
©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE.

Modeling Input Validation in UML

Pedram Hayati
Institute for Advanced

Studies in Basic Sciences,
Zanjan, Iran

pedram@iasbs.ac.ir

Nastaran Jafari
Institute for Advanced

Studies in Basic Sciences,
Zanjan, Iran

n_jafari@iasbs.ac.ir

S. Mohammad Rezaei
Institute for Advanced

Studies in Basic Sciences,
Zanjan, Iran

s_mohamadrezaei@iasbs.ac.ir

Saeed Sarenche
Institute for Advanced

Studies in Basic Sciences,
Zanjan, Iran

sarenche@iasbs.ac.ir

Vidyasagar Potdar
Digital Ecosystems and Business Intelligence Institute,

Curtin Business School, Curtin University of Technology, Australia
Vidyasagar.Potdar@cbs.curtin.edu.au

Abstract

 Security is an integral part of most software systems
but it is not considered as an explicit part in the
development process yet. Input validation is the most
critical part of software security that is not covered in
the design phase of software development life-cycle
resulting in many security vulnerabilities. Our
objective is to extend UML to new integrated
framework for model driven security engineering
leading to ideal way to design more secure software.
Input validation in UML has not been addressed
previously, hence we incorporate input validation into
UML diagrams such as use case, class, sequence and
activity. This approach has some advantages such as
preventing from common input tampering attacks,
having both security and convenience in software at
high level of abstraction and ability of solving the
problem of weak security background for developers.

1. Introduction

Every software application is deployed today to
accomplish some goals. However every application can
be misused and faces threats from Internet-aware client
applications running on PCs, to complex
telecommunications and power systems accessible over
the Internet. The main source of vulnerability of
systems has been recognized to be poor-quality
software. So, software engineers must be aware of
threats and engineer systems with credible defenses.
Thus, security as a non-functional requirement plays a
critical role in the development of many large-scale
distributed software systems. In other words, while
secure applications are also valid and robust ones,

security is a specific non-functional requirement that
has to be explicitly and carefully taken into account
during analysis, design, implementation, testing, and
deployment. The importance of this concept appears in
the web applications because statistics show that 75%
of security attacks occur on web applications [14]. We
have all heard about web sites being hacked and
private customer information being disclosed. This is
only one example of the many potential security flaws
in web applications. However, the breach of a
company’s website can cause significant revenue
losses, large repair costs, legal consequences and loss
of credibility with customers. In Early 2003 a public
university’s website was hacked into and thousands of
social security numbers were released to the public [6].
Therefore, web applications must handle customer data
and other electronic information as securely as possible
[10, 6]. Security mechanisms and policies are generally
added to the existing system as an afterthought
(penetrate and patch approach), with all the problems
of unsatisfied security requirements, integration
difficulties, and mismatches between design models
[11]. There are three main reasons for this [12]. First,
security must cover every part of an application.
Second, there are not enough tools to support security
engineering. Finally developers do not have strong
background on security and need guidelines for
constructing secure applications. There is little work
concerning the full integration of security and systems
engineering from the earliest phases of software
development. Although several approaches have been
proposed for some integration of security, there is
currently no complete methodology to assist
developers of security sensitive systems. All this
becomes a special concern when considering complex

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.30

663

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.30

663

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.30

663

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.30

663

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

security requirements such as those associated with
applications, e-commerce etc [4].

Software is designed to process a defined set of data.
For example a word processor is designed to deal with
document files not with audio or video files. When
undefined set of data (audio/video files for word
processor) sent to software, it might produce
unpredictable results and many times an attacker by
examining these undefined set of data which know as
malicious data, try to reach his/her goals. Input
validation means validating data flow in the software
before using them. On the other hand, invalidated input
is that set of data, which is directly used by software
without any validating mechanisms.

Invalidated input is the most critical security flaw in
applications, especially in web applications. Many
security holes in applications are caused by invalidated
inputs. Since entering invalid data, attackers take
software into unpredictable conditions and exploit this
condition for their own purpose. Common input
tampering attacks include: forced browsing, remote
command injection, cross site scripting, buffer
overflows, format string attacks, SQL injection, cookie
poisoning, and hidden field manipulation [16].
Consequently, before using data in the application, it
must be completely and properly validated by security
validating mechanisms. In addition, if validating
mechanisms do no defined properly those data that
come from believed–authoritative references might be
reject, so, it annoys real application users [2]. In other
words, some legitimate inputs will be incorrectly
flagged as bad, leading to user frustration and some
attacks will be incorrectly flagged as safe, leading to
exploits. Input validation is a part of security
engineering policies. The integration of security
engineering into a model-driven software development
approach has some advantages [12]

1. Security requirements can be formulated and
integrated into system design at a high level of
abstraction. So it becomes possible to develop
security aware applications that are designed with
the goal of preventing violations of a security
policy.

2. The model information can be used to detect and
correct design errors or to verify the correctness of
the mapping between requirements and their
realization in a design.

3. It saves more budgets.

Main problem of exciting literature is explained in
section 2. In section 3, we provide some background of
concepts which are used in the context of the article
and we illustrate an overview of existing
methodologies for designing secure software systems.
In section 4, we represent our proposed model. With an

example. Section 5 describes limitation in proposed
model. And finally, we present a conclusion in section
6.

2. Problem Definition

 According to our survey input validation has not been
covered in any security approaches and existing
literature does not sufficiently address it. We will
provide an integrative approach supporting the
integration of security and system engineering in order
to model input validation in software. We discuss how
input validation prevents from insecurity and how to
present input validation in UML models.

3. Literature Review

 This part introduces some background information
 and outlines the existing methodologies for input
validation.

3.1. Object Constraint Language (OCL)

OCL is a formal language used to describe
expressions in UML models. These expressions
typically specify invariant conditions that must hold for
the system being modeled or queries over objects
described in a model. A UML diagram, such as a class
diagram, is typically not refined enough to provide all
the relevant aspects of a specifications. Thus, UML
modeler can use OCL to specify application-specific
constraints in their models [3]. OCL can be used for a
number of different purposes:
• as a query language
• to specify invariants on classes and types in the

class model
• to specify type invariant for stereotypes
• to describe pre and post conditions on operations

and methods
• to describe guards
• to specify constraints on operations

3.2. Regular expression

A regular expression is a string that is used to
describe or match a set of strings, according to certain
syntax rules [15]. Much software such as word
processors, applications, and programming languages
use regular expression to search and manipulate text
based on patterns. Using regular expressions are very
useful since they give a concise description of a set,
without having to list all elements. For example, the set
containing two strings "gray" and "grey" can be by

664664664664

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

regular expression "gr[ae]y". Sometimes regular
expression is called pattern.

In our proposed model we employed regular
expression in order to define security attributes.

3.3. SQL Injection Attack

One of the many web attacks used by hackers to steal
data from organizations is SQL injection. Today, it is
perhaps one of the most common application layer
attack techniques [18]. This type of attack takes
advantage invalidated inputs to web applications that
allows hacker to inject SQL commands into say a login
form to allow them to gain access to the data held
within your database. In essence, SQL injection arises
because the fields available for user input allow SQL
statements to pass through and query the database
directly. But in essence if input validation is in place,
SQL statements would not be allowed to pass through
the web interface.

3.3.1 Example of SQL Injection Attack
 Below is HTML code of a simple login form that
used to send user id and password:

<form method="post"
action="http://example.com/login.php">
<input name="username" type="text" id="userid">
<input name="password" type="password"
id="password">
</form>

User ID field is an identification number (e.g.
Student number). Database query that used for user
authentication is:

SELECT id
FROM logins
WHERE userid = '$userid'
AND password = '$password’

If the variables $userid and $password are requested
directly from the user's input, this can easily be
compromised. Suppose we provide the following string
as user id: " ' OR '1'='1' " and "anything" as a
password. So our database query changes to:

SELECT id
FROM logins
WHERE userid = '' OR '1' = '1'
AND password = 'anything'

As the inputs of the web application are not properly
validated, the use of the single quotes has turned the
WHERE SQL command into a two-component clause.

The '1' = '1' part guarantees to be true regardless of
what the second part contains. This will allow the
attacker to bypass the login form without actually
knowing a valid username / password combination.

In this paper, we use SQL injection as an example,
which indicates that invalidated inputs to web
applications are simply in front of dangerous SQL
injection attacks.

3.4 Existing Methodologies

The Unified Modeling Language (UML) is the
industry standard for designing software systems, but it
only includes minimal capabilities for representing
security aspects of a system. Therefore, methodologies
like SecureUML, UMLpac, and UMLsec etc. present
an extension to UML, which enables security attributes
to be easily integrated into UML. We now review these
methodologies in detail.

3.4.1 SecureUML

The main goal of SecureUML is to develop a
complete model driven approach for developing secure
e-commerce systems. SecureUML is an extended
model for role based access control (RBAC). Access
control infrastructures can be generated from
SecureUML models and prevent errors during the
realization of access control policies .As RBAC lacks,
support for expressing access control conditions that
refer to the state of a system, the concept of
authorization constraints was introduced. In other
words, SecureUML offers important design flexibility
because it combines the simplicity of a graphical
notation for RBAC with the power of logical
constraints on models but the main drawback is that it
just focuses on access control and lacks features to
integrate all security aspects into the design of a
security sensitive system [12].

3.4.2 UMLsec

UMLsec presents a way to implement secure-systems
in UML [17]. In UMLsec, validation rules that
evaluate a model against included security
requirements are given.

3.4.3 UMLpac

UMLpac makes it possible for developers to layout
security features onto UML class diagram of a system.
By using security packages in UMLpac, a level of
abstraction is created between the class diagram and
the security features. It is important to say that
SecureUML can be integrated into UMLpac through
the use of a security package having a principle
security descriptor for SecureUML and UMLsec can

665665665665

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

be used effectively with UMLpac to layout security
features in security tiles [19].
All in all, none of these methodologies incorporate
input validation, and ignorance of this feature leads to
almost all security attacks.

3.5 Validating Models and Strategies

There are three validation models or strategies for
validating data [1]:
1) Rejecting bad data: creating a set of undesirable data
and rejecting them. This model is also known as “black
list” approach.

2) Accepting only known good data: data constrained
by Five Primary Security Input Validation Attributes
(FPSIVA) which are: type, length, character set,
format, reasonableness. Data is rejected unless it
matches for known good data. This model is also
known as “white list” approach.

3) Sanitizing data: sanitizing a defined set of dangerous
data so that it does not pose a threat to the software.

The first model has bottom-up approach and software
developer should predict all malicious data that is
dangerous for software. This model heavily depends on
methods that attacks execute if attacker changes attack
method, software would be vulnerable.

The third model faces the same disadvantage of the
first model since a black list must be created. In this
model software developer would create a list of
sanitize patterns which would be employed to sanitize
dangerous data. However at times a software developer
does not exactly know all types of dangerous data,
hence s/he is not able to define complete sanitized list.
So software would be vulnerable.

The second model has top-down approach where the
software developer makes a defined set of data
attributes which allow eligible and safe data to flow
into the software. Actually, this set makes limitation on
collection of data that are expected to be processed by
software. In this model each condition validates data
for type, format, length, character set, and
reasonableness and if data conform to the set of
defined attributes, they would be used in software,
otherwise they would be rejected.

We now explain the definition and importance of
these FPSVIA from security perspective:

• Type: this attribute makes limitation on type of

data. Common data types are Integer, Boolean,
Strings, and Byte. This attribute can restrict
attacker to input other data types into the software.
For instance, according to section 3.3.1, if

software developer validates user id field data type
as an integer attacker can not inject his/her
malicious command since it contains String data
type.

• Format: this attribute defines data syntax which
indicates how data should be represented in
software. The security importance of this attribute
is that it does not allow malicious data format are
followed in software which can cause
unpredictable software process. For example,
email address should contain at sing '@' character.
So, software developer defines a format for email
address that check for this character. Otherwise
attacker can input invalid email addresses.

• Length: this attribute limits counts of data
characters. By itself, this attribute can restrict
many attackers’ malicious command to input into
software. According to section 3.3.1, interestingly,
this attribute can prevent attacker to inject
malicious SQL queries. For instance, Attacker is
no able to comprise user id field by malicious
queries bigger than eight characters, if software
developer limit user id field to eight characters
long.

• Character set: this attribute defines characters
types. Common characters types include Numbers,
Alphabets, Symbols, and combination of them.
Character set is the most important security
attribute among other since it limits valid
characters in each data type. Consequently,
attacker is not able to input dangerous characters.
For instance, according to section 3.3.1, attacker
can not inject single or double quote in SQL user
authentication query in order to bypass
authentication if software developer defines a [0-
9] domain as valid characters set for user id field.

• Reasonableness: the last attribute is the only
attribute that directly deals with semantic part of
each data. This attribute is employed for detecting
which data are reasonable and which are not. The
importance of this attribute backs to semantic part
of software security which has been challenging
issue. In addition, it can be used for preventing
future malicious activities that are not known
today. For example, according to section 3.3.1, by
defining reasonable user id range, attacker can not
submit negative value as user id.

Obviously, it is clear for software developer what

kind of data should input into/output from the software
and commonly, software developers store input data in
variables which can be used for future usages in
software. For instance, if a software gets users’ age and
stores it in a variable, it is obvious that a valid type of
this variable is integer, a valid length is two or three

666666666666

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

numbers long, a valid character set is combination of
numbers from zero to nine, a valid format is two or
three following numbers without any space among
them and finally the valid reasonableness of this
variable is that the age should be bigger than zero.
According to what is discussed above, it is clear that
defining set of known good data by using FPSVIA
does not need very strong background on security and
a software developer can set them without any
profound security knowledge. Thus, by using this
strategy we would solve the problem of weak
background on security for developers. On the other
hand, this strategy is a good choice for having both
security and convenience in software, because users'
legitimate data are included in white list and exactly is
defined by FPSVIA. These kind of data would
followed into the software but the other data (that
commonly come from attackers such as single quote in
our SQL injection example) is not valid according to
defined FPSVIA (white list), so they would be rejected

4. Proposed Solution

Proposed security model uses OCL as it base for
defining FPSVIA in software design phase. The
expressiveness of OCL was then carefully examined in
order to make sure that this notation could express
security constraints [7]. The key issue was analyzed
and it conformed that OCL is a sustainable and
efficient technology to improve reliability and security
when it can be combined by FPSIVA of the proposed
security model. Until now, anything on OCL is about
the functions of objects and none of them talks about
what is entering to the object and what constraints it
has. UML modelers can use OCL to specify
application specific constraints in their models. By
using OCL, In our proposed security model , we define
five new constraints based on FPSIVA, each of these
new constrains validate some part of input data,
ultimately by employing all of them, according 3.2, we
suppose to have secure input validated software.
Constraints are as flow:

• var.type :< type>

This constraint validates the type of input data and if
it conforms to the <type> it is acceptable, or else it
should be rejected. For example the type of input data
for a phone number should be Integer:
phone_number.type: Integer

• var.format :< pattern>

This constraint validates the format of input data if it
conforms to the <pattern>, it is acceptable or else it
should be rejected. According to 2.2, the format of
input data can be defined by using regular expression.

For example, the format of a phone number is like:
%d-%d%d%d-%d%d%d-%d%d%d%d. Each “%d” is a
representative of decimal number which means that
only numbers are allowed. [17, 18].
phone_number.format: %d-%d%d%d-%d%d%d-
%d%d%d%d

• var.length :< number>

This constraint validates the length of input by
maximum length of characters include in input data.
For example, phone number has 14 numbers long:
phone_number.length: 14

• var. charset:< pattern>

When data is entering the software, this part checks
its characters domain with its <pattern>. We define
character set of input data by regular expressions. For
example, the domain of characters which are
acceptable for phone number is from 0 to 9.
phone_number.charset: [0-9]

• var.value :< reasonableness>

This constraint presents which values of input data
are reasonable. For example, only human's age bigger
than zero are reasonable.
age. value>0

Below, we represent the use of these five constraints
on some UML diagrams. Four UML diagrams
demonstrated here are: Use Case diagram, Class
diagram, Sequence diagram, and Activity diagram. Our
proposed model constitute from these four UML
diagrams in which each diagram represents unique
view of input validation modeling.

4.1 Use Case Diagram

As documented in [5], there are numerous kinds of
security requirements. Like any other type of quality
requirement, security requirements should be based on
an underlying quality model. Security signifies the
degree to which valuable assets are protected from
significant threats posed by malicious attackers .Thus,
as a quality factor, we can add input validation because
as mentioned before in section 3.5, each kind of
security requirement typically has its own security use
case that should be used to specify requirements that
the application shall successfully protect itself from its
relevant security threats [9].

Input validation use case is the extent to which a
business enterprise, application, component, or center
ensures that its data is validated before allowing
request. Table 1, specifies the input validation
requirements. In this table, a mis-user is the inverse of
a user, someone who –intentionally or accidentally –
initiates misuse cases and whom the system should not

667667667667

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

support in doing so and a misuse case is the inverse of
a use case, a function that the system should not allow
.In more detail, it might be defined as a completed
sequence of actions which results in loss for the
organization or some specific stakeholders. We now
verify the class diagram.

4.2. Class Diagram

For annotating input validation on class diagram
UML-based models, first we must define a set of
vocabulary to express different aspects of input
validation. The mechanisms of extending UML such as
stereotype and constraint are used in class diagram
[17]. Also, we use Metamodel to define abstract syntax
of the language. For each class that gets input from
environment (user, other software), we define Input
Validation Constraint (IVC). IVC is a graphical
notation of input validation in class diagram, which is
defining security constraint on variables of a class. As
described in section 3.5, FPSIVA are needed for

validating variables. This attributes constraint execute
for variables which are submitted from environment.
Figure 1 shows the class diagram Metamodel of input
validation that is an extension of the UML Metamodel.

The “Element” is the class that must be protected and
<<input. validation>> is IVC.
 Because IVC is derived from UML core type
constraint, we use the standard UML association
between it and “Element” to link them.

Use-Case: Input Validation
Security threat:
The system accepts the mis-user as if the mis-user were a valid user.
Precondition:
The mis-user has an invalid data entry.

System requirement Mis-user interaction User interactions
The system shall
recognize that the input
data is invalid.

The system shall
recognize that the input
data is valid.

The system shall check
the type, length, format,
character set and
reasonableness attribute
of the entry data.

The system shall reject
the mis-user by canceling
the transaction.

The mis-user input invalid
data.

The user input his/her
valid data.
Post condition:
1) The system run all user input through validation before allowing requests to avoid insecurity.
2) The system shall ensure that the input is validated.
3) The system shall record the failure items.

4.3. Sequence Diagram

Sequence diagram is used to describe interaction
between objects in term of sequence of messages [13, 8].
When this diagram is drawn, the objects which are
valued from input can be recognized, thus we can
distinguish the objects which need to be validated.

Figure 2 presents the sequence diagram of validating
input data. At the top of the diagram, we see rectangle
that presents object and the arrows show the messages
that exchange between objects. The user sends specific
procedure call messages and sends data to object. For

validating the user's data, we use specific message to
inform it for validating input data by FPSIVA. If this
checking is successful, the software will check other
attributes or else a message will be sent to user.

For example in Figure 2, the object takes data from the
user then the software checks the type of input. If this
attribute of input data equals with attribute of input which
is defined for software, other attributes like length will be
checked, like:“[input.type: true]: input . length”. For
other attributes the process is the same. If all of above
constraint checking is true for input data then we can
claim that the data is valid.

 Table 1, Input Validation Use-Case

Figure1, Class Diagram Metamodel of Input Validation

668668668668

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

4.4 Activity Diagram

We use the activity diagram to show the internal
activity of input validation process. In this diagram we
suppose that what is entered to the system is invalid, thus
the validation process validates it. First, it validates the
type of input data, and if it conforms to the defined type

constraints, it is accepted and continues, otherwise the
input data will be rejected. This process is the same for
length, format, character set and reasonableness
attributes. After checking all of these attributes and
making sure that all of them conform to the defined set of
constraints, data gets privileged to be used in software.
Figure 3, illustrates input validation activity diagram.

4.5 Examples: Registration System

Our example is a simple registration system that is used

for registering users on the web site. The registration
form contains four fields: name, family name, age, phone

number. It uses simple database to store data and has two
components: Registration and DB. Registration
component is boundary class that interacts with users and

DB is entry class that is used for storing data.

Figure 2, Input Validation Sequence Diagram

Figure 3, Input Validation Activity Diagram

669669669669

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

4.5.1. Use Case Diagram
Unlike normal use cases that document interactions

between an application and its users, misuse cases
concentrate on interactions between the application and
its mis-users who seek to violate its security. Because the
success criteria for a misuse case is a successful attack
against an application, using misuse cases for
requirement modeling are highly adoptable ways of
analyzing security threats but are inappropriate for the

analysis and specification of security requirements [9].
Figure 3 will show the registration with input validation
as a security requirement. Validation of input data
includes five processes that check FPSIVA. Being invalid
from the perspective of each of the mentioned attributes,
it can result in misuse cases which are caused by mis-
users. The traditional use case for registration is
specializations of a general Manage Accounts use case.

4.5.2. Class Diagram
Registration class interacts with system users therefore

it must be secure with “input validation constraint”. DB

class does not have any interaction with system users, so
it does not need it. Name, family name, age and phone
number are valued from outside. So these variables must

Figure 4, Input Validated Registration Use Case

Figure 5, Input Validated Registration Class Diagram

670670670670

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

be constrained by FPSIVA. Figure 5 shows sample input
validated registration class diagram.
For example we have following constraint for Name
entity:
• Has string as type
• Has 10 characters long.
• Character set contains lower case and upper case Latin
alphabet.
• Format is combination of character set without any
restriction (like: John, Ali ...).
• Must not be empty and the same as family name.
 And so on.

4.5.3. Activity Diagram
As you see in Figure 6, at first for the name, input

validation process checks all constraints which we show
above the “check name”, if all input data's attributes
conform to constraints, input data is valid and, we show it
by “[valid]” guard on arrow. By this valid data go to
other part to check for family name and the other process
is the same for age and phone number. But if it does not
conform to all constraints it is invalid which we show by
“[invalid]” guard on arrow, and the system rejects data to
check it again. After all these checks are done, if it can
pass all security constraints it means that input data is
valid and the user will be registered.

5. Discussion

 As described in section 3.2, we used regular expression
in order to define set of known legitimate data. Defining
good regular expressions which make clear distinguish
among malicious data and legitimate data are very
important. Sometimes bad-defined regular expressions
can allow malicious data flow in software that may cause
dangerous security flaws or on the other hand, disallow
legitimate data to flow on software that cause user
frustration. Hence, in future study an improved model
can be suggested in which decrease input validation
dependencies on good-defined regular expression. Also,
by doing numerical analysis, classifying more attacks and
testing input validated software, these five primary
security input validation attributes can be reduced or
other attributes would be employed that are more robust
and efficient.

6. Conclusion and Future Works

 An overall aim of the work presented in this paper is to

provide an integral guideline for software developers to
create more secure software and we introduce an
approach which is based on input validation to improve
the integration of security details into UML diagrams
using the OCL.
Input validation is part of security engineering policies.
The integration of security engineering into a model
driven software development approach has some
advantages:

• We can address security requirements at a high level of
abstraction.
• We can use the information of the model to recognize
the design errors and correct them.
• We save more budget.
Indeed, modeling input validation in UML has some
advantages such as:
• Preventing from common input tampering attacks
include: forced browsing, remote command injection,
cross site scripting, buffer overflows, format string
attacks, SQL injection, cookie poisoning, and hidden
field manipulation.

Figure 6, Input Validated Registration Activity Diagram

671671671671

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

• Having both security and convenience in software at
high level of abstraction.
• Ability of solving the problem of weak security
background for developers.
Input validation in UML is not addressed previously. In
this paper we incorporated input validation into UML
diagrams such as use case, class, sequence and activity
and illustrated a simple example to show how our
methodology can be applied. Thus, the advantages
mentioned make our approach an extremely useful
approach and an ideal way to design more secure
software in the future.
Regarding this study, in future research, one can decrease
the number of input validating steps using numerical
analysis methods and by so doing, the efficiency of this
method will be improved.
Also, a researcher may try to discuss output validation or
improve this method through combining it with output
validation

References

[1] DE VRIES, S. January 16, 2006. A Modular Approach to
Data Validation [online]. [Accessed 1st September 2007].
Available from World Wide Web:<http://research.corsaire.com/
whitepapers/060531-security-testing-web-applications-through-
automated-software-tests.pdf >.

[2] HANSEN, R. J., PATTERSON, M. L. July, 2005. Guns
and Butter: Towards Formal Axioms of Input Validation. In:
BlackHat USA 2005 Conference, July 23-28 Las Vegas.

[3] Object Management Group (OMG). April 30, 2004. UML
2.0 OCL specification [online]. [Accessed 29 August 2006].
Available from World Wide Web <
http://www.omg.org/docs/ptc/03-10-14.pdf>.

[4] RAY, D., MANA, A., YAGUE, M. 2004. Integration of
Security Patterns in Software Models based on Semantic
Description. In: 7th UML Conference, UML 2004, October 10-
15, 2004, Lisbon, Portugal.

[5] FIRESMITH, D. 2004. Specifying Reusable Security
Requirements. In: Journal of Object Technology, vol. 3, no. 1,
January-February 2004, pp. 61-75.

[6] WU, Y., OFFUTT, J., DU, X. 2004. Modeling and
Testing Dynamic Aspects of Web Applications. In: Computer
Software and Applications Conference, 2004, COMPSAC 2004,
Proceedings of the 28th Annual Internationa. Vol. 2, 28-30
September 2004, pp. 106 – 109.

[7] CHARPENTIER, R., SALOIS, M. 2003. Security
Modeling for C2IS in UML/OCL. In: 8th ICCRTS, 17-19 June
2003, Washington DC.

[8] Object Management Group (OMG). March 2003. Unified
Modeling Language specification [online]. [Accessed 29th May
2006]. Available from Word Wide Web:

< http://www.omg.org/docs/formal/03-03-01.pdf>.

[9] FIRESMITH, D. 2003. Security Usecases. In: Journal of
Object Technology, Vol. 2, No. 3, May - June 2003, pp. 53-64.

[10] OFFUTT, J. 2002. Quality attributes of web software
applications. In: IEEE Software: special Issue on software
Engineering of Internet software, March- April 2002. Published
by: IEEE Computer Society, Vol. 19, Issue 2. pp. 25-32.

[11] BROSE, G., KOCH, M., LOHR, K. P. November 2001.
Integerating Security Policies Design into the Software
Development Process. Institut für Informatik, technical report,
B-01-06. Available from Word Wide Web: <http://www.inf.fu-
berlin.de/inst/ag-ss/papers/TR-B-01-06.ps >.

[12] LODDERSTEDT, T., BASIN, D., DOSER, J. 2001.
SecureUML: A UML-Based Modeling Language for Model-
Driven Security. In: Proceedings of the 5th International
Conference on The Unified Modeling Language table of
contents, Lecture Notes In Computer Science, Vol. 2460, pp.
426 – 441.

[13] MARTIN, R. C. April 1998. UML Tutorial: Sequence
Diagrams [online]. [Accessed 20 June 2006]. Available from
World Wide Web: <http://www.objectmentor.com/resources/
articles/UMLSequenceDiagrams.pdf >.

[14] GROSSMAN, J. WhiteHat Security industry. Statistical
report [online]. [Accessed on 10th February 2007] Avaiable
from Word Wide Web: <http://www.whitehatsec.com/press-
releases/050905.shtml>.

[15] FRIEDL, J.E. F. 2006. Mastering Regular Expressions.
Published by: O'Reilly, ISBN: 0596528124.

[16] The Open Web Application Security Project (OWASP).
Top ten projects [online]. [Accessed on 17th April 2007].
Available from Word Wide Web: <http://www.owasp.org/
index.php/OWASP_Top_Ten_Project>.

[17] JURJEN, J. 2002. UMLsec: presenting the profile. In: 6th
Workshop on Distributed Objects and Components Security.
March 18-21, 2002.

[18] Web Application Security Consortium (WASC). SQL
Injection WASC Threat Classification Entry [online].
[Accessed on 7 September 2007]. Available from World Wide
Web: <http://www.webappsec.org/projects/threat/
classes/sql_injection.shtml>.

[19] PETERSON, M. J., BOWLES, J. B., EASTMAN C. M.
2006. UMLpac: An Approach for Integrating Security into
UML Class Design. In: SoutheastCon, 2006, Proceedings of the
IEEE, March 31 - April 2, 2006 pp. 267 - 272

672672672672

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

