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Abstract. In this paper we apply a recently proposed Lagrange Dual Method
(LDM) to design a new Sparse Representation-based Classification (LDM-
SRC) algorithm for robust face recognition problem. The proposed approach
improves the efficiency of the SRC algorithm significantly. The proposed algo-
rithm has the following advantages: (1) it employs the LDM `1-solver to find
solution of the `1-norm minimization problem, which is much faster than other
state-of-the-art `1-solvers, e.g. `1-magic and `1 `s . (2) The LDM `1-solver uti-
lizes a new Lagrange-dual reformulation of the original `1-norm minimization
problem, not only reducing the problem size when the dimension of training
image data is much less than the number of training samples, but also making
the dual problem become smooth and convex. Therefore it converts the non-
smooth `1-norm minimization problem into a sequence of smooth optimization
problems. (3) The LDM-SRC algorithm can maintain good recognition ac-
curacy whilst reducing the computational time dramatically. Experimental
results are presented on some benchmark face databases.

1. Introduction. Face recognition is an active research topic in the past two
decades, and both the academic and industry communities have devoted much ef-
forts to automatic face recognition development. The core problem of face recogni-
tion is to design algorithms which can perform automatic person identification or
verification, when a digital image or a video frame sequence of that person is pro-
vided. For this purpose, numerous algorithms have been proposed by researchers
with many significant results achieved [36, 26, 27].
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Many state-of-art face recognition algorithms are appearance-based methods,
which use the features of the pixel intensity values in a digital face image. These
pixel intensities are the measurements of light radiance emitted from a person along
certain rays in space, and contain abundant information which can be used to deter-
mine identity from appearance. Some typical appearance-based methods include:
subspace-based methods, Hidden Markov Model (HMM) methods, Bayesian meth-
ods, Support Vector Machine (SVM) methods, Kernel methods. In the literature of
face recognition, the subspace-based algorithms have been extensively studied be-
cause of its effectiveness and meaningful explanations. To briefly review subspace-
based algorithms we can find a number of classic algorithms: Eigenfaces and its
variants [28, 25, 29], Fisherfaces and numerous modifications [3, 23], Laplacianfaces
and its extensions [17, 35], ICA-based methods [1, 11], NMF-based methods [19, 20],
unified subspace method [30], to name only a few. Most of these methods treat face
images as points in a vector space, and adopt statistical or geometrical techniques
to analyze the structure of the image vectors, trying to find effective representa-
tions in some other transformed vector spaces according to various objectives. The
result of subspace analysis can generally lead to a projective subspace, in which the
face image vectors can be projected so that more compact and effective features
can be extracted. Once the subspace has been found, both the prototype training
images and the test images are projected in the subspace, and further classification
is performed based on adequate similarities measured in such subspace. The effec-
tiveness for subspace-based methods relies on the applicability of approximating the
face space with a particular subspace. Successful results have been reported widely
in demonstrating the effectiveness of subspace-based methods for face recognition.

To date, high performance of face recognition algorithms has been achieved in
laboratory controlled environments. However, the practical performance of face
recognition techniques is still unsatisfactory in less controlled or uncontrolled en-
vironments, which is a barrier to their implementation in real world applications.
Recent standardized vendor face technology tests have revealed that the main chal-
lenges for practical face recognition are the disruptive large intra-subject variations
in human face appearance due to 3D head poses, illumination variations (e.g. in-
door/outdoor environment), facial expressions, occlusions with other objects or ac-
cessories (e.g. sunglasses and scarfs), facial hair and aging [21, 22, 27, 10]. These
interference factors can degenerate the performance of face recognition algorithms
dramatically. As these difficulties exist in face recognition, more robust face recog-
nition algorithms are still needed.

Recently, Wright et al. have developed a new face recognition framework for the
robust face recognition problem, namely the Sparse Representation-based Classifi-
cation (SRC) algorithm [32]. Their work is based on a newly developed compressed
sensing theory, and tends to show its robust performance compared with traditional
face recognition techniques. Compressed sensing is a technique firstly developed in
signal processing community for reconstructing a sparse signal by utilizing the prior
knowledge of its sparsity structure [7, 12]. The compressed sensing theory resolves
to minimize the `0 norm, which is equivalently relaxed to minimizing the `1 norm
under certain conditions. This transition of minimization object can yield surpris-
ingly desirable solutions which manifest their robust property against a variety of
noises in many problems. Due to its solid mathematics and attractive robustness,
compressed sensing has already drawn immense attention in areas of mathemat-
ics, optimization, information theory, statistical signal processing, high-dimensional
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data analysis. A survey about compressed sensing and its broad applications can
be found in [8].

The SRC algorithm for face recognition is robust in a sense that the sparse rep-
resentation is less sensitive to variations in the face images, which could be caused
by illuminations, occlusions, noises, or random pixel corruptions. The algorithm
has demonstrated its robustness against noises and corruptions in experiments.
Nevertheless, the major disadvantage of the SRC algorithm is its very expensive
computational cost and limits its current applicability. Due to its vector repre-
sentation of face images data, the SRC algorithm needs to solve an `1-regularized
optimization problem whose size is the total number of pixels in the images, which
can be extremely large when high resolution images are used.

Regarding the computational issue, some alternative approaches can be consid-
ered to overcome the problem. First, dimensionality reduction can be performed on
the input images and then extracted feature vectors can be used instead of original
pixel features. However, this approach might risk losing useful information of the
original images. Second, some reformulations of the problem might be pursued to
find the equivalent solution faster. In this paper, we follow the second approach and
aim to reduce computational complexity of the SRC algorithm by reformulating the
`1-regularized optimization problem in the SRC algorithm. The idea is based on
our recent result in [31] and the `1-regularized optimization problem in the SRC
algorithm is converted into a lower dimensional problem via Lagrange dual theorem.

The paper is organized as follows. In Section 2, we review the SRC algorithm
and point out its high computational cost problem. Then, in Section 3 we propose
a LDM-SRC algorithm which can solve the `1 minimization problems efficiently. In
Section 4 we compare the proposed LDM-SRC algorithm with two other state-of-
the-art algorithms (i.e. `1-magic and `1 `s ) on some benchmark datasets, which
reveals that the proposed algorithms can speed up without decreasing the recogni-
tion rate. Finally, we conclude the paper in Section 5.

2. The SRC problem. In this section we briefly review the SRC algorithm and
analyze the major high computational cost of the involved `1 minimization problem.

In face recognition research, it is generally conceived that there exists a “face
subspace” which is formed by one person’s face images under different variations
(e.g. pose, illumination, expression). As a result, linear models can be used to
approximate the “face subspaces” by all the people in the training set. The re-
cently proposed sparse representation-based face model is developed based on this
hypothesis, and it uses all known training sample images to span a face subspace.
For a test face image whose class label is unknown, one tries to reconstruct the test
image sparsely from the training samples.

According to this model hypothesis, if given sufficient training samples of one
person, then any new (test) sample for this person will approximately lie in the
linear span of the training samples associated with this person. To be more precise,
let us say, a database consists of k classes denoted as

A = {A1,1, . . . ,A1,n1
, . . . ,Ak,1, . . . ,Ak,nk

} ,

where Ai,l is the l-th image belonging to class i, and ni is number of samples for
class i, i = 1, . . . , k. By stacking pixels of each image Ai,l into a column vector vi,l,
one can build up a matrix A to represent the training samples

A = [v1,1, . . . ,v1,n1
, . . . ,vk,1, . . . ,vk,nk

] ∈ RL×N , (1)



166 H. QIU, X. CHEN, W. LIU, G. ZHOU, Y. WANG AND J. LAI

where L = hw is the number of pixels for an h× w image, and N = n1 + . . .+ nk

is the total number of samples for all classes.
For a new test image y, we expect to represent it using linear combinations of

samples from the database

y = Ax0. (2)

Most ideally, if y is known from person i, then based on the assumption that person
i’s face subspace is sufficient to represent itself, so the coefficients x0 should have a
form of

x0 = [0, . . . , 0, αi,1, αi,2, . . . , αi,ni
, 0 . . . , 0] . (3)

In other words, the solution x0 in linear equation (2) should only have non-zero
values at positions corresponding to the same person as the test image, therefore
it should be very sparse. Thus, one can use “sparsity” as a heuristic principle for
solving the linear equation (2), even though not knowing the true identity of the
test image. For this purpose, one can set up an objective to measure the “sparsity”
of the coefficients x, that is

(`0) :
x̂0 = arg min

x

‖x‖0

s.t. Ax = y.
(4)

where ‖·‖0 is the zero norm which simply counts the number of non-zero elements of
x. However such kind of optimization problem is NP hard and not easily tractable,
therefore alternatives are needed. From the compressed sensing theory one knows
that a restriction of `1-norm has an equivalent effect of producing sparse solu-
tions. When the basis matrix A satisfies certain randomness conditions (e.g. the
statistical restricted isometry property), (4) is equivalent to the following `1-norm
minimization problem with high probability

(`1) :
x̂1 = arg min

x

‖x‖1

s.t. Ax = y.
(5)

Moreover, (4) is a model not taking account the existence of noise and can be
enhanced by combining the `1-norm with an error tolerance constraint, thus leads
to

(`s1) :
x̂1 = arg min

x

‖x‖1

s.t. ‖Ax− y‖2 ≤ ε.
(6)

The two `1-norm based models (5) and (6) are both used in the SRC algorithm,
and they are different because (5) is a noise-free model and (6) is a model tolerating
the existence of noises. Nevertheless, they can be solved using the same optimization
technique. Once the sparse coefficients x is solved, then they can be used for
recognition by the SRC algorithm, which is summarized in Algorithm 1.

As can be seen, the most significant step in the SRC algorithm is how to solve
the `1 minimization problem (5) or (6) effectively and efficiently. The authors in
[32] use the `1-magic package [9] to find their solutions, and all their experimental
results are obtained by downsampling the original images to smaller size images. In
our experiments we find that the `1-magic solver has very high computational cost,
and it even fails to run in some very large scale problems. This motivates us to find
other alternative `1-solvers for practical use, such as `1 `s [18]. The `1 `s solver is
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Algorithm 1 Sparse Representation-based Classification (SRC) (by Wright et al.
[32])

1: Input: a matrix of training samples for k classes

A = [v1,1, . . . ,v1,n1
, . . . ,vk,1, . . . ,vk,nk

] ∈ R(wh)×N

(each column of A is a vectorization of training sample image Ai,il); the class
labels class(p), p = 1, . . . , k; the corresponding class labels label(i) of each train-
ing sample vector A(:, i); a test sample y ∈ R(wh)×1; and an optional error
tolerance parameter ε > 0.

2: Normalize the columns of A to have unit `2-norm.
3: Solve the `1-norm minimization problem

x̂ = arg min
x

‖x‖1 s.t. Ax = y,

or alternatively solve the `1-norm minimization problem

x̂ = arg min
x

‖x‖1 s.t. ‖Ax− y‖2 ≤ ε.

4: Compute the per-class residuals

rp (y) = ‖y −A δp (x̂) ‖2 for p = 1, . . . , k,

where δp (x) , for p = 1, . . . , k is a vector for the p-th class whose entries are
defined as

for i = 1, . . . , N, δ(i)p (x̂) =

{

x̂i, if label(i) is class(p)
0, otherwise.

5: Output: identity(y) = class(p∗), p∗ = arg min
p

rp (y) .

a better algorithm for `1 optimization currently and it has been specially optimized
for large scale problems. Our experiments show that in general it can run several
times faster than the `1-magic solver and have good performance for face recognition
problems. Even though, using the `1 `s solver in the SRC algorithm to recognize a
90× 90 image with 1560 training images would take more than 1000 seconds. This
is obviously impractical and the computation cost is too expensive. We have noted
that some faster and memory economic algorithms have been proposed to solve the
`1 minimization problem, such as GPSR [13], SPGL1 [4], SpaRSA [33] and YALL1
[34]. In particular, YALL1 is a new development of alternating direction methods
and it can be applied to various forms of `1 minimization problems.

In next section, we will propose an LDM `1-solver as well as a modified LDM-SRC
algorithm which can run faster whilst maintaining the face recognition performance.

3. The proposed LDM-SRC algorithm. In this section, we introduce the La-
grange Dual Method `1-solver for both the noise free problem (5) and the problem
(6) with noise tolerance. We will consider the noise free case and the case with
noise respectively, and reformulate these problems based on the perturbation tech-
nique and dual theorem. After that we will apply the LDM `1-solver to a proposed
LDM-SRC algorithm.
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3.1. The LDM `1-solver for noise free problems. In this case, we consider
problem (5). First we note that the problem (5) is a non-smooth but convex opti-
mization problem. We will convert it into a smooth optimization problem by using
the Lagrange dual technique.

For x ∈ Rn, let x+and x−respectively be the orthogonal projections of x and
−x onto the nonnegative orthant, i.e, x+ = max{x, 0}, x− = max{−x, 0} in com-
ponentwise. Then x = x+ − x− and ‖x‖1 = ‖x+ + x−‖1 hold. In this case, the
problem (5) becomes a standard linear optimization program

(`′1) :

x̂1 = arg min
x

n
∑

j=1

x+
j +

n
∑

j=1

x−
j

s.t. Ax+ −Ax− = y,

x+ ≥ 0, x− ≥ 0 .

(7)

For this linear program problem, Theorem 1 in [24] states that there exists a positive
number τ such that for any τ ∈ [0, τ ], problem (7) can be equivalently transformed
into the following problem

(`′′1 ) :

x̂1 = arg min
x

τ

2

n
∑

j=1

(x+
j )

2 +
τ

2

n
∑

j=1

(x−
j )

2 +
n
∑

j=1

x+
j +

n
∑

j=1

x−
j

s.t. Ax+ −Ax− = y,

x+ ≥ 0, x− ≥ 0 .

(8)

Then we consider its dual program

λ̂ = arg max
λ

min
x+,x−≥0

L(x+,x−;λ), (9)

where the Lagrange function is

L(x+,x−;λ) =
τ

2

n
∑

j=1

(x+
j )

2 +
τ

2

n
∑

j=1

(x−
j )

2 +

n
∑

j=1

x+
j +

n
∑

j=1

x−
j

+ λT
(

Ax+ −Ax− − y
)

. (10)

Further, if we denote the j-th column of A by A·j for j = 1, . . . , n, then the inner
minimization problem in the dual problem (9) can be simplified as

min
x+,x−≥0

L(x+,x−;λ) (11)

=

n
∑

j=1

min
x+,x−≥0

τ

2

(

x+
j +

1 + λTA·j

τ

)2

+

n
∑

j=1

min
x+,x−≥0

τ

2

(

x−
j +

1− λTA·j

τ

)2

−
n

τ
− λTy −

1

τ
λTAATλ.

The last expression above implies that for any fixed λ the Lagrange function takes
its minimum over the nonnegative orthant at

x̂+
j = max{−

1 + λTA·j

τ
, 0}, x̂−

j = max{−
1− λTA·j

τ
, 0} . (12)
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Thus

min
x+,x−≥0

L(x+,x−;λ)

=
1

2τ

n
∑

j=1

max2{1 + λTA·j , 0}+
1

2τ

n
∑

j=1

max2{1− λTA·j , 0}

−
n

τ
− λTy −

1

τ
λTAATλ, (13)

so the dual problem (9) can be written as

λ̂ =arg max
λ

−
1

2τ
θ(λ) −

n

τ
= arg min

λ
θ(λ), (14)

θ(λ)
∆
=2λTAATλ+ 2τλTy −

n
∑

j=1

max2{1 + λTA·j , 0} −

n
∑

j=1

max2{1− λTA·j , 0}.

Now, we give further analysis to problem (14). First, we note that the problem (8)
is a convex program with linear constraints, and then the strong dual theorem holds

[2]. Thus, if the optimal solution, say λ̂∗, of the dual problem (14) is obtained, then
the solution of the primal problem (8) can be obtained explicitly by

x̂∗ = max{−
1 + λ̂∗TA·j

τ
, 0} −max{−

1− λ̂∗TA·j

τ
, 0}. (15)

Second, although the maximum function max{·, 0} is non-differentiable, its square
is smooth. This implies that the objective function in the dual program (14) is
continuously differentiable with derivative given by

∇θ(λ) = 4AATλ+ 2τy −

n
∑

j=1

2max{1 + λTA·j , 0}A·j

−

n
∑

j=1

2max{1− λTA·j , 0}A·j. (16)

Therefore, one can use the gradient-based method to solve the dual problem (14).
Observing that the objection function in (14) is convex, one can see that any sta-
tionary point of problem (14) is a global optimal solution, and this gives us more
flexibility in solving the problem.

Based on above analysis, one can see that the primal problem (5) is equivalently
transformed into a continuously differentiable and convex program withm variables.
Usually, m is much smaller than the size of the original problem n, where m is the
dimensionality of data and n is the number of training samples. For face recognition
applications, it is usually held that m � n. This implies that the size of the dual
problem is much smaller than that of the original problem (5), and this provides
possibility to design more efficient algorithms for the original sparse representation
problem.

3.2. The LDM `1-solver for problems with noise. Now we turn to consider
problem (6) which is with noise tolerance. In the following, we will derive a Lagrange
dual form of this problem.

According to Fuchs [14, 15, 16] and Boyd [5], the quadratic programming prob-
lem (6) can be equivalently transformed into the following `1-norm regularization
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problem

x̂1 = arg min
x

1

2
‖Ax− y‖22 + ρ‖x‖1 for some ρ. (17)

This transformation is equivalent provided the parameter ρ is properly chosen.
If we introduce a new variable z and let z = Ax, the problem (17) can be

rewritten as a linearly constrained optimization problem

(`s1)
′ :

x̂1 = arg min
z, x

1

2
‖z− y‖22 + ρ‖x‖1

s.t. z = Ax.
(18)

Similarly, by introducing two nonnegative variables x+ and x− we can obtain
the following quadratic minimization problem

(`s1)
′′ :

x̂1 = arg min
z,x+,x−

1

2
‖z− y‖22 + ρ

n
∑

j=1

x+
j + ρ

n
∑

j=1

x−
j

s.t. z = Ax+ −Ax−,

x+ ≥ 0, x− ≥ 0 .

(19)

Again from Theorem 1 in [24], for any fixed z ∈ Rm, there exists a parameter
τ̃(z) > 0, such that for any τ ∈ [0, τ̃(z)], the minimization problem (19) is equivalent
to the following perturbed linear program

(`s1)
′′′ :

x̂1 = arg min
z, x+,x−

1

2
‖z− y‖22 +

τ

2

n
∑

j=1

(x+
j )

2 +
τ

2

n
∑

j=1

(x−
j )

2+

ρ

n
∑

j=1

x+
j + ρ

n
∑

j=1

x−
j

s.t. Ax+ −Ax− = z,

x+ ≥ 0, x− ≥ 0 .

(20)

For this problem, we again consider its Lagrange dual problem

λ̂ = argmax
λ

min
x+≥0,x−≥0,z

L(x+,x−, z;λ), (21)

where the Lagrange function is as follows

L(x+,x−, z;λ) =
1

2
‖z− y‖22 +

τ

2

n
∑

j=1

(x+
j )

2 +
τ

2

n
∑

j=1

(x−
j )

2 (22)

+ρ

n
∑

j=1

x+
j + ρ

n
∑

j=1

x−
j + λT

(

Ax+ −Ax− − z
)

.
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A similar argumentation as that in last subsection yields the following simplified
representation of the inner minimization problem in the dual problem (21)

min
x+≥0,x−≥0,z

L(x+,x−, z;λ) =
1

2τ

n
∑

j=1

max2{ρ+ λTA·j , 0}

+
1

2τ

n
∑

j=1

max2{ρ− λTA·j , 0}

−
1

2
λTλ− λTy −

1

τ
λTAATλ−

nρ

τ
, (23)

thus the dual problem (21) can be reduced to

λ̂ = argmax
λ

−
1

2τ
θ(τ,ρ)(λ) −

nρ

τ
= arg min

λ
θ(τ,ρ)(λ), (24)

θ(τ,ρ)(λ)
∆
= λT (τI + 2AAT )λ+ 2τλTy −

n
∑

j=1

max2{ρ+ λTA·j , 0}

−

n
∑

j=1

max2{ρ− λTA·j , 0}.

Since the primal problem (20) is a convex program with linear constraints, the
strong dual program holds [5]. Thus, the solution of the primal problem (20) can

be obtained via the optimal solution, say λ̂∗, of the dual problem (24) with the
following explicit formula

x̂∗ = max{−
ρ+ λ̂∗TA·j

τ
, 0} −max{−

ρ− λ̂∗TA·j

τ
, 0}. (25)

Then the task for solving problem (6) is turned into solving the dual problem (24),
which has similar advantages as the dual problem (14) and can be solved more
efficiently using smooth optimization techiniques.

3.3. The LDM-SRC algorithm. From above discussions, we can summarize our
main result in the following theorem.

Theorem 3.1. In order to solve the `1 minimization problems in (5) and (6), we
have:

(1) There exists a constant τ̃ > 0, such that for any τ ∈ (0, τ̃ ], the solution of
the noise free `1 minimization problem (5) can be obtained by

x̂∗ = max{−
1 + λ̂∗TA·j

τ
, 0} −max{−

1− λ̂∗TA·j

τ
, 0}, (26)

where λ̂∗ is the solution of the Lagrange dual problem (14).
(2) There exists constants ρ > 0, τ̃ > 0, such that for any τ ∈ (0, τ̃ ], the solution

of the noisy `1 minimization problem (6) can be obtained by

x̂∗ = max{−
ρ+ λ̂∗TA·j

τ
, 0} −max{−

ρ− λ̂∗TA·j

τ
, 0}, (27)

where λ̂∗ is the solution of the Lagrange dual problem (24).

Next we consider how to solve the Lagrange dual minimization problem (14) and
(24). In fact, there are many algorithms in numerical optimization which can be
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used to solve (14) and (24). In this paper, we choose the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [6] for solving the problems because
it can solve large scale unconstrained minimization problems efficiently due to its
moderate memory requirement. The L-BFGS algorithm belongs to the family of
quasi-Newton optimization methods, and it uses a limited memory variation of the
BFGS update to approximate the inverse Hessian matrix. An important feature of
L-BFGS is that it never explicitly forms or stores the Hessian matrix, but maintains
a history of the past updates of the position and gradient.

Based on the BFGS algorithm, we design a practical version of algorithm for
solving (5) and (6) and we call it the LDM `1-solver which is summarized as in
Algorithm 2. For more detailed discussion on convergence of the LDM `1-solver
algorithm, we refer the reader to our previous paper [31]. Note that the algorithm
employs a decreasing sequence {τk} for searching an appropriate value of τ which
can ensure the equivalence between (5) and (14) in the case without noise and that
between (6) and (24) in the noisy scenario. In our practice, we choose the sequence
{τk} as τ0 = 0.005, τ1 = 0.001, τ2 = 0.0005, τ3 = 0.0001, · · · , which works well for
our test problems. For the noisy problems, the parameters ε and ρ are of implicit
correspondence and need to be carefully determined according to the problem. In
our experiments, we first determine these parameters by making different trials for
some testing samples and choose the values which yield the best performance, then
fix them for other testing samples. Additionally, the L-BFGS method is dependent
on a parameter – the number of history iterations kept in memory for computing
Hessian, which we let it be 6 in our experiments.

With the LDM `1-solver algorithm, we now are able to propose an accelerated
LDM-SRC algorithm for face recognition applications, as described in Algorithm 3.

Algorithm 2 LDM `1-solver

1: Input: a matrix A ∈ Rm×n, a vector y ∈ Rm, parameter ρ (only needed for
problems with noise), and a sequence τ (1) > τ (2) > · · · > 0 satisfying τ (k) → 0
as k → ∞.

2: Set k = 1.
3: for k = 1, 2, · · · until a stopping criterion is satisfied do

4: if the problem is the noise free problem (5), then compute λ(k) using the
limited-memory BFGS algorithm to solve problem (14), and let

xk
j = max{−

1 + λTA·j

τ (k)
, 0} −max{−

1− λTA·j

τ (k)
, 0}, j = 1, 2, . . . , n.

5: else if the problem is the problem with noise (6), then compute λ(k) using
the limited-memory BFGS algorithm to solve problem (24), and let

xk
j = max{−

ρ+ λTA·j

τ (k)
, 0} −max{−

ρ− λTA·j

τ (k)
, 0}, j = 1, 2, . . . , n.

end if

6: set k = k + 1.
7: end for

8: Output: the sparse coefficients vector x = xk.

4. Experimental results. In order to show the efficiency of the proposed algo-
rithm, we have tested the algorithm on three benchmark face databases, i.e. the



A FAST `1-SOLVER AND ITS APPLICATIONS ... 173

Algorithm 3 LDM-SRC for Face Recognition

1: Input: a matrix of training samples for k classes

A = [v1,1, . . . ,v1,n1
, . . . ,vk,1, . . . ,vk,nk

] ∈ R(wh)×N

(each column of A is a vectorization of training sample image Ai,il); the class
labels class(p), p = 1, . . . , k; the corresponding class labels label(i) of each train-
ing sample vector A(:, i); a test sample y ∈ R(wh)×1; and an optional error
tolerance parameter ε > 0.

2: Normalize the columns of A to have unit `2-norm.
3: Use the LDM `1-solver in Algorithm 2 to solve the noise free problem (5) or the

problem with noise (6), and obtain the sparse coefficients vector x.
4: Compute the per-class residuals

rp (y) = ‖y −A δp (x) ‖2 for p = 1, . . . , k,

where δp (x) , for p = 1, . . . , k is a vector for the p-th class whose entries are
defined as

for i = 1, . . . , N, δ(i)p (x) =

{

xi, if label(i) is class(p)
0, otherwise.

5: Output: identity(y) = class(p∗), p∗ = arg min
p

rp (y) .

ORL database, the Yale B plus Extended database and the AR database. For com-
parison, two other `1-solvers have been chosen to do the same face recognition test
and they are `1-magic [9] and `1 `s [18].

Regarding the ORL face database, it contains 40 individuals, each with 10 face
images, so totally 400 face images are available; the original image size of the data-
base is 92× 112, and we have cropped it into the size of 90× 90.

Regarding the Yale B plus Extended face database, it contains 38 individuals,
each with many variants of poses and illuminations. In our experiments we adopted
these images with pose of frontal view (corresponding to those with filenames as
’* P00*’) and all illuminations in subset 1 and 2. We crop and resize them into the
size of 90× 90.

Regarding the AR face database, we choose 120 individuals, each with 26 images
available. We also crop and resize them into the size of 90× 90.

All the computations are carried out using MATLAB on a server machine with
Intel(R) Xeon(R) CPU 2.33GHz, 16GB of RAM, Windows Server 2003 Standard
x64 Edition.

The performance of algorithms is evaluated by two criteria: the recognition ac-
curacy R and the average computational time T , and they are defined as

R =
nc

n
, (28)

T =

∑n

i=1 ti

n
, (29)

where n is the total number of testing samples, nc is the number of correctly rec-
ognized testing samples, and ti is the computational time used for recognizing the
ith test sample.

The experiments are divided into two parts. In the first part we use the datasets
without corruption both for training and testing images, and the purpose is to
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Figure 1. Example images from the face databases, from top to
bottom are: ORL, Yale B and Extended, AR.

test the `1 solvers in the noise free case. In the second part we use corrupted
images for testing and images without any corruption for training, and this is to
test the `1 solvers in the case with noise tolerance. In each part, for each database,
three `1 solvers employed by the SRC algorithm are executed separately and their
performance (i.e. R and T ) are recorded.

The experimental results are obtained on the ORL, the Yale B plus Extended
(subset1+subset2), the AR face databases respectively. We show the results in
Figures 2 - 7. In each figure, we show different recognition rates in a table, and
draw the computational time across different image dimensionality in curves.

Figures 2, 3, 4 show the results when the databases are original and noise free. In
this case, the three algorithms tend differently for their computational time when the
image dimensionality increases. It is observed consistently on the three databases
that: among the three `1 solvers, the LDM solver has the least computation time,
following the `1 `s solver is second least, and the `1-magic solver consumes the
most time. Regarding the recognition accuracy, it can be seen that all the three
algorithm have similar recognition rates. To be more precise, the `1 `s solver has the
best recognition rates generally, and the LDM solver has slightly lower recognition
rates but keeps very close to the `1 `s solver, however the `1-magic solver usually
has lower recognition rates than the other two algorithms.

Figures 5, 6, 7 show the results when the testing samples are corrupted by adding
small block noises randomly, and the training images remain original during the test.
From the experimental results, we conclude similarly as previous test: the LDM
solver runs fastest, the `1 `s solver is the second fastest, and the `1-magic solver is
the slowest; the trend of computational time is consistent on all three databases.
Regarding the recognition accuracy, it can be seen that all three algorithms still
maintain reasonable recognition rates, which can be expected. The `1 `s solver
is the best generally, the LDM solver keeps close following it, but the `1-magic
solver is relatively lower than the others. Overall, the recognition rates of all three
algorithms on each databases are similar.

As a result, we conclude that the proposed LDM solver can run much faster while
maintain a comparable recognition performance as other state-of-the-art `1 solvers.
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image sizes `1-magic `1 `s LDM
siz = 20× 20 88.40 90.40 90.00
siz = 30× 30 88.60 89.10 89.00
siz = 40× 40 88.80 89.60 89.50
siz = 50× 50 88.70 89.50 89.50
siz = 60× 60 89.30 89.30 89.50
siz = 70× 70 87.90 89.00 89.00
siz = 80× 80 88.40 89.10 89.00
siz = 90× 90 88.90 89.50 89.10

(a) recognition rates
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Figure 2. Comparison of different `1-solvers on the ORL database

image sizes `1-magic `1 `s LDM
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siz = 30× 30 100.00 100.00 100.00
siz = 40× 40 100.00 100.00 100.00
siz = 50× 50 100.00 100.00 100.00
siz = 60× 60 100.00 100.00 100.00
siz = 70× 70 100.00 100.00 100.00
siz = 80× 80 100.00 100.00 100.00
siz = 90× 90 100.00 100.00 100.00

(a) recognition rates
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(b) speeds vs. dimensionality

Figure 3. Comparison of different `1-solvers on the Yale B plus
Extended database

image sizes `1-magic `1 `s LDM
siz = 20× 20 86.50 90.00 89.90
siz = 30× 30 86.40 90.37 90.13
siz = 40× 40 86.90 90.38 89.96
siz = 50× 50 86.86 90.38 90.10
siz = 60× 60 89.90 90.85 90.25
siz = 70× 70 87.10 90.90 90.55
siz = 80× 80 87.50 91.28 91.09
siz = 90× 90 87.69 91.35 91.15

(a) recognition rates
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Figure 4. Comparison of different `1-solvers on the AR database
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image sizes `1-magic `1 `s LDM
siz = 20× 20 91.00 92.50 91.00
siz = 30× 30 91.00 90.50 89.50
siz = 40× 40 84.50 90.00 90.50
siz = 50× 50 89.00 89.00 89.00
siz = 60× 60 87.00 88.50 89.00
siz = 70× 70 85.50 89.00 89.50
siz = 80× 80 87.00 89.00 89.50
siz = 90× 90 87.00 89.00 89.50

(a) recognition rates
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Figure 5. Comparison of different `1-solvers on the ORL database(with corruptions)

image sizes `1-magic `1 `s LDM
siz = 20× 20 100.00 100.00 100.00
siz = 30× 30 100.00 100.00 100.00
siz = 40× 40 100.00 100.00 100.00
siz = 50× 50 100.00 100.00 100.00
siz = 60× 60 100.00 100.00 100.00
siz = 70× 70 100.00 100.00 100.00
siz = 80× 80 100.00 100.00 100.00
siz = 90× 90 100.00 100.00 100.00

(a) recognition rates
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Figure 6. Comparison of different `1-solvers on the Yale
B+Extended (with corruptions)

image sizes `1-magic `1 `s LDM
siz = 20× 20 75.26 81.95 79.23
siz = 30× 30 75.17 81.96 79.62
siz = 40× 40 75.65 82.05 80.06
siz = 50× 50 76.10 82.26 80.58
siz = 60× 60 76.20 82.65 81.47
siz = 70× 70 76.45 82.90 81.79
siz = 80× 80 76.51 83.18 82.05
siz = 90× 90 77.05 83.33 82.50

(a) average recognition rates

  20x20     30x30     40x40     50x50     60x60     70x70     80x80     90x90   
0

500

1000

1500

2000

2500

3000

size of image

av
er

ag
e 

re
co

gn
iti

on
 s

pe
ed

 fo
r o

ne
 im

ag
e 

(in
 s

ec
on

ds
)

 

 
LDM
l1_ls
l1−magic

(b) speeds vs. dimensionality

Figure 7. Comparison of different `1-solvers on the AR database
(with corruptions)
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5. Conclusions. In this paper, we have proposed an LDM-SRC algorithm for ro-
bust face recognition by using an alternative Lagrange-dual method for solving the
`1 minimization problem. The proposed method is efficient when the number of
data dimension is much larger than the number of training samples. Our experi-
mental results show that the proposed algorithm runs much faster than other two
algorithms while maintaining similar performance for face recognition tasks.
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