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Abstract—This work explores use of Thermal Infrared Image 

based Flow Visualization (TIIFV) for qualitative analysis of 
gasoline engine combustion performance. It proposes 
determining engine combustion performance through analysis of 
the exhaust plume turbulence and radiation extinction patterns. 
The employed methodology requires estimating the point spread 
function (PSF) prevailing in a LWIR image and using the PSF 
estimates for enhancing the engine exhaust plume LWIR images. 
Influence of exhaust plume composition on the plume flow 
characteristics, made evident by the turbulence and radiation 
extinction patterns, is then ascertained. The observed plume flow 
characteristics and underlying flow patterns are used to 
qualitatively determine the engine combustion performance. 
Results suggest that engine exhaust flow visualization can help in 
qualitative analysis of combustion performance from a distance 
and our reliance on photochemical-based analysis of gasoline 
engine combustion efficiency can be reduced. Thus a time 
consuming and untidy process, difficult to be carried out in real 
life situations, may be replaced with a swift and cleaner one. 

Keywords—longwave thermal infrared imaging, engine 
combustion performance analysis, exhaust plume flow 
visualization, vehicle comustion analysis. 

I.  INTRODUCTION 

Gasoline engine (GE) exhaust gases may contain some 200-
500 different species [1]. The amount and proportions of 
prevailing species depend on; the quality of combustion, the 
kind and quantities of additives used in a gasoline compound, 
and the types of primary secondary and tertiary chemical 
reactions caused by the GE exhaust particles released in the 
atmosphere. 

The gross weight related calculations are used in collecting 
GE exhaust emission data. As the GE exhaust particles vary in 
size and weight, the typically acquired emission data won’t 
allow distinguishing between the emission characteristics of 
two equal weight GE exhaust samples. In real life, each 
sample would carry different amounts (and proportions) of 
larger and smaller particles. Furthermore, it is known that 
equal weights of gases carrying varying quantities of smaller 
and larger particles, when released to the atmosphere, would 
exhibit differences in atmospheric residence time, local 
visibility and cloud-nucleation [2]. Factors like chemical 
composition, nature of involved chemical reactions, and size 
distribution of particles influence exhaust gases’ atmospheric 
residence time. Also, in addition to these factors, discharged 
particles’ refractive indices affect visibility and influences 

cloud-nucleation [2,3]. 
Analyzing gasoline engine (GE) combustion efficiency 

using the photochemical-based method, though common, is a 
time consuming process that needs physical access to the 
vehicle under scrutiny. An ability to swiftly perform 
qualitative GE combustion analysis, from a distance, would 
therefore help. One way of performing qualitative combustion 
analysis from a distance is to establish the relationship 
between the compositions of GE exhaust gases, resulting local 
atmospheric visibility and atmospheric residence time. This 
approach could be easily implemented through visualization 
and examination of the GE exhaust flow characteristics. 
Thermal InfraRed Imaging (TIRI) would help in visualizing 
both thermal and visible aspects of the fluid flow. Major GE 
exhaust plume species can be visualized in LongWave 
InfraRed (LWIR) band. Thus TIRI, in LongWave InfraRed 
(LWIR) band, makes it possible to qualitatively determine the 
combustion performance of GE exhaust through examination 
of the observed thermal disturbance patterns. 

Previous works suggest that vehicle engine combustion 
analysis from a distance is possible; can be useful in real life 
situations; and can be facilitated in LWIR band [4,5]. Building 
upon the previous works, this paper exploits thermal infrared 
image-based flow visualization (TIIFV) for examining the 
thermal disturbance patters in GE exhaust plume and 
interpreting the GE combustion performance in qualitative 
terms. 

In section II, engine exhaust visualization is introduced. 
Section III introduces the gasoline engine exhaust in Infrared 
spectrum. The experimental design used for this investigation 
is reported in Section IV. The employed methodology 
including the point spread function estimation, and noise and 
blur reduction techniques are reported in Section V. The 
isotherm detection techniques for discovering thermal 
disturbances in GE exhaust plumes’ LWIR images are also 
reported in Section V. Results are reported in Section VI. 

II. GASOLINE ENGINE EXHAUST IN LWIR SPECTRUM 

Combustion products discharged from a GE to the 
atmosphere exhibit an unpredictable flow pattern for the 
following reasons. The transported material quantities are 
mixed at a rate faster than the mixing rate of gases undergoing 
only the molecular diffusion processes. The exhaust products 
span over a wide range of spatial wavelengths. The exhaust 



 

flow has a non-zero vorticity in multiple regions, which causes 
the upstream flow to gradually become irrotational. These 
flow features make the GE combustion exhaust flow high-
gradient, unsteady, and turbulent [1,11,12,13]. 

Typical GE combustion products contain carbon dioxide 
(CO2), water vapors (H2O), Nitrogen (N2) oxides of nitrogen 
(NOX), carbon monoxide (CO), unburned hydrocarbons, 
partially oxidized hydrocarbons, sulfur dioxide (SO2), 
particulates and smoke [6,14,15].  

All thermal radiations are detectable in 0.1-100 µm 
wavelength [16] thus radiations from a majority of the GE 
exhaust species can be detected in LWIR band. The 
volumetric and stimulated emissions of several aromatic 
hydrocarbons (AH) produced during the gasoline combustion 
are also detectable in the long-wave infrared (LWIR) spectrum 
(8-14 µm). The volumetric and stimulated emissions of CO, 
CO2 and other non-methane hydrocarbons such as 
Ethylbenzene (C8H10), 2-Butene (C4H8), and 2-pentene 
(C5H10) can also be detected in midwave infrared cameras. 

I. VISUALIZING ENGINE EXHAUST PLUME 

Flow visualization methods are typically applied to visible 
spectrum images and mathematically generated images. The 
later involve computational fluid dynamics (CFD). Common 
flow visualization approaches attempt to determine the flow 
characteristics and estimate species concentration, mostly 
through excitation of specific species fluorescence [14]. 
Typically, optical imaging tools and methods focus on in-situ 
testing of combustion performance by analyzing the exhaust 
flow in laboratory conditions. In the recent past, flow 
visualization techniques have been used for remotely 
analyzing the GE combustion performance [15-18].  

Image-based flow visualization (IBFV) techniques such as 

the one proposed in [19] provide a framework for visualizing 
moving particle flow, streamline patterns and moving textures. 
The IBFV techniques are typically used for analyzing visible 
spectrum and CFD generated images. The IBFV methods were 
also employed for extracting features of typical high-gradient, 
compressible turbulent flow [18]. In this work, the IBFV 
approach was extended and developed for visualizing LWIR 
images. We refer to this approach as Thermal Infrared Image 
based Flow Visualization (TIIFV) 

II. EXPERIMENTAL SETUP 

Having realized the feasibility of using LWIR for GE 
exhaust plume imaging, first the engine combustion 
efficiencies of several randomly picked cars were analyzed. 
Results of the three of these unleaded petroleum-run vehicles’ 
engines are being discussed in this paper. An electrochemical 
sensing based combustion analyzer was used for engines’ 
combustion analyses. The percentages of various species and 
engines’ combustion efficiencies are shown in Table I. Figure 
1 shows the combustion analysis setup, infrared imaging 
arrangement and an acquired LWIR image of exhaust plume. 
The three cars had similar combustion efficiencies and their 
exhaust gases had similar chemical compositions. 

During the image acquisition, the engines were set to run at 
2000 rpm. A LWIR (8.0-14.0 m) was used for thermal 
imaging. The camera was set normal to the exhaust stream, 
about 500 centimeters away. This resulted in a consistent and 
pre-determined field of view (FoV). The set up was also 
helpful in minimizing the effects of rapid mixing and 
dispersion of pollutants in the atmosphere [9]. Walled 
arrangements were preferred for avoiding any major air drift 
and maintaining the atmospheric conditions during the image 
acquisition session. The emissivity contrast between the 
background and foreground elements of LWIR images was 
maximized using thermoset polystyrene foam sheet (low 
emissivity,  ≈ 0.50) in the background. Polystyrene foam also 
has a low thermal conductivity (0.025~0.03 W/mK) [13] so it 
maintains a near-constant temperature under normal 
atmospheric conditions. 

 
Fig. 1.  Top left- combustion analysis; Top right- thermal infrared 
imaging set up, Bottom left- polystyrene foam sheet behind the 
exhaust mufler; Bottom–L WIR image of exhaust plume. 

 
TABLE I 

COMBUSTION ANALYSIS RESULTS OF THREE UNLEADED-
PETROLEUM RUN ENGINES 
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1.  Impreza 1.80 0 11.9 84 127 0.3 84.3 

2.  Corolla 1.79 0 11.9 121 10 0.1 85.3 

3.  Yaris 1.29 0 12 10 0 0.3 85.2 

 



 

The combustion exhaust plume temperatures added with the 
cold atmospheric air (≈ 19-21 ˚C) were not hot sufficient to 
immediately increase (or decrease) the polystyrene foam sheet 
temperatures. Figure 2 shows a LWIR image and its grey-level 
histogram and exhibits that the background and foreground 
pixels are separable. 

III. COMPUTATIONAL APPROACH 

This section presents the employed image analysis, image 
enhancement and thermal disturbance pattern analysis 
methods, illustrated in Figure 3. The image acquisition set up 
was introduced in previous section. 

 

A. Noise and blur reduction 

Generally, the Gaussian noise model can be assumed to 
prevail in the LWIR images. With this assumption, even in the 
absence of a priori knowledge of the point spread, the blind 
deconvolution method is generally adopted for image 
restoration [20]. 

Removing noise from LWIR fluid flow images poses some 
unique challenges. Firstly, an image degradation model is 
difficult to predict for the movement of low-density 
clusters/clouds of radiation for a low contrast factor. Secondly, 
the multi-dimensional and multi-speed movements of particles 
and molecules result in added blur for the aberration factor. 
The problem is accentuated because of the unpredictable 
nature of high-gradient, unsteady turbulent fluid flow. Thus 
estimating degradation function H(x, y) caused by the noise 
η(x, y) in a fluid flow LWIR image g(x, y) is a complex task. 

This work opted to estimate the point spread function (PSF) 
and use the estimated PSF with an iterative nonlinear filter for 
noise reduction and blur reduction. Considering the complex 
motion and extinction phenomena prevailing in the 
combustion exhaust plume LWIR images, it was appropriate 
to assume that a rotationally symmetric PSF would allow for 
modeling the noise and blur. Thus, the aberration-variance 
based PSF estimation [21] was employed as 

2
1A ]z/)z(J2/[)z(II  .    (1) 

Equation (1) leads to the generalizations in equations (2) and 
(3) as: 
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In the above equations, I(z) is the diffraction angle that 

describes the intensity distribution (or PSF), z is a 
dimensionless optical coordinate in the image plane and J1 is 
the first-order Bessel function of the first kind. The quantity 
k(=2π/λ) represents the wave number, S denotes the Strehl 
ratio, g results from the wave-front moment 2)(  and α 

represents the sampling point in above equations. 
The effectiveness of the employed noise reduction approach 

was validated. The classical Haralick edge detection algorithm 
[22] was invoked on (1) the LWIR images restored by the 
aforementioned approach and (2) the LWIR images restored 
using the Gaussian filter. The aberration-variance based PSF 
estimation resulted in a much better edge detection in the 
LWIR images. 

The estimated PSF values were used in the frequency 
domain for invoking the Lucy-Richardson iterative non-linear 
filter on the LWIR images. This filter modeled LWIR images 
using Poisson statistics and resulted in an iterative process that 
continued till the following convergence was not satisfied 
[23]: 

 

 

  

Fig. 2.  Top-left-LWIR image; Bbottom-left – Literal separation of 
thermal radiations emitted by pixels of combustion species in 
foreground; Rright - grey-level histogram showing separation of 
background and foreground. 

 
Fig. 3.  Employed data acquisition and computational approaches. 
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The symbol ),(ˆ
1 yxfk  in equation (4) represents the 

degradation in the acquired LWIR image g(x, y) of the actual 
image f(x, y), and h(x, y) is the spatial representation of the 
degradation function. 

This 2-stage noise and blur reduction approach, adopted 
keeping the GE exhaust LWIR image details and complexities 
highlighted a higher level of image details. 

B. Thermal distrubance visualization through image 
segmentation 

Thermoset polystyrene has a low thermal conductivity 
(0.025~0.03 W/mK). Keeping thermoset polystyrene foam 
sheets in the background (Figure 1), resulted in maintaining 
higher emissivity and temperature contrasts between the 
background and the foreground of the LWIR images. It was 
safe to assume that the foam sheets would maintain an almost 
constant temperature (

fT ) during every instance of image 

capture. Thus, the thermal distributions in each LWIR image 
could be realized by comparing the temperature of each region 
(a group of pixels having similar grey-level values) with the 
measured 

fT as: 

pnf TTT  .     (5) 

T  in equation (5) is the temperature gradient and Tpn 
represents temperature of nth plume region in the LWIR image. 
Such a computational approach would result in a set of 
distinguishable thermal regions as: 

1jj1j TTT       (6) 

Such a thermal separation of regions of GE LWIR images 
would require invoking an effective image segmentation 
approach. 

Several well tested image segmentation techniques such as 
edge detection, transformation and thresholding have been 
employed in fluid visualization. The comparative advantages 
and limitations of these algorithms in segmenting the LWIR 
images of turbulent fluid are available in the literature. As 
highlighted through equations (5) and (6), the region splitting 
and merging algorithm, based on the temperature and pixel 
grey-level differences, would divide the GE LWIR into 

arbitrary regions. The split-merge process would continue 
until a set of prescribed conditions are met for the best 
possible division of the LWIR image into thermally 
distinguishable regions. The employed split-merge algorithm 
is given below. 

Assuming L= LWIR image, the objective is to partition L 
into n sub-regions L1, L2, …, Ln given the following 
conditions: 

1. Each Li is a connected region (i=1,2,3,…,n); 

2. LL
n

1i
i 


 ; for completing the  segmentation 

3.  lk LL ; Φ is a null set such that each ‘i’and k≠l; 

4. True)L(P i  ; for i=1,2,3,…,n, and 

5. False)LL(P ji   for i’≠j . 

IV. RESULTS 

Figure 4 shows noise and blur reduction in a LWIR image 
using the aforementioned 2-stage image restoration approach. 
Figure 5 shows the effectiveness of the aberration-variance 
based PSF estimation method against another widely used 
image restoration method, the Gaussian filter. It is obvious in 
Figure 5 that a superior noise and blur reduction approach 
would result in better image segmentation and edge detection, 
particularly for visualizing the high-gradient turbulent fluid 
flow. The three engines’ LWIR images exhibited similar 
thermal disturbance patterns. 

The image segmentation results shown in Figure 6 highlight 
important characteristics of the GE combustion exhaust flow. 

The temperature distribution in Figure 6 represents an 
isotropic turbulence and shows the scale of turbulence varying 
isotropically. Figure 6 also exhibits growth in the areas of 
isotherms as fluid particles move away (in both horizontal and 
vertical directions) and extinct in the atmosphere. These initial  

Fig. 4.  Separation of thermoset polystyrene foam background and 
foreground combustion species pixels: (a)-LWIR image; (b)- grey-level 
histogram. 

 
Fig. 5.  Top row - Gaussian filter; and Bottom row - The classical Haralick 
edge detection algorithm invoked after noise and blur removal using the The 
classical Haralick edge detection algorithm invoked after noise and blur 
removal using the 2-stage image restoration method. 



 

 

 results highlight the efficacy of the employed algorithmic 
approach. 

Figure 7 compares the LWIR images and segmentation 
results of the two GE’s running at similar combustion 
efficiencies. In the left column, an Impreza’s GE, running at 
84.3% combustion efficiency is shown. The right column of 
Figure 7 shows a LWIR image and segmentation results of a 
Toyota Yaris running at 85.2 % combustion efficiency. 
Though the two GE’s had similar combustion efficiencies, the 
thermal disturbance patterns and isotherm sizes in Figure 7 
differ. The high combustion efficiency GE images show 
smaller isotherms and better isotropic distribution than those 
obvious in the images of a low combustion efficiency GE. A 
closer look at the two segmented images in Figure 7 would 
suggest how the differences in GE efficiencies could result in 
different isotherm sizes and spatial distribution of thermal 
patterns. 

V. DISCUSSION AND CONCLUSION 

Fulfilling the condition,  lk LL  (recall  is a null set 

for all ‘i’and k≠l) would pose certain limits on the region 
splitting and merging algorithm. Mainly because of the 
complex particle and radiation motion, diffusion and 
extinction phenomena associated with the turbulent fluid flow. 
This problem could be minimized by selecting proper splitting 
and merging parameters. Thus an adaptive selection of spilt 
and merge parameters is recommended. However, 
transmission of radiation through atmosphere is affected by 
absorption, scattering and emission. Turbulence, added to 
these factors, makes it difficult to estimate the true region 
splitting and merging parameters. The non-continuous nature 
of thermal extinctions in the turbulent flow LWIR images 
makes it difficult to identify the isotherms. 

Despite these factors, the expected vertical and horizontal 
thermal asymmetries of turbulent flow were easily visualized 
through the proposed region split-merge algorithm. These 
initial results suggest that discovering useful thermal 

disturbance patterns in LWIR of combustion exhaust flow 
images is possible. As demonstrated through this work, a 
careful image enhancement strategy would allow identifying 
movement of radiation carrying media particles. The 
differences in the observed thermal radiation patterns, 
isotherm sizes and spatial movements can be used to 
qualitatively distinguish between GE combustion efficiencies. 
The employed TIIFV approach may allow identifying the bad 
performing vehicle engines from a distance and may help 
environmental regulations enforcing agencies in further testing 
the (identified) poorly performing vehicles. As a result, time 
and efforts wasted in testing satisfactorily performing vehicles 
can be saved. 
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