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Robust Suboptimal Control of Nonlinear Systems

R. Loxtona,∗, K. L. Teoa, V. Rehbocka

aDepartment of Mathematics and Statistics, Curtin University, Perth, Australia

Abstract

In this paper, we consider a nonlinear dynamic system with uncertain param-
eters. Our goal is to choose a control function for this system that balances
two competing objectives: (i) the system should operate efficiently; and (ii) the
system’s performance should be robust with respect to changes in the uncertain
parameters. With this in mind, we introduce an optimal control problem with
a cost function penalizing both the system cost (a function of the final state
reached by the system) and the system sensitivity (the derivative of the system
cost with respect to the uncertain parameters). We then show that the sys-
tem sensitivity can be computed by solving an auxiliary initial value problem.
This result allows one to convert the optimal control problem into a standard
Mayer problem, which can be solved directly using conventional techniques. We
illustrate this approach by solving two example problems using the software
MISER3.

Keywords: Robust control, Optimal control, Nonlinear systems, System
sensitivity

1. Introduction

There are many excellent methods for solving optimal control problems
numerically—for example, the control parameterization method [8, 12, 13], the
state discretization method [2, 5, 7, 14], and the sequential gradient restora-
tion method [4, 9]. These methods can be used to find an open-loop control
function—the so-called optimal control—that minimizes a given cost function
subject to a dynamic system.

The dynamic system in an optimal control problem is usually only an ap-
proximation of the real system under consideration. Thus, it is imperative that
the optimal control be robust with respect to modelling errors. In other words,
the performance of the real system when the optimal control is applied should be
similar to the theoretical performance predicted by the model. Unfortunately,
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this is not always the case—the optimal control gives the best theoretical per-
formance, but it may also make the system highly susceptible to random noise,
disturbances, and uncertainties.

Therefore, in practice there is always a tradeoff between performance and
robustness. The most efficient control policy is probably not robust, while an
overly robust control policy may be too conservative. Previously, Rehbock, Teo,
and Jennings modelled this tradeoff as an optimal control problem in which
the control needs to be chosen to minimize the sum of system cost and system
sensitivity [11]. Solving this problem yields a control scheme that is both efficient
and robust. However, this optimal control problem is rather complex and can
only be solved using specialized techniques.

The technique developed in [11] is based on control parameterization, which
involves approximating the control by a piecewise constant function. Apply-
ing this approximation technique yields an approximate nonlinear programming
problem. This approximate problem has a cost function whose gradient is com-
puted by first integrating two dynamic systems forward in time (one of these
is the original dynamic system), and then integrating another two dynamic
systems backwards in time (the so-called costate systems). These costate sys-
tems are extremely complex. Furthermore, they are coupled with the original
dynamic system, so integrating them backwards is a very difficult task. Con-
sequently, the nonlinear programming problem that approximates the optimal
control problem in [11] is very difficult to solve.

In this paper, we consider an optimal control problem that is similar to the
one formulated in [11]. We prove that the system sensitivity can be computed by
solving an auxiliary initial value problem. We then use this result to convert the
original optimal control problem into a standard Mayer optimal control problem,
which can be solved readily using existing analytical or numerical techniques.
By approaching the problem in this way, we can avoid the complex procedure
developed in [11]. This is a major advantage that makes our new approach more
flexible and powerful than the one proposed in [11].

2. Problem Formulation

We consider control systems of the following form:

ẋ(t) = f(t,x(t),u(t),σ), t ∈ [0, T ], (1)

and
x(0) = ϕ(σ), (2)

where T > 0 is a given terminal time; x(t) ∈ R
n is the system’s state at

time t; u(t) ∈ R
r is the control input at time t; σ ∈ R

m is a vector of uncertain
parameters; and f : R × R

n × R
r × R

m → R
n and ϕ : Rm → R

n are given
functions.

Let
W , {w ∈ R

r : ai ≤ wi ≤ bi, i = 1, . . . , r },
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where ai and bi, i = 1, . . . , r, are given real numbers such that ai < bi. Any
measurable function u : [0, T ] → R

r such that u(t) ∈ W for all t ∈ [0, T ] is called
an admissible control. Let U denote the class of all such admissible controls.

We assume that the control system (1)-(2) satisfies the following two condi-
tions.

Assumption 1. Both f and ϕ are continuously differentiable, and f is twice

continuously differentiable.

Assumption 2. There exists a real number L1 > 0 such that

|f(η,v,w, z)|n ≤ L1(1 + |v|n + |z|m), (η,v,w, z) ∈ [0, T ]× R
n ×W × R

m,

where | · |n and | · |m denote the Euclidean norms in R
n and R

m, respectively.

Let x(·|u,σ) : [0, T ] → R
n denote the solution of (1)-(2) corresponding to

the control u ∈ U and the parameter vector σ ∈ R
m. Assumptions 1 and 2

ensure that x(·|u,σ) exists and is unique (see Theorem 3.3.3 of [1]). Note that
x(·|u,σ) is an absolutely continuous function satisfying the dynamics (1) almost
everywhere and the initial condition (2).

If the model parameters are fixed, then the behaviour of system (1)-(2)
is completely determined by the control. Our goal is to choose the control
appropriately so that the system performs as efficiently as possible. To this
end, we assign a system cost—which depends on the final state reached by
the system—to each admissible control. More specifically, given the parameter
vector σ ∈ R

m, we define a cost function G(·|σ) : U → R as follows:

G(u|σ) , Φ(x(T |u,σ)), u ∈ U , (3)

where Φ : Rn → R is a given function. Obviously, the lower the cost, the better
the control.

Note that the cost function in [11] includes an integral term measuring the
system running cost. For simplicity, we have omitted this term from (3). How-
ever, this isn’t a serious restriction, as an integral term can be easily incorpo-
rated into (3) by augmenting the dynamics with an additional state variable
(see Chapter 8 of [1]).

We assume that the following condition is satisfied.

Assumption 3. The function Φ is twice continuously differentiable.

In practice, the model parameters are usually not known exactly and thus need
to be estimated. We suppose that σ̂ ∈ R

m is a given vector whose components
are nominal estimates of the model parameters in (1)-(2). By using conventional
optimal control methods, we can determine a control u∗ that minimizes the
cost function G(·|σ̂). An important issue that then arises is whether system
performance under the control u∗ is sensitive to errors in σ̂. In particular, how
does the system perform if the true parameters differ slightly from the nominal
estimates? Is the system still efficient when the control u∗ is applied?
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We define the system sensitivity corresponding to a control u ∈ U as

∂G(u|σ̂)

∂σ

[

∂G(u|σ̂)

∂σ

]⊤

.

(We will show in the next section that these partial derivatives exist.) The sys-
tem sensitivity measures the rate at which the system cost changes in response
to small changes in the model parameters. Hence, a low system sensitivity
indicates that the system is robust.

The ideal control function is one that simultaneously minimizes both system
cost and system sensitivity. Such a control, however, is unlikely to exist. Thus,
we need a compromise, and this leads to the following optimal control problem.

Problem P. Given the nominal parameter vector σ̂ ∈ R
m and a real num-

ber α ≥ 0, choose an admissible control to minimize

Jα(u|σ̂) , G(u|σ̂) + α
∂G(u|σ̂)

∂σ

[

∂G(u|σ̂)

∂σ

]⊤

, u ∈ U .

The relative importance of each term in Jα(·|σ̂) can be adjusted through the
weight α. When α = 0, the sensitivity term disappears and Problem P only
considers system performance, disregarding robustness. In this case, Problem P
is a standard Mayer optimal control problem and can be solved using one of
the numerical methods mentioned in the introduction. Alternatively, it may be
possible to solve Problem P using an analytical technique such as the Pontryagin
minimum principle.

We are most interested in Problem P when α > 0. In this case, conventional
optimal control techniques are not directly applicable because the cost func-
tion Jα(·|σ̂) contains a non-standard sensitivity term. The aim of this paper
is to present a method for transforming Problem P into a standard problem.
To this end, we will prove in the next section that the system sensitivity is
defined for each admissible control (this ensures that Problem P makes sense).
Incidentally, this result also reveals how the system sensitivity can be computed
efficiently.

3. Computing the System Sensitivity

Consider the following auxiliary dynamic system:

ψ̇k(t) =
∂f(t,x(t|u, σ̂),u(t), σ̂)

∂x
ψk(t)+

∂f(t,x(t|u, σ̂),u(t), σ̂)

∂σk
,

t ∈ [0, T ], k = 1, . . . ,m,

(4)

and

ψk(0) =
∂ϕ(σ̂)

∂σk
, k = 1, . . . ,m, (5)
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where u ∈ U is a given admissible control. Let ψk(·|u), k = 1, . . . ,m, denote
the solution of (4)-(5) corresponding to u ∈ U . Assumptions 1 and 2 ensure
that such a solution exists and is unique.

We have the following important result, the proof of which is given in the
appendix.

Theorem 1. For each admissible control u ∈ U ,

∂x(t|u, σ̂)

∂σk
= ψk(t|u), t ∈ [0, T ], k = 1, . . . ,m.

According to Theorem 1, the state is differentiable with respect to the uncertain
parameters, and the partial derivatives of the state with respect to these uncer-
tain parameters satisfy the auxiliary system (4)-(5). We now use this result to
derive a formula for the system sensitivity in Problem P.

Theorem 2. For each admissible control u ∈ U ,

∂G(u|σ̂)

∂σ

[

∂G(u|σ̂)

∂σ

]⊤

=
m
∑

k=1

[

∂Φ(x(T |u, σ̂))

∂x
ψk(T |u)

]2

.

Proof. Let u ∈ U be an admissible control. By Theorem 1,

∂x(T |u, σ̂)

∂σk
= ψk(T |u), k = 1, . . . ,m.

Thus, differentiating G(u|σ̂) = Φ(x(T |u, σ̂)) with respect to σk yields

∂G(u|σ̂)

∂σk
=
∂Φ(x(T |u, σ̂))

∂x
ψk(T |u), k = 1, . . . ,m.

Hence,

∂G(u|σ̂)

∂σ

[

∂G(u|σ̂)

∂σ

]⊤

=

m
∑

k=1

[

∂G(u|σ̂)

∂σk

]2

=

m
∑

k=1

[

∂Φ(x(T |u, σ̂))

∂x
ψk(T |u)

]2

,

as required.

Theorem 2 shows that the system sensitivity can be computed by solving the
initial value problem (4)-(5). We will use this result in the next section to
convert Problem P into a Mayer optimal control problem.

4. Transforming Problem P into Mayer form

By virtue of Theorem 2, we have

Jα(u|σ̂) = Φ(x(T |u, σ̂)) + α

m
∑

k=1

[

∂Φ(x(T |u, σ̂))

∂x
ψk(T |u)

]2

, u ∈ U . (6)
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This equation expresses Jα(·|σ̂) in terms of the solutions of the state and aux-
iliary systems at the terminal time. Since these systems are coupled (the state
appears in the right-hand side of the auxiliary system), we can combine them to
form an expanded dynamic system. This expanded system can be viewed as a
new state system in which x and ψk, k = 1, . . . ,m, are the new state variables.
Equation (6) shows that Jα(·|σ̂) is a Mayer function for this new system.

It should now be clear that Problem P is equivalent to the following optimal
control problem.

Problem P̃. Given the nominal parameter vector σ̂ ∈ R
m and a real num-

ber α ≥ 0, choose an admissible control to minimize

Jα(u|σ̂) = Φ(x(T |u, σ̂)) + α

m
∑

k=1

[

∂Φ(x(T |u, σ̂))

∂x
ψk(T |u)

]2

, u ∈ U .

The dynamic system for Problem P̃ consists of (1)-(2) and (4)-(5), not just (1)-
(2). Hence, Problem P̃ is a standard Mayer optimal control problem and can
be solved using conventional techniques. In particular, since f and Φ are twice
continuously differentiable (recall Assumptions 1 and 3), Problem P̃ can be
solved using techniques based on nonlinear programming (for example, control
parameterization methods [8, 12, 13]).

We emphasize here that (in principle) any conventional optimal control tech-
nique can be applied to Problem P̃. Consequently, Problem P̃ is much easier to
solve than Problem P. Indeed, the only method capable of solving Problem P
is the one described in [11], and this method involves solving a very compli-
cated nonlinear programming problem. Computing the cost function’s gradient
for this nonlinear programming problem involves integrating four dynamic sys-
tems (two of them backwards in time). We can avoid this by first transforming
Problem P into Problem P̃.

5. Examples

For illustration, we consider two examples. Problem P̃ for each example was
solved using MISER3 [6], a Fortran program capable of solving a wide variety
of dynamic optimization problems, including those with state constraints. It’s
important to note that MISER3 can solve Problem P̃ directly, but not Problem P.
To solve Problem P using MISER3, one needs to significantly modify MISER3’s
internal engine [11].

5.1. Modified Rayleigh System

For our first example, we modify the Rayleigh system in [10] to obtain the
dynamics

ẋ1(t) = x2(t), t ∈ [0, 10], (7a)

ẋ2(t) = −x1(t) + [1.4 + u(t)− 0.14x22(t)]x2(t) + 4u(t), t ∈ [0, 10], (7b)
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and

x1(0) = −5 + σ, (8a)

x2(0) = −5, (8b)

where u is a control function and σ is a model parameter. The cost function for
this system is

G =

∫ 10

0

(

x21(t) + u2(t)
)

dt.

Because G is expressed as an integral, we cannot calculate the system sensitivity
using Theorem 2. Thus, we introduce a new state variable x3 with dynamics

ẋ3(t) = x21(t) + u2(t), t ∈ [0, 10], (9)

and
x3(0) = 0. (10)

Consequently, the cost function becomes

G = x3(10).

Suppose that the nominal value of σ is zero (that is, σ̂ = 0). Our optimal control
problem is to choose u to minimize

Jα = G+ α

[

∂G

∂σ

]2

,

where α ≥ 0, subject to the dynamic system consisting of equations (7)-(10).
We can convert this problem into Mayer form by applying the procedure

discussed in Section 4. First, define the auxiliary system for this problem:

ψ̇1(t) = ψ2(t), t ∈ [0, 10], (11a)

ψ̇2(t) = −ψ1(t) + [1.4 + u(t)− 0.42x22(t)]ψ2(t), t ∈ [0, 10], (11b)

ψ̇3(t) = 2x1(t)ψ1(t), t ∈ [0, 10], (11c)

and

ψ1(0) = 1, (12a)

ψ2(0) = 0, (12b)

ψ3(0) = 0. (12c)

It then follows from Theorem 2 that

Jα = x3(10) + αψ2
3(10). (13)

Thus, our optimal control problem becomes: choose u to minimize (13) sub-
ject to the dynamic system consisting of equations (7)-(12). This problem is a

7
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Figure 1: Optimal system trajectories and optimal controls in Example 5.1.

standard Mayer optimal control problem. We solve it with MISER3 for α = 0
and α = 10. When α = 0, system sensitivity is not penalized in (13). The
optimal system cost in this case is 44.0099 and the system sensitivity is 99.6791.
When α = 10, equation (13) penalizes both system cost and system sensitivity.
The optimal cost in this case is 50.0009 and the system sensitivity is zero (to
four decimal places). As expected, some performance is sacrificed when α = 10,
but the advantage is that system sensitivity is much lower. The optimal controls
and optimal state trajectories are displayed in Figure 1.

We now test the robustness of the original system under the controls in
Figure 1. To do this, we perturb the nominal value of σ by a small amount
and then simulate the system under each control. The costs of each control for
different values of the model parameter are shown in Figure 2. It’s clear from
this figure that the control obtained by solving the problem with α = 10 is very
robust. The cost of the system under this control hardly changes when σ is
changed.
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Figure 2: The cost of each optimal control for different values of the model parameter in
Example 5.1.

5.2. A Robotic Manipulator

According to [3], a two-link planar robotic manipulator can be described by
the following dynamics:

ẋ1 = x2, (14a)

ẋ2 =
1

sin2 x3 +m1/m2

{

sinx3

[

l2
l1
(x2 + x4)

2 + x22 cosx3

]

+
1

m2l1l2

[

l2
l1
(u1 − u2)− u2 cosx3

]} (14b)

ẋ3 = x4, (14c)

ẋ4 =
1

sin2 x3 +m1/m2

{

− sinx3

[

(cosx3 + l2/l1)(x2 + x4)
2 + x22 cosx3

+
l1
l2
(1 +m1/m2)x

2
2

]

+
1

m2l1l2

[

− u1(cosx3 + l2/l1) + 2u2 cosx2 (14d)

+
l2
l1
u2 +

l1
l2
(1 +m1/m2)u2

]}

,

and

x1(0) = 0.75π, (15a)

x2(0) = 0, (15b)

x3(0) = 0.25π, (15c)

x4(0) = 0, (15d)

where l1 and l2 are the lengths of the links, m1 and m2 are the masses attached
to the links, and u1 and u2 are control functions. We suppose that the following
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Figure 3: The optimal system trajectories in Example 5.2.

nominal values are given for the parameters m1, m2, l1, and l2:

m̂1 = m̂2 = l̂1 = l̂2 = 1.

Furthermore, we suppose that the time horizon here is [0, 10]. Our aim is
to drive this system to the origin using minimal control effort. To this end, we
define the system cost as

G = x21(10) + x22(10) + x23(10) + x24(10)

+

∫ 10

0

{

x21(t) + x22(t) + x23(t) + x24(t) + 0.1u21(t) + 0.1u22(t)
}

dt.

As in Example 5.1, we introduce an extra state variable x5 with dynamics

ẋ5 = x21 + x22 + x23 + x24 + 0.1u21 + 0.1u22

and
x5(0) = 0.
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Figure 4: The optimal controls in Example 5.2.

Then the system cost can be rewritten as follows:

G = x21(10) + x22(10) + x23(10) + x24(10) + x5(10).

Therefore, our optimal control problem is to choose u1 and u2 to minimize

G+ α

[

∂G

∂m1

]2

+ α

[

∂G

∂m2

]2

+ α

[

∂G

∂l1

]2

+ α

[

∂G

∂l2

]2

,

where α ≥ 0 is a weight, subject to the above dynamic system. We transform
this problem according to the procedure in Section 4 (we omit the details for
simplicity). We then solve it with MISER3 for α = 0 and α = 1. For α = 0, the
optimal cost is 19.5323 and the system sensitivity is 2.0567× 102. For α = 1,
the optimal cost is 20.3590 and the system sensitivity is 5.8228 × 10−4. The
optimal state trajectories and optimal controls are displayed in Figures 3 and 4.

We test the robustness of the controls by perturbing the parameters and
then simulating the system. Some results are shown in Table 1. This table
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System Cost

Model Parameters α = 0 α = 1

m1 = 0.97, m2 = 1.03, l1 = 0.97, l2 = 1.03 23.5947 22.9365
m1 = 1.03, m2 = 0.97, l1 = 1.03, l2 = 0.97 24.9172 23.5462
m1 = 1.05, m2 = 0.95, l1 = 1.05, l2 = 0.95 32.8406 28.6188
m1 = 0.95, m2 = 1.05, l1 = 0.95, l2 = 1.05 28.5583 26.3356
m1 = 0.93, m2 = 1.07, l1 = 0.93, l2 = 0.97 34.3028 30.4006

Table 1: The system cost for different values of the model parameters in Example 5.2.

shows that the performance of the system is highly sensitive to the model pa-
rameters. Nevertheless, the control obtained by solving the problem with α = 1
is clearly more robust because its system cost is superior when the parameters
are perturbed.

Appendix A. Proof of Theorem 1

Let u ∈ U and k ∈ {1, . . . ,m} be arbitrary but fixed. To prove the theorem,
we need to show that

lim
δ→0

x(t|u, σ̂ + δek)− x(t|u, σ̂)

δ
= ψk(t|u), t ∈ [0, T ], (A.1)

where ek is the kth unit vector in R
m. We will prove this equation in five steps.

Step 1. Preliminaries

For each real number δ ∈ R, let xδ denote the function x(·|u, σ̂+ δek) (this
notation will not cause confusion because k, u, and σ̂ are fixed). Furthermore,
for each δ ∈ R, define a corresponding function υδ : [0, T ] → R

n as follows:

υδ(t) , xδ(t)− x0(t), t ∈ [0, T ].

Since xδ and x0 are continuous, υδ is also continuous.
Now, it follows from equations (1)-(2) that for each δ ∈ R,

xδ(t) = ϕ(σ̂ + δek) +

∫ t

0

f (s,xδ(s),u(s), σ̂ + δek)ds, t ∈ [0, T ].

Thus,

υδ(t) = ϕ(σ̂ + δek)−ϕ(σ̂) +

∫ t

0

{

f(s,xδ(s),u(s), σ̂ + δek)

− f (s,x0(s),u(s), σ̂)
}

ds, t ∈ [0, T ].

12



Consequently, by the mean value theorem,

υδ(t) =

∫ 1

0

δ
∂ϕ(σ̂ + ηδek)

∂σk
dη

+

∫ t

0

∫ 1

0

{

∂f(s,x0(s) + ηυδ(s),u(s), σ̂ + ηδek)

∂x
υδ(s)

+ δ
∂f(s,x0(s) + ηυδ(s),u(s), σ̂ + ηδek)

∂σk

}

dηds, t ∈ [0, T ].

(A.2)

This identity will be used later in the proof.
Now, because of Assumption 2, it follows from Lemma 6.4.2 of [12] that the

family of state trajectories

{

xδ : δ ∈ [−1, 1]
}

is equibounded on [0, T ]. Hence, there exists a real number L2 > 0 such that
for each δ ∈ [−1, 1],

xδ(t) ∈ Bn(L2), t ∈ [0, T ],

where Bn(L2) denotes the closed ball in R
n of radius L2 centered at the origin.

Since Bn(L2) is convex, for each δ ∈ [−1, 1] we have

x0(t) + ηυδ(t) ∈ Bn(L2), t ∈ [0, T ], η ∈ [0, 1]. (A.3)

Moreover, it’s obvious that for each δ ∈ [−1, 1],

σ̂ + ηδek ∈ Bm(L3), η ∈ [0, 1], (A.4)

where L3 , |σ̂|m + 1. Recall from Assumption 1 that ∂ϕ/∂σk, ∂f/∂σk,
and ∂f/∂x are continuous. Hence, it follows from inclusions (A.3) and (A.4)
and the compactness of [0, T ], Bn(L2), W , and Bm(L3) that there exists a real
number L4 > 0 such that for each δ ∈ [−1, 1],

∣

∣

∣

∣

∂ϕ(σ̂ + ηδek)

∂σk

∣

∣

∣

∣

n

≤ L4, η ∈ [0, 1],

∣

∣

∣

∣

∂f(t,x0(t) + ηυδ(t),u(t), σ̂ + ηδek)

∂σk

∣

∣

∣

∣

n

≤ L4, t ∈ [0, T ], η ∈ [0, 1],

∣

∣

∣

∣

∂f(t,x0(t) + ηυδ(t),u(t), σ̂ + ηδek)

∂x

∣

∣

∣

∣

n×n

≤ L4, t ∈ [0, T ], η ∈ [0, 1].

Step 2. The function υδ is of order δ

Let δ ∈ [−1, 1] be arbitrary. Taking the norm of both sides of (A.2) and
applying the definition of L4 gives

∣

∣υδ(t)
∣

∣

n
≤ L4|δ|+ L4T |δ|+

∫ t

0

L4

∣

∣υδ(s)
∣

∣

n
ds, t ∈ [0, T ].
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Applying Gronwall’s Lemma then gives
∣

∣υδ(t)
∣

∣

n
≤ (L4 + L4T ) exp(L4T )|δ|, t ∈ [0, T ], (A.5)

and since δ ∈ [−1, 1] was arbitrary, this inequality holds whenever the magnitude
of δ is sufficiently small (less than or equal to one). Thus, the function υδ is of
order δ.

Step 3. Definition and limiting behavior of ρ1
Define a function ρ1 : [−1, 1] → R as follows:

ρ1(δ) ,

∫ 1

0

∣

∣

∣

∣

∂ϕ(σ̂ + ηδek)

∂σk
−
∂ϕ(σ̂)

∂σk

∣

∣

∣

∣

n

dη, δ ∈ [−1, 1].

Clearly σ̂ + ηδek → σ̂ as δ → 0, uniformly with respect to η ∈ [0, 1]. This
convergence takes place inside the ball Bm(L3) (see inclusion (A.4) in Step 1).
Hence, since ∂ϕ/∂σk is uniformly continuous on the compact set Bm(L3),

∂ϕ(σ̂ + ηδek)

∂σk
→

∂ϕ(σ̂)

∂σk
as δ → 0,

uniformly with respect to η ∈ [0, 1]. Consequently,

lim
δ→0

ρ1(δ) = 0. (A.6)

Step 4. Definition and limiting behavior of ρ2
For each δ ∈ R, define two corresponding functions λ1,δ : [0, T ] → R

n

and λ2,δ : [0, T ] → R
n as follows:

λ1,δ(t) ,

∫ 1

0

{

∂f(t,x0(t) + ηυδ(t),u(t), σ̂ + ηδek)

∂x

−
∂f(t,x0(t),u(t), σ̂)

∂x

}

υδ(t)dη, t ∈ [0, T ],

and

λ2,δ(t) ,

∫ 1

0

δ

{

∂f(t,x0(t) + ηυδ(t),u(t), σ̂ + ηδek)

∂σk

−
∂f(t,x0(t),u(t), σ̂)

∂σk

}

dη, t ∈ [0, T ].

Furthermore, define another function ρ2 : [−1, 0) ∪ (0, 1] → R as follows:

ρ2(δ) , |δ|−1

∫ T

0

{

∣

∣λ1,δ(t)
∣

∣

n
+
∣

∣λ2,δ(t)
∣

∣

n

}

dt, δ ∈ [−1, 0) ∪ (0, 1].

Now, it follows immediately from (A.5) that

x0(t) + ηυδ(t) → x0(t) as δ → 0, (A.7)
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uniformly with respect to t ∈ [0, T ] and η ∈ [0, 1]. In addition, recall from Step 3
that

σ̂ + ηδek → σ̂ as δ → 0, (A.8)

uniformly with respect to η ∈ [0, 1]. Since the convergence in (A.7) takes
place inside the ball Bn(L2), the convergence in (A.8) takes place inside the
ball Bm(L3), and ∂f/∂x and ∂f/∂σk are uniformly continuous on the compact
set [0, T ]× Bn(L2)×W ×Bm(L3),

∂f(t,x0(t) + ηυδ(t),u(t), σ̂ + ηδek)

∂x
→

∂f(t,x0(t),u(t), σ̂)

∂x
as δ → 0

and

∂f(t,x0(t) + ηυδ(t),u(t), σ̂ + ηδek)

∂σk
→

∂f(t,x0(t),u(t), σ̂)

∂σk
as δ → 0,

uniformly with respect to t ∈ [0, T ] and η ∈ [0, 1]. These results, together with
inequality (A.5), imply that δ−1λ1,δ → 0 and δ−1λ2,δ → 0 uniformly on [0, T ]
as δ → 0. Consequently,

lim
δ→0

ρ2(δ) = 0. (A.9)

Step 5. The final step: Comparing δ−1υδ with ψk(·|u)

We now use the results proved in the previous steps to establish equa-
tion (A.1). First, let δ ∈ [−1, 0)∪(0, 1] be arbitrary but fixed. Next, using (A.2)
we obtain

υδ(t) = δ
∂ϕ(σ̂)

∂σk
+

∫ 1

0

δ

{

∂ϕ(σ̂ + ηδek)

∂σk
−
∂ϕ(σ̂)

∂σk

}

dη

+

∫ t

0

(

λ1,δ(s) + λ2,δ(s)
)

ds+

∫ t

0

∂f(s,x0(s),u(s), σ̂)

∂x
υδ(s)ds

+

∫ t

0

δ
∂f(s,x0(s),u(s), σ̂)

∂σk
ds, t ∈ [0, T ].

(A.10)

Furthermore, integrating the auxiliary system gives

ψk(t|u) =
∂ϕ(σ̂)

∂σk
+

∫ t

0

∂f(s,x0(s),u(s), σ̂)

∂x
ψk(s|u)ds

+

∫ t

0

∂f(s,x0(s),u(s), σ̂)

∂σk
ds, t ∈ [0, T ].

(A.11)

Multiplying equation (A.10) by δ−1 and then subtracting from it equation (A.11)
gives

δ−1υδ(t)−ψk(t|u) =

∫ 1

0

{

∂ϕ(σ̂ + ηδek)

∂σk
−
∂ϕ(σ̂)

∂σk

}

dη

+ δ−1

∫ t

0

(

λ1,δ(s) + λ2,δ(s)
)

ds

+

∫ t

0

∂f(s,x0(s),u(s), σ̂)

∂x

(

δ−1υδ(s)−ψk(s|u)
)

ds, t ∈ [0, T ].
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Therefore,

∣

∣δ−1υδ(t)−ψk(t|u)
∣

∣

n
≤ ρ1(δ)+ρ2(δ)+

∫ t

0

L4

∣

∣δ−1υδ(s)−ψk(s|u)
∣

∣

n
ds, t ∈ [0, T ].

By Gronwall’s Lemma,

∣

∣δ−1υδ(t)−ψk(t|u)
∣

∣

n
≤

(

ρ1(δ) + ρ2(δ)
)

exp(L4T ), t ∈ [0, T ].

Recalling that δ ∈ [−1, 0) ∪ (0, 1] was arbitrary, we can take the limit as δ → 0
in the above inequality and apply (A.6) and (A.9) to establish

lim
δ→0

δ−1υδ(t) = ψk(t|u), t ∈ [0, T ].

This proves equation (A.1), because υδ(t) = x(t|u, σ̂ + δek) − x(t|u, σ̂) for
each t ∈ [0, T ].
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