributed to the proof mass offset. The

zeroth mass moment of inertia can be stated as,
1% = ptPplh, + pYolh, (A2)
and the second mass moment of inertia of proof mass offset at the end of unimorph beam

with the coincided point of neutral axis d as shown in Fig. 3 can be formulated as,
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where the offset distances measured from the proof mass centroid to the point d in the x- and

z-axes can respectively be formulated as,

bl 2k + pWbl,2hg

© 2l ptPbighy +pWol;hg )
: Zn,—h hs+h, -z
pt'pbltht[r;[+zn —hp]+ pWol, (z, —hp{ " ; p J_p(l)mt(hs +hy, _Zn{SanJ
Z. = : . (A5)
’ pPblchg + pUbl, (2, =hp J+ pUbl (b +hp 2, )
Appendix B. Stiffness coefficients for the unimorph beam
The total transverse stiffness coefficient for two layers can be formulated as,
b( _ _ _
C, :g(cl(i)(hp +h -1, f —cl(i)(hp -7, f+c2h, -2, f +cl(12)zn3) (B1)

Appendix C. Transverse piezoelectric coupling coefficient and internal capacitance of
piezoelectric

It is noted that piezoelectric coupling x comes from the converse and direct effect of the

piezoelectric material respectively [27]. Transverse piezoelectric coupling can be formulated
as,

ﬂ:_eslb(zznhp‘*%z), (C1)

2n,

The piezoelectric capacitance at the piezoelectric layer can be calculated as,

S
c, - =2, (2
hp

Appendix D. Mode shapes of the cantilevered unimorph beam with proof mass offset

The normalised eigenfunction series ¥, (x) in Eq. (61), can be proved by manipulating

Egs. (58) and (60) and taking only consideration of the transverse mechanical equation of the

typical Euler-Bernoulli unimorph beam with cantilevered model by substituting
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Wre (Xt) = il\lfr (x)w, (t). The reduced characteristic mechanical equation can be formulated
r=

|:A11 A12:|{a1}20 (Dl)
Aar Axn (a4 ’

where: A, = —(cos(aL) +cosh(aL)) + Iéilpo 3 (sin(aL) + sinh(aL))

to give,

tip 2
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0

I tip a 3
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0

4 #(sin(oi) —sinh(aL)) ,

tip
Iy o

A, = (sin(aL) — sinh(aL)) + : (cos(aL) — cosh(aL))
_%(sm(am +sinh(a) |
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X | (t)ipaz B
0 = (cos(aL) — cosh(alL)).
0
The frequency equation and eigenvalues can be formulated from Eq. (D1) leading to
nontrivial solutions as,
AuAy —Anh, =0 . (D2)
The mode shape or space-dependent eigenfunction of transverse bending can be formulated
can be formulated as,
Ay .
W, (x) = a,, (cos(ax) — cosh(ax) + A—21(S|n(ax) - smh(ax))J. (D3)
22

Since equation (D3) contains variable a;, as the transverse amplitude constant, the

normalised mode shape can be formulated as,

V\7r(X)= Wr(x) r=12,..m, (D4)

L - - - N\V2 !
[Jlovvr<x>2dx+ WL+ 201,08 L 4 L) ]
0

dx

35



References

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

N.G. Stephen, On energy harvesting from ambient vibration, J. Sound Vib. 293 (2006)
409-425.

A. Erturk, D.J. Inman, Piezoelectric energy harvesting (Wiley, 2011)

S. Roundy, P.K. Wright, A piezoelectric vibration based generator for wireless
electronics, Smart Mater. Struct. 18 (2004) 1131-1142.

J. Liang, W.-H Liao, Impedance modeling and analysis for piezoelectric energy
harvesting Systems, IEEE/ASME Trans. Mechatronics 17 (2012) 1145-1157.

Y. Liao, H. Sodano, Model of a single mode energy harvester and properties for optimal
power generation, Smart Mater. Struct.17 (2008) 065026.

M. Kim, M. Hoegen, J. Dugundji, B.L. Wardle Modeling and experimental verification
of proof mass effects on vibration energy harvester performance, Smart Mater. Struct.
19 (2010) 045023.

H. Wang, Q. Meng, Analytical modeling and experimental verification of vibration-
based piezoelectric bimorph beam with a tip-mass for power harvesting, Mech. Syst.
Signal Proc. 36 (2013) 193-209.

M.F. Lumentut, .M. Howard, Analytical and experimental comparisons of
electromechanical vibration response of a piezoelectric bimorph beam for power
harvesting, Mech. Syst. Signal Proc. 36 (2013) 66-86.

A. Erturk A, Assumed-modes modeling of piezoelectric energy harvesters: Euler—
Bernoulli, Rayleigh, and Timoshenko models with axial deformations, Comp. Struct.
106-107 (2012) 214-227.

A.M. Wickenheiser, Eigensolution of piezoelectric energy harvesters with geometric
discontinuities: Analytical modelling and validation, J. Intel. Mat. Syst. Struct. 24
(2013) 729-744.

M.F. Lumentut, .M. Howard, Electromechanical piezoelectric power harvester
frequency response modelling using closed-form boundary value methods,
IEEE/ASME Trans. Mechatronics. 19 (2014) 32-44.

M.F. Lumentut, L.A. Francis, I.M. Howard, Analytical techniques for broadband
multielectromechanical piezoelectric bimorph beams with multifrequency power
harvesting, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 (2012) 1555-1568.

H. Zhang, K. Afzalul, Design and analysis of a connected broadband multi-
piezoelectric-bimorph-beam energy harvester, IEEE Trans. Ultrason. Ferroelectr. Freq.
Control 61 (2014 ) 1016-1023.

F. Goldschmidtboeing and P. Woias, Characterization of different beam shapes for
piezoelectric energy harvesting, J. Micromech. Microeng. 18 (2008 ) 104013.

36


http://www.sciencedirect.com/science/journal/08883270/36/1

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

L.M. Miller, E. Halvorsen, T. Dong, P.K. Wright, Modeling and experimental
verification of low-frequency MEMS energy harvesting from ambient vibrations, J.
Micromech. Microeng. 21 (2011) 045029.

R. Andosca , T.G. McDonald, V. Genova, S. Rosenberg, J. Keating, C. Benedixen, J.
Wu, Experimental and theoretical studies on MEMS piezoelectric vibrational energy
harvesters with mass loading, Sens. Actuators A 178 (2012) 76-87.

A. Abdelkefi, M. R. Hajj, and A. H. Nayfeh, Piezoelectric energy harvesting
from transverse galloping of bluff bodies, Smart Mater. Struct., 22 (2013) 015014.

Y. Yang, L. Zhao, L. Tang, Comparative study of tip cross-sections for efficient
galloping energy harvesting, Appl. Phys. Lett. 102 (2013) 064105.

M. Naillon, R.H. Coursant, F. Besner, Analysis of piezoelectric structures by a finite
element method, ACTA Electronica 25 341-362.

S.Y. Wang 2004 A finite element model for the static and dynamic analysis of a
piezoelectric bimorph, Int. J. Solids Struct. 41 (1983) 4075-4096.

A. Benjeddou, Advances in piezoelectric finite element modelling of adaptive
structural elements: a survey, Comp.Struct., 2000, 76, pp. 347-363.

H.S. Tzou, C.I. Tzeng, Distributed piezoelectric sensor/actuator design for dynamic
measurement/control of distributed parameter system: A piezoelectric finite element
approach, J. Sound Vib. 138 (1983) 17-34.

J.M. Moita, I.LF.P. Correia, C.M.M. Soares, Active control of adaptive laminated
structures with bounded piezoelectric sensors and actuators, Comp. Struct. 82 (2004)
1349-1358.

O. Thomas, J.-F. Ded, J. Ducarne, Vibrations of an elastic structure with shunted
piezoelectric patches: efficient finite element formulation and electromechanical
coupling coefficients, Int. J. Numer. Methods Engng. 8 (2009) 235-268.

N.G. Elvin, A.A. Elvin, A coupled finite element-circuit simulation model for
analyzing piezoelectric energy generators, J. Intel. Mater. Syst. Struct. 20 (2009)
587-595.

Y. Yang, L. Tang, Equivalent circuit modeling of piezoelectric energy harvesters, J.
Intell. Mater. Syst. Struct. 20 (2009) 2223-2235.

M.F. Lumentut, I.M. Howard, Electromechanical finite element modelling for
dynamic analysis of a cantilevered piezoelectric energy harvester with tip mass offset
under base excitations, Smart Mater. Struct. 23 (2014) 095037.

Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control

Society, 1987, IEEE standard on piezoelectricity, IEEE/ANSI Std. 176-1987, New
York.

37



[29] A.M. Wickenheiser, Design optimization of linear and non-linear cantilevered energy
harvesters for broadband vibrations, J. Intel. Mat. Syst. Struct. 22 (2011) 1213-1225.

[30] H.T.Banks, D.J. Inman, On Damping Mechanisms in Beams, ASME J. App.Mech.
58(1991) 716-723.

[31] R.W. Clough, J. Penzien, Dynamics of Structures (Wiley 1975), New York.

[32] Coupled-field analysis guide, http://orange.engr.ucdavis.edu/Documentation12.1/121/
ans_cou.pdf#page=40&zoom=auto,32.4,569.295

[33] Piezoelectricity in ansys mechanical, say goodbye to command snippets!,
http://www.ansys-blog.com/tag/piezoelectricity/

[34] M. Zhu, E. Worthington, J. Njuguna, Analyses of power output of piezoelectric energy-
harvesting devices directly connected to a load resistor using a coupled piezoelectric-
circuit finite element method, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56
(2009) 1309-1318.

[35] Y. Liao, H. Sodano, Structural effects and energy conversion efficiency of power
harvesting, J. Intel. Mat. Syst. Struct. 20 (2009) 505-514.

38



Table 1. Properties of the piezoelectric unimorph system.

Material properties Piezoelectric Brass
Young’s modulus, C;; (GPa) 66 105
Density, p (kg/m?) 7800 9000
Piezoelectric constant, dsi (pm/V) -190 -
Permittivity, £45 (F/m) 1800 ¢, -
permittivity of free space, &, (pF/m) 8.854 -

Table 2. Computational cost based on the number of meshed elements.
Number of CPU Time (seconds) for CPU Time (seconds) for

Elements Power Harvesting FRFs  Natural Frequencies
5 0.56160 0.32760
10 1.04521 0.57720
30 4.27443 1.51321
50 9.87486 2.49602

Table 3. Piezoelectric material properties.

Reference / Piezoelectric Young’s  Piezoelectric Relative Density
Company material modulus  coefficient  dielectric (kg/m3)
t,(GPa)  d31(pM/V)  constant el
Andosca, et al [16] PVDF 3 20 12 1780
Piezo Systems, PSI-5A4E 66 -190 1800 7800
Inc PSI-5H4E 62 -320 3800 7800
PMN-32%PT  24.77 -930 4600 8200
APC International,
Ltd APC 840 80 125 1275 7600
APC 855 59 -276 3300 7600
Microfine PZN-PT 25 -1200 6500 8000
Del. Piezo DL-40 100 -48 350 7700
Specialities DL-53 61 -275 3350 7600
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Fig. 1. Cantilevered unimorph beam structure with arbitrary proof mass offset.
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Fig. 3. Geometrical structure of unimorph beam with proof mass offset.
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Fig. 4. (a) Experimental setup and (b) piezoelectric unimorph beam with proof mass offset
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Fig. 10. Geometry of variable segmented piezoelectric coverage onto a cantilevered beam with arbitrary
proof mass offset.
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