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Abstract

Despite lacking genetic evidence of a third cone opsin in the retina of any Australian marsupial, most species tested so far
appear to be trichromatic. In the light of this, we have re-examined colour vision of the tammar wallaby which had
previously been identified as a dichromat. Three different psychophysical tests, based on an operant conditioning
paradigm, were used to confirm that colour perception in the wallaby can be predicted and conclusively explained by the
existence of only two cone types. Firstly, colour-mixing experiments revealed a Confusion Point between the three primary
colours of a LCD monitor that can be predicted by the cone excitation ratio of the short- and middle-wavelength sensitive
cones. Secondly, the wavelength discrimination ability in the wallaby, when tested with monochromatic stimuli, was found
to be limited to a narrow range between 440 nm and 500 nm. Lastly, an experiment designed to test the wallaby’s ability to
discriminate monochromatic lights from a white light provided clear evidence for a Neutral Point around 485 nm where
discrimination consistently failed. Relative colour discrimination seemed clearly preferred but it was possible to train a
wallaby to perform absolute colour discriminations. The results confirm the tammar wallaby as a dichromat, and so far the
only behaviourally confirmed dichromat among the Australian marsupials.
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Introduction

Marsupials have presented us with an unusual case of diversity

in mammalian colour vision, apparently having evolved both

dichromatic and trichromatic species but lacking evidence of a

third photopigment in the latter. Dichromatic colour vision is

based on comparing the responses of two spectrally distinct cone

types whereas trichromatic colour vision is based on three different

cone types. Dichromacy was generally assumed to be the

dominant and ancestral mammalian colour vision system as most

mammals have been found to express a short-wavelength sensitive

pigment in S-cones and a middle-to-long-wavelength sensitive

pigment in M-cones [1]. Early investigations in American

marsupials (Virginia opossum [2]), later supplemented by histo-

logical experiments [3] and by research in Australian marsupials

(tammar wallaby [4], [5], [6]), supported this prevailing viewpoint

that all mammals, other than primates – who possess three distinct

pigments –, are dichromats. A number of more recent publica-

tions, however, have suggested the presence of a third cone type in

the retinae of several Australian marsupials, namely the fat-tailed

dunnart [7–9], honey possum [7], [8], bandicoot or quenda [10],

and quokka [10]. Of these species, the dunnart was the only one

tested in behavioural experiments and demonstrated to be able of

making trichromatic colour discriminations [11]. Intriguingly

though, we are still lacking evidence of the gene that gives rise

to this third cone type [9], [12–15].

The tammar wallaby is so far the only member of the Australian

marsupials studied that has not shown any evidence of

trichromacy, although it is a close relative to the supposedly

trichromatic quokka [10]. In the wallaby, data from immunohis-

tochemistry, physiology, and behaviour are all in agreement with

dichromatic colour vision [4–6], [9]. The present behavioural

study was designed to re-address the question of dichromatic or

trichromatic colour vision in the wallaby by means of monochro-

matic test lights in standardised colour vision tests, similar to

studies in other mammalian species, to rule out the existence of a

small population of previously undetected third cone type. Our

results confirm the wallaby as a dichromat.

Materials and Methods

Animals
Data presented in this paper were collected between February

2008 and February 2010. All experimental procedures were

approved by the Animal Experimentation Ethics Committee of

The Australian National University (permits R.VS.21.06 and

R.VS.26.08 to W. Ebeling). Three young adult tammar wallabies

(Macropus eugenii), two males (Miller and Boris; approx. 9.5 kg) and

one female (Kiwi, approx. 6 kg), were sourced from a breeding
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colony at The Australian National University (permit R.SD.05.07

to L. Marotte). Experiments took place in outdoor enclosures in

which the test animals were fenced off from neighbouring

wallabies by mesh wire. While test animals had ad libitum access

to grass, hay, and fresh water, the experiments provided the only

source of solid food (Ø5 mm horse pellets; Y.S. Feeds Pty Ltd,

Young, New South Wales, Australia). Animals were only handled

for transfers between enclosures and occasional medical checks.

Running automated experiments at night minimised observer

interference and allowed the animals to work during the night

when they are naturally more active. In order to keep external

illumination conditions as constant as possible, experiments always

started after sunset and stopped before sunrise. Within this period,

animals were free to start, pause, resume, and finish participating,

with the exception of a 30-minute power-down interval for the

monochromatic light sources in case the wallaby had been inactive

for at least 30 minutes.

Experimental Setup
A custom-made operant conditioning apparatus, similar to the

one described in [4], was used for all experiments (Figure 1). The

setup was fully automated and could be remotely controlled via

network connection. Experiments could be supervised in real-time

using webcams. The apparatus was positioned in the wallabies’

outdoor enclosures, either under a tarp cover (Experiment 1) or

inside a small shed (dimensions: L 2260 mm6W 1500 mm6H

1800 mm; Experiments 2 and 3). Experiment 1 was conducted in

the dark. Experiments 2 and 3 were conducted under ambient

light (1.661026 W/cm2 sr at the position of the stimuli), provided

by two fluorescent light tubes (Crompton Lighting, Sydney, New

South Wales, Australia) that were mounted inside the shed. Visual

stimuli (Ø50 mm) were back-projected at approximately wallaby

eye height onto two transparent panels separated by gap of

10.5 mm (Experiment 1) or 50 mm (Experiments 2 and 3;

Figure 1) width. Animals indicated their stimulus choice by

pressing against one of the panels, thereby triggering the micro-

switch underneath. As a reward mechanism, food pellets were

delivered into a small feeder bowl below the stimulus panels such

that the animal had to lower its head and take its eyes off the

stimuli while retrieving the reward.

Operant Conditioning
All experiments were based on a two-alternative forced-choice

paradigm with positive reinforcement. Animals were initially

trained to choose a positive white over a negative black stimulus.

Once stimulus discrimination was reliable, coloured stimuli were

introduced. The specific reward rules for particular stimulus pairs

varied with experiments (see below). During training, a correct

response was always rewarded with a short beep and a food

reward whereas an incorrect response triggered a short timeout (3–

15 seconds) during which time the stimulus lights were switched off

and the apparatus became unresponsive. To counter-act a

potential position bias, easy discriminations were repeated until

the animal chose correctly, thus forcing the animals to regularly

switch sides, but only the first choice for each stimulus

combination counted towards the results. To ensure animals were

not frustrated by poor performance, difficult discriminations were

not repeated until a correct response was given. The aim was to

keep the overall performance above 70% correct for first

responses, and discrimination performance was continuously

monitored for judgement of easy and difficult discriminations. In

addition, some stimulus pairs were only tested but not trained

(‘transfer trials’). For such transfer trials, animals did not receive

feedback on their choice (no beep, no food, and no timeout), and

the next stimulus pair was displayed immediately. Transfer trials

were interspersed between normal trials at a default rate of one in

every six trials, unless specified otherwise.

Experimental Design
For all experiments, stimulus presentation was based on a

randomised block design that included equal numbers of

presentations of all training stimulus pairs. Transfer trials were

randomised separately and then inserted at the appropriate

intervals into the training trials. Within each block, each stimulus

pair was presented twice, once as left-positive and once as right-

positive in order to balance against any spatial bias that the

animals might have had. To prevent the wallabies from switching

to a spatial strategy, the left/right position of the positive stimulus

was randomised with the restriction that the positive stimulus was

never shown on the same side more than three consecutive times.

Light Sources and Calibrations
For the LCD monitor used in Experiment 1 (LCD Colour-

Mixing), light intensity of the colour stimuli were measured using a

radiance sensor (ILT1700; International Lights, Peabody, Massa-

chusetts, USA). The spectral sensitivity of the device was calibrated

against a calibrated USB2000+ fibre optics spectrometer (Ocean

Optics, Dunedin, Florida, USA). Spectral measurements were

obtained from the inner 2/3 of a circular stimulus window by

Figure 1. Wallabies readily used the automated operant
conditioning setup for colour vision experiments. Light stimuli
were projected onto diffuser flaps that also served as the trigger when
the animal pushed to indicate a stimulus choice. If correct, a food
reward was delivered into a feeder bowl under the stimuli. Photo
copyright: W. Ebeling.
doi:10.1371/journal.pone.0086531.g001
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measuring from a distance of 50 mm. This procedure allowed us

to convert the intensity readings into relative photon counts and to

calculate the relative stimulus intensities as seen by different visual

pigments with known spectral sensitivity. From this it was possible

to estimate relative excitation ratios for different cone types

(Figure 2). As there is no spectral luminosity function available for

the wallaby and the exact ratio of S- to M-cones is not known, we

estimated perceived intensity to be dominated by the M-cones [5],

[6], [9] and varied the absolute and relative intensity of the light

stimuli.

Monochromatic lights of approximately 15 nm bandwidth (less

for wavelengths above 480 nm) were generated by two xenon light

sources with integrated monochromators (Polychrome V; TILL

Photonics GmbH, Gräfelfing, Bavaria, Germany) and fed through

a Ø1.1 mm optical fibre and a BK7 glass diffuser (double-frosted

W 60 mm6H 60 mm6T 1 mm; Tempotec Optics, Fuzhou,

Fujian, China) onto the stimulus panels (single-frosted BK7 glass,

W 70 mm6H 100 mm6T 3 mm). The light output of the two

monochromators used in Experiment 2 (Wavelength Discrimina-

tion) was matched by scaling according to the absolute peak

intensity reached. For Experiment 3 (Neutral Point), one of the

two monochromators was replaced by the combined output of two

white light sources (Halogen ‘Mikropack’ HL-2000-FHSA 24 V

and LS-1 tungsten halogen 12 V; Ocean Optics, Dunedin,

Florida, USA). The intensity of the white light source in this

experiment could not be adapted dynamically and was always

shown at its maximum intensity. The intensity of the monochro-

mator-generated colour stimuli, therefore, was matched to the

white using the relative stimulus intensity as seen by a 540 nm

pigment. For calibration of the monochromators, an irradiance

detector on the ILT1700 was used in combination with a flat

response filter (International Lights, Peabody, Massachusetts,

USA). Measurements were taken through a black tube at

200 mm distance from the panel, resulting in an aperture angle

of approx. 7 degrees. These measurements were scaled according

to the spectrograph’s spectral sensitivity. To ensure that the animal

was not trained to use intensity as a cue where the monochromatic

stimuli were not perfectly intensity-matched to the white, colours

were presented at 50%, 75%, 100%, 150% or 200% of the

intensity of the white light. Exceptions from this were as follows:

450 nm could only be produced at matched intensity, and 460 nm

could only be shown at 75%, 100%, and 150% intensity.

Experiment 1: LCD Colour-Mixing
The aim of this experiment was to find out whether one of the

three primary LCD colours could be matched by a combination of

the other two colours. Each colour produces a certain cone

excitation ration which underlies colour perception. As colours of

the same cone excitation ratio are indistinguishable for the animal,

matching a particular excitation ratio leads to a Confusion Point.

In case all such matches can be achieved with only two colours,

such a Confusion Point is indicative of the one-dimensional colour

space (excluding brightness) of a dichromat, whereas three colours

have to be combined to match all colours in trichromatic species

[16]. For example, the effect of adding a long-wavelength light to a

grey light can, therefore, be mimicked by removing some of the

blue light from grey for dichromats.

Stimuli were presented on a LCD monitor (740B, Samsung,

Seoul, South Korea), placed flush against a black board with

circular Ø50 mm cut-outs just behind the two stimulus panels

(single-frosted Perspex, W 70 mm6H 100 mm6T 3 mm).

For all experimental constellations (Tests 1, 2, and 3; see below),

the three animals were trained in a basic relative colour

discrimination task by rewarding choice of colours with a higher

estimated M/S-cone excitation ratio. For instance, a ratio of x

implies the x-times stronger excitation of M-cones than of S-cones.

Red stimuli (RGB percentage values [80/40/40], [70/40/40],

and [60/40/40]) were rewarded over blue stimuli (RGB= [40/

40/80], [40/40/70], and [40/40/60], respectively) and grey

stimuli (RGB= [40/40/40]). The choice of green (RGB= [40/80/

40], [40/70/40], and [40/60/40]) was rewarded over blue

(RGB= [40/40/80], [40/40/70], and [40/40/60], respectively).

To test the Confusion Points between the three primary channels

of the LCD monitor, transfer trials were included at a rate of one

every six to ten trials. Test 1 compared a red (RGB= [80/40/40])

against a grey stimulus (RGB= [40/40/40]) with an increasing

contribution of green. The question was whether the wallabies

would ever confuse the green and the red stimuli, and how much

green would have to be added to the grey for this to happen. The

RGB values for the green stimulus ranged from RGB= [40/40/

40] to [40/65/40] for wallaby Miller or from RGB= [40/40/40]

to [40/58/40] for Boris and Kiwi. Test 2 compared the same red

(RGB= [80/40/40]) against a grey (RGB= [40/40/40]) with

decreasing amounts of blue contribution (from RGB= [40/40/40]

to [40/40/05] for Miller or from RGB= [40/40/40] to [40/40/

20] for Boris and Kiwi). Test 3 was only carried out with wallaby

Miller as the monitor had suffered thunderstorm damage and

could not be replaced in time to continue experiments with

wallabies Boris and Kiwi. This test compared a green (RGB= [40/

65/40]) against a grey stimulus (RGB= [40/40/40]) with a

decreasing blue component from RGB= [40/40/35]. The

prediction for all three tests was that a Confusion Point existed

where the wallabies would not be able to distinguish between the

two differently coloured lights and that there would be a reversal of

preference, leading the wallabies to avoid the colour that was

preferred during training. The Confusion Point was determined as

the 50% performance mark intersecting with a second order

polynomial interpolation of the data points. Across all stimuli

presented in these three tests, stimulus brightness varied between

1.2–261024 W/cm2sr such that there was no consistent cue that

would have allowed the animals to base their choices on

brightness.

Figure 2. Conversion of measured LCD signals into M2/S-cone
excitation ratios. Calibration of the three primary channels of the LCD
monitor – red, green, and blue – made it possible to estimate the
response strengths of M- and S-cones to any given colour signal and
calculate the M2/S-cone excitation ratio.
doi:10.1371/journal.pone.0086531.g002
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Cone responses were calculated according to:

Qi~l

ð
Ri(l)I(l)dl

with i=2 for a dichromatic system, Qi=quantum catch of

receptor i, Ri(l)= spectral sensitivity of receptor i, I(l)= spectral

distribution of light stimulus, integrating over the visible spectrum

[16], [17].

Experiment 2: Wavelength Discrimination
In this experiment, also called ‘Minimum Delta Lambda’, the

wallaby’s ability to discriminate two wavelengths across a range of

wavelengths was tested as the shape and extent of the discrimi-

nation space is indicative of how many spectrally distinct

photoreceptors contribute to colour perception. Spectral discrim-

ination ability was determined for seven so-called ‘centre

wavelengths’ between 420 nm and 540 nm at 20 nm intervals.

Intensities at these wavelengths were matched based on M-cone

intensity (assuming a 540 nm pigment) but always presented at

40% Michelson contrast (i.e. difference over the sum) to mitigate

effects of mismatching. We interspersed non-reinforced intensity

tests at a rate of one in every 20 trials, presenting the centre

wavelength at 40% contrast against itself, to ensure stimulus choice

was not based on stimulus intensity. In all other stimulus pairs,

however, the centre wavelength was never shown but instead the

centre wavelength +/216 nm, 8 nm, 4 nm, 2 nm, and 1 nm were

compared. This is equivalent to wavelength differences (Dl) of
32 nm, 16 nm, 8 nm, 4 nm, and 2 nm, respectively. Choice

frequencies were plotted against the respective centre wavelength.

Wallaby Boris was initially trained to a relative wavelength

discrimination task, being rewarded for choosing the monochro-

matic colour with the longer wavelength for centre wavelengths

460 nm, 480 nm, and 500 nm at Dl=32 nm. The training

regime was adjusted dynamically for other centre wavelengths and

for other Dl values as soon as performance at the specific centre

wavelength or Dl value was better than 80% correct overall in at

least three consecutive nights.

Experiment 3: Neutral Point
The so-called Neutral Point represents the wavelength of a

monochromatic light that is, for a dichromat, indistinguishable

from a broadband white light. The exact position of the Neutral

Point depends on the spectral composition of the white light. The

logic of this experiment was therefore similar to the LCD Colour-

Mixing experiment in that we tested whether one colour could be

simulated by a combination of others. To allow for switching of

the position of the positive stimulus, the fibre tips were mounted in

a rotatable bar. In order not to provide any clues to the animals as

to whether or not the positive stimulus had moved or stayed on the

same side, the bar performed two 90 degree turns before every

trial, with the second of these rotations – from the vertical to the

horizontal – positioning the lights according to the specific trial. A

shutter blocked all light output during switching.

Wallaby Miller was initially trained to prefer monochromatic

colour stimuli over the white light. The colour stimuli varied

between 490 nm and 540 nm, presented at 10 nm intervals. If

wallabies were indeed dichromats, this experiment is effectively a

relative colour discrimination task with the choice of colours with a

higher M/S cone excitation ratio (compared to the Neutral Point)

being rewarded. Wavelengths 483 nm–488 nm (at 1 nm intervals)

were included as transfer trials at a rate of one in every three trials

as it was not clear how a dichromat would perceive these colours

relative to white (Neutral Point), and no choices were rewarded or

punished. Data were collected over three consecutive nights.

The wavelength range was then shifted to short wavelengths

(450 nm–480 nm) and, at the same time, the training regime

changed to reward choices of white over monochromatic colour

stimuli. Note that, at this point, a trichromat would have to re-

learn that white is now positive whereas before it was negative. A

dichromat, on the other hand, could simply continue to choose the

colour with the higher M/S cone excitation ratio. Wavelengths

483 nm–488 nm were again treated as transfer trials.

After completion of this task, the regime was changed again to

reward of the choice of monochromatic colour stimuli over white,

as in the initial training. This time, however, the range of tested

wavelengths remained unchanged (450 nm–490 nm). Wave-

lengths above 484 nm were transfer trials at a rate of one in

every four trials. Note that, in this case, both dichromats and

trichromats would have to change their decision criteria. After the

wallaby had learnt this new task, the wavelength range was finally

expanded to include all wavelengths from 430 nm–540 nm. The

only way to solve this task is to employ an absolute discrimination

rule. Stimuli 481 nm–488 nm were non-reinforced transfer trials

as a dichromat may not be able to achieve some of these

discriminations.

Statistics
An online binomial calculator was used (http://stattrek.com/

online-calculator/binomial.aspx) to determine if the animal’s

response to a specific stimulus pair differed from the 50% chance

level. In the analysis of brightness effects, Fisher’s Exact Test was

used to determine whether two choice frequencies were signifi-

cantly different (http://www.langsrud.com/fisher.htm; [18]).

Results

Experiment 1: LCD Colour-Mixing
The cone excitation ratio (CER) of the reference stimulus was

calculated from its RGB values and the monitor calibration

(Figure 2), and a range of suitable test pairings were determined to

include this reference CER. The animals’ responses were analysed

and plotted both against the monitor’s LCD values (Figure 3A–C)

and against the M/S-CER of the test stimulus (Figure 3D–F).

Having been trained to prefer ‘reddish’ stimuli (RGB= [80/40/

40], CER=5.02) over a grey stimulus (RGB= [40/40/40];

CER=3.6), discrimination was very high and accurate (squares

in Figure 3A,C; 86.93% correct, n = 566, P,0.0001). Discrimi-

nation performance of all three animals changed strongly as more

green light was added to the grey (Test 1). At either end of the

range of test stimuli, responses were significantly different from

chance (green LCD values 42, 44, 46: n= 281, all P,0.001; green

LCD values 60 and 65: n= 209, P,0.0001), revealing a reversal of

stimulus preference from the reference to the test stimulus. At

intermediate values of green (LCD values 48, 50, 55: n= 291,

P.0.05), choice performance was indistinguishable from chance –

with the exception of the first animal tested (Miller) where the test

stimuli did not match the Confusion Point and, coincidentally, all

results were significantly different from chance. The reversal of the

animal’s preference, however, clearly indicates the existence of the

Confusion Point. A second order polynomial fit was used to

determine its location as the intersection with the 50% mark. This

Confusion Point very closely matched the CER of the reddish

training stimulus (vertical dashed line in Figure 3D,E), suggesting

that the wallabies indeed based their choices on the CER. The

same conclusion can be drawn when reducing the blue component

of the grey reference light (Test 2) when it is compared against the

Dichromacy in Wallabies
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Figure 3. Colour-mixing experiments yielded Confusion Points for various RGB colour combinations. Choice frequencies of the
reference stimulus (red in Test 1, A and D; red in Test 2, B and E; green in Test 3, C and F) are presented as a function of a gradually varied colour
composition of a test stimulus (green in Test 1, A and D; blue in Test 2, B and E; blue in Test 3, C and F). (A–C) The animals’ stimulus preference
reversed, intersecting the 50% mark which was defined as the Confusion Point. (D–E) Converted into excitation ratios of M/S-cones, the data reveal a
match between CER for both test and reference stimulus at the Confusion Point (dashed vertical lines).
doi:10.1371/journal.pone.0086531.g003
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same ‘reddish’ stimulus (Figure 3B,E). For the condition where

blue and green were traded off (Test 3), the reversal was also

significant for the one animal tested (Figure 3C,F) at either end of

the test stimuli (5, 10, 15, 18: n= 382, P,0.001; 25, 30, 35:

n = 224, P,0.04).

Stimuli across the tested colour range differed in brightness but

preference of either end of the range did not align with this

variation in stimulus brightness. In Test 1, for instance, the

preferred green test stimulus was brighter than the red reference,

whereas in Test 2, the preferred blue test stimulus was darker than

the reference.

All results presented here were obtained from non-reinforced

transfer trials.

Experiment 2: Wavelength Discrimination
Data from the Wavelength Discrimination experiment (or

‘Minimum Delta Lambda’) show a clear peak of choice frequency

for the positive stimulus around 480 nm (Figure 4A) for all

wavelength differences, or delta lambda values (Dl), except the
smallest (Dl=2 nm). Discrimination performance was generally

better for larger Dl and worse for the shorter and longer

wavelengths of the tested range. Many of the lower choice

percentages, however, were still significantly different from chance

due to the large sample sizes achieved for some of the pairings (e.g.

for Dl 32 nm at 420 nm: n= 396, P= 0.004; and for Dl 32 nm at

520 nm: n= 714, P= 0.01). As Dl between test stimuli decreased

from 32 nm to 8 nm, the curves narrowed around peak

performance at 480 nm. Discrimination performances at centre

wavelengths 480 nm and 500 nm with Dl=2 nm were only just

significant (n = 47, P= 0.03 and n= 81, respectively; P= 0.02).

Sample sizes were much lower because these difficult discrimina-

tions were less frequently presented to mitigate frustrating the

wallaby.

It is not clear why there is a significant discrimination at centre

wavelength 520 nm for stimuli that differed by 8 nm (i.e. 516 nm

vs 524 nm) where the animal showed a preference for the non-

rewarded stimulus (n = 274, P,0.0001).

To prevent the wallaby from exploiting potential small

differences in brightness, stimuli were never shown at ‘matched’

brightness, but always differed in brightness by 40% to make it

very difficult to use these differences to consistently distinguish

between different colours. Control experiments (transfer trials with

no difference in wavelength, i.e. Dl=0 nm) revealed small effects

in the wallaby’s choice performance (Figure 4B), none of which

were statistically significant though. These effects were generally

less than 10% and not constant across wavelengths. The balanced

design of the experiment with respect to brightness meant that

positive and negative stimuli were equally often brighter or darker

and assured that the brightness bias for some of the stimuli did not

significantly contaminate the results (squares in Figure 4B). A small

bias may however, remain, possibly explaining some of the small

but significant choice performances. Similarly, there was a small

and again both inconsistent and insignificant effect with regard to

the monochromator that happened to present the stimulus of the

wallaby’s choice (circles in Figure 4B).

The wavelength discrimination data shown in Figure 4A were

converted to a Minimum-Delta-Lambda function by taking the

lowest Dl at each centre wavelength that still yielded a significant

result. At the outer ranges of centre wavelengths where even the

largest wavelength difference, Dl=32 nm, remained insignificant

in our experiment, the curves were extrapolated towards

Dl=64 nm for illustration purposes. The resulting curve shows

a single distinct trough around 460 nm to 480 nm (Figure 4C)

Figure 4. Wavelength discriminability is restricted to a
relatively narrow spectral range. (A) For a wallaby, discriminating
between two monochromatic stimuli that differed in wavelengths
between 2 nm and 32 nm was only reliable in the range between
460 nm and 500 nm where performance consistently exceeded 60%
correct responses. Performance was best at centre wavelength 480 nm
with significant discrimination ability down to 4 nm wavelength
difference, i.e. presentation of the stimulus pair 478 nm vs 482 nm.
There is an indication at centre wavelengths 480 nm and 500 nm that
the wallaby was able to discriminate stimuli that only differed by 2 nm,
but these data were based on much smaller sample sizes. (B) Choice
frequencies in non-reinforced brightness test trials (Dl= 0 nm, samples
sizes in Italics) were affected by differences in stimulus brightness

Dichromacy in Wallabies
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where a discrimination ability of Dl=4 nm was observed. Outside

of this narrow range, discrimination dropped off very steeply.

Experiment 3: Neutral Point
This experiment was designed to identify whether there is a

monochromatic light that wallabies cannot distinguish from a

broadband white light. Such a Neutral Point exists only for

dichromats (see [16] for a review). The initial training exploited

the wallabies’ natural tendency to perform relative discrimination

of two colours, in this case with white being the negative stimulus

against 480 nm–540 nm monochromatic lights.

The data from three consecutive nights (Figure 5A) show that

discrimination performance was very high for wavelengths above

488 nm (.86% correct; n = 1051, all P,0.0001). For shorter

wavelengths, performance dropped dramatically, reaching chance

level for wavelengths of 486 nm and 487 nm (56.1% and 50%

correct, respectively; P.0.4), before choice preference actually

reversed as wavelengths decreased to 485 nm (P= 0.0519),

484 nm (P= 0.0247), and 483 nm (P,0.0001). Stimulus choice

was not reinforced at transfer trial wavelengths 483 nm–488 nm.

This pattern is consistent with the hypothesis that discrimination is

based on the M/S-CER in a dichromatic colour vision system in

that the white light would have to excite the cones at a similar ratio

as monochromatic wavelengths of 485 nm–487 nm.

The colour range was then shifted to wavelengths below the

expected Neutral Point, displaying stimuli between 450 nm–

490 nm of which wavelengths 484 nm–490 nm were non-

reinforced transfer trials (Figure 5B), with white now being the

positive stimulus. To a trichromatic human observer, this

effectively meant a reversal from ‘white negative’ to ‘white

positive’. For a dichromat, performing a relative colour discrim-

ination task, however, the reward paradigm did not actually

change, and the choice of the stimulus that produces a lower M/S-

CER still led to correct responses in most cases. Already during the

first night of the new task, the animal readily chose (and was

rewarded for) white in over 70% of cases (n = 355, P,0.007).

Performance was at chance level for transfer trial wavelengths

above 484 nm with a trend that colour stimuli above 486 nm were

preferred over white (but significant only for 486 nm, P= 0.0075).

In an attempt to train the wallaby to make absolute rather than

relative colour discriminations, the reward scheme was reversed

such that short wavelength monochromatic colour stimuli were

rewarded over white across a wavelength range that included the

Neutral Point (450 nm–490 nm) with wavelengths 483 nm–

490 nm set as non-reinforced transfer trials. This reversal led to

a major decline in the animal’s performance which hardly

deviated from the 50% mark for two weeks. Once overall choice

frequencies of 70% correct responses were reached again,

meaning the task had been learnt, data were collected over three

consecutive nights (Figure 5C) in which the wallaby chose all

colours both below 475 nm (.61.5% correct responses) and above

488 nm (.77.4% correct responses) when presented against white

light (n = 911, P,0.02). Choice frequencies between 480 nm and

487 nm were not significant (39.3%–57.6% correct; P.0.29).

Despite four of these stimuli (480 nm–483 nm) being reinforced

training trials, requiring the animal to correct an initial wrong

choice, performance remained at chance level. This pattern of

results is no longer aligned with a relative discrimination strategy

but indicative of an absolute discrimination task as colours on both

sides of the proposed Neutral Point were preferred over the white

light.

Choice frequencies continued to show evidence of absolute

discrimination as the tested wavelength range was extended to

include longer wavelengths (430 nm–540 nm). The performance

curve (Figure 5D), with data collected over six consecutive nights

(n = 1439), shows a distinct drop in performance around the

predicted Neutral Point. All wavelengths below 475 nm (.74.1%

correct responses; P,0.0001) and above 484 nm (.67.4% correct

responses; all P,0.04) were successfully discriminated from white.

The range containing the Neutral Point, i.e. the wavelength of

50% choice frequency, appears to lie between 480 nm–483 nm.

In the presentation protocol, each monochromatic colour

stimulus was included to be presented against the white light at

an either darker brightness level (50% or 75%), at matched

brightness (100%) or brighter (150% and 200%) than the white

equally often. In none of the four stages of the Neutral Point

experiment (Figure 5A–D) did the brightness level systematically

affect choice frequency of the colour stimuli (Figure 5E), and

choice frequencies at different intensities were not significantly

different.

This series of experiments provided an indication of the

presence of a Neutral Point at 484 nm–487 nm by relative

discrimination (Figure 5A,B) or 480 nm–483 nm by absolute

discrimination (Figure 5C,D) and, ultimately, of wallabies being

dichromats.

Discussion

The results of all three paradigms, obtained from three animals

(two males and one female) on two different experimental setups

are clearly consistent with the hypothesis that the tammar wallaby

has a dichromatic colour vision system. In Experiment 1– LCD

Colour-Mixing, the cone excitation ratio (CER) of two competing

stimuli of different colour composition were well predicted and

matched a dichromatic colour vision system with spectral

sensitivities as previously described for the wallaby [4–6].

Experiment 2– Wavelength Discrimination provided the first so-

called ‘Minimum Delta Lambda’ function for a marsupial and

highlighted the narrow range of good colour discrimination ability

in the wallaby, as is typical for a dichromat. The results from

Experiment 3– Neutral Point offer the strongest evidence in that

we clearly identified a narrow range of wavelengths where white

light is not distinguished from a monochromatic colour by the

wallaby. The automated nature of the experiments allowed us to

produce very high sample sizes for reliable statistical confirmation

of our results.

The strength of the LCD Colour-Mixing experiment was the

close match of predicted and behavioural Confusion Points.

Confusion Points were predicted by converting the M- and S-cone

peak spectral sensitivities (M-cones 540 nm and S-cones 420 nm;

see [4]) into excitation ratios of these two cone types. The reversal

of choice preference aligned closely with the CER of reference and

test stimuli in all three stimulus constellations and in all three

animals (Figure 3A–F).

For a trichromatic human observer, the colour of the test

stimulus in the LCD Colour-Mixing experiment also changed, but

it was always distinctly different from the constant reference

stimulus, and there was no sense of a Confusion Point or stimulus

reversal across the range of test stimuli. Given the low ambient

(squares) and by stimulus presentation by two monochromatic light
sources (circles) but did not reveal a consistent pattern across
wavelengths. (C) The Minimum Delta Lambda function for the wallaby
exhibits a narrow, single-trough shape. The ability to discriminate
between lights that differ in wavelength by 16 nm or less was restricted
to a narrow spectral range between 440 nm and 500 nm (significant
results denoted by crosses, insignificant measurements included as
dots).
doi:10.1371/journal.pone.0086531.g004
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Figure 5. Discriminability in the wallaby shows a Neutral Point where white is indistinguishable from colour stimuli. Open symbols
represent non-reinforced transfer trials. Crosses denote statistical significance ,5%. (A) Responses when choice of the coloured light was rewarded
over the white light for colours above 480 nm (n= 1051). Choices at wavelengths 485 nm–487 nm were not significant, indicated by the grey vertical
bar. (B) Responses when the wavelength range was shifted to 450 nm–490 nm and choice of white was rewarded over colour stimuli. Performance
was not significant for wavelengths 484 nm and 485 nm, as well as 487 nm, 488 nm, and 490 nm (n= 355). The possible range containing the Neutral
Point is indicated by the grey vertical bar. (C) Colour discrimination performance after a reversal in reward rules for the wavelength range 450 nm–
490 nm (n= 911). The choice of short-wavelength monochromatic stimuli was rewarded over white. The preference of colours over the white light on
both sides of the proposed Neutral Point (grey bar) indicates the use of an absolute colour discrimination rule. (D) Colour discrimination over an
extended wavelength range of 430 nm–540 nm where choice of the colour stimuli was rewarded over white. Responses show that monochromatic
lights could be discriminated from white light for both short and long wavelength colours (n = 1439), but not for colours around 4850 nm–483 nm.
(E) Responses in the Neutral Point experiment were independent of stimulus brightness. Average choice frequencies did not change systematically
with the brightness level at which the colour stimulus was presented against the white light in any of the four experimental stages A–D. Italic
numbers give sample sizes per data point.
doi:10.1371/journal.pone.0086531.g005
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light in the wallaby enclosure at the time of experiment, rod

intrusion could have occurred, irrespective of the brightness of the

stimulus colours. If a 500 nm pigment had contributed to colour

vision, however, the wallabies would have been expected to

behave more like a trichromat than a dichromat.

Our results in the Wavelength Discrimination experiment

revealed a narrow range of discriminable wavelengths (440 nm–

500 nm; Figure 4A) that strongly suggests wallaby colour vision

being based on two, rather than three (or more) cone types. In the

peak discriminability range of 460 nm–480 nm, the wallaby was

capable of telling apart stimuli differing by 4 nm or even less

which is in agreement with [4] who predicted that wallabies were

able to discriminate wavelengths of 3 nm difference or less. A limit

of about 2 nm also agrees well with the results from the Neutral

Point experiment: the width of the performance drop around the

Neutral Point was in the order of a 2–3 nm. The accuracy of our

monochromatic light sources did not allow us to test differences

below 2 nm but performance at 2 nm was already very poor.

While the precise characteristics of the ‘Minimum Delta Lambda’

curve remain species-specific, its global shape with a single trough

agrees much better with data from dichromatic species (Figure 6;

tree squirrel [19]; dog [20]) than with trichromatic primate species

[21]. ‘Minimum Delta Lambda’ curves of wallaby, squirrel, and

dog all display a narrow range with discrimination ability below

Dl 35 nm for wavelengths 440 nm to 550 nm only, dropping off

sharply to either side. In contrast, both humans and chimpanzees

are able to reliably discriminate wavelengths above 540 nm and

up to 640 nm.

The Neutral Point experiment represents not only an extraor-

dinarily accurate measurement of the dichromatic Neutral Point

but also the first attempt to exploit both relative and absolute

colour discrimination techniques in the wallaby. Both paradigms

yielded virtually identical results. There clearly exists a mono-

chromatic colour that the wallaby was not able to distinguish from

the white light. The animal was able to learn and adapt its

behaviour according to the task it was given. Having learnt a

reversal of preference for the white (Figure 5B), the wallaby

managed to switch from a relative discrimination task to an

absolute discrimination task (Figure 5C,D), but it was never able to

distinguish white light from monochromatic lights between

480 nm–483 nm, despite thousands of trials. In another experi-

ment, not included here, it was attempted to train an animal to a

simple absolute colour discrimination, without prior relative

discrimination training: the same white light was presented against

either a longer-wavelength stimulus (i.e. above the Neutral Point,

with a higher cone excitation ratio) or a shorter-wavelength

stimulus (i.e. below the Neutral Point, with a lower cone excitation

ratio), rewarding the choice of white in both stimulus combina-

tions. The attempt failed, despite hundreds of trials, further

supporting the conclusion that for dichromats – while possible –

relative colour discrimination was preferred over absolute. The

existence of the Neutral Point is a distinct characteristic of the

dichromatic colour space (e.g. [16]), however, the precise location

is dependent on the spectral properties of the reference broadband

stimulus. There is no evidence to assume that the colour at the

Neutral Point was of a special quality to the dichromatic observer

or that it divides the colour spaces above and below the Neutral

Point [4], [22].

Building on a previous experiment with wallabies and

confirming its prediction of a Neutral Point between 480 nm–

490 nm [4], the current study pin-points the Neutral Point to a

very narrow range of indistinguishable wavelengths: 484 nm–

487 nm (relative discrimination) or 480 nm–483 nm (absolute

discrimination). This compares to Neutral Points of around

500 nm in the tree squirrel [19] and around 480 nm in the

guinea pig [23], dog [20], and horse [24], [25]. Variations in the

precise location of the Neutral Point are due to the spectral

composition of the reference white and the spectral sensitivity of

the cone types.

Conclusions

Our results consistently confirm the tammar wallaby as a

dichromat. This matches previous immunohistochemical [5], [9]

and behavioural studies [4], despite the fact that its close relative –

the quokka – appears to have three different cone types, according

to microspectrophotometry and anatomy results [10]. There is also

evidence that the common brushtail possum, a nocturnal

Australian marsupial more distantly related to the wallaby, is a

dichromat with only two cone types identified by immunohisto-

chemistry (L. Vlahos; unpublished data). These results are further

in agreement with data from South-American opossums –

marsupials that branched off very early within the lineage – that

strongly suggest these species, too, to only have two cone types [3],

[14]. In the absence of molecular evidence for a third cone opsin

class [9], [12], [13], [15] and given the uncertainty of rod intrusion

having potentially confounded the behavioural experiments in the

fat-tailed dunnart [11], there is a definite need to further

investigate the colour vision abilities of Australian marsupials by

replicating the behavioural experiments with the dunnart and

extending these to other marsupials. This will clarify whether these

animals are indeed cone trichromats or not.
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3. Ahnelt PK, Hokoc JN, Röhlich P (1995). Photoreceptors in a primitive mammal,

the South American opossum, Didelphis marsupialis aurita: Characterization with
anti-opsin immunolabeling. Vis Neurosci 12: 793–804.

4. Hemmi JM (1999). Dichromatic colour vision in an Australian marsupial, the
tammar wallaby. J Comp Physiol A 185: 509–515.

5. Hemmi JM, Grünert U (1999). Distribution of photoreceptor types in the retina

of a marsupial, the tammar wallaby (Macropus eugenii). Vis Neurosci 16: 291–302.
6. Hemmi JM, Maddess T, Mark RF (2000). Spectral sensitivity of photoreceptors

in an Australian marsupial, the tammar wallaby (Macropus eugenii). Vision Res 40:
591–599.

7. Arrese CA, Hart NS, Thomas N, Beazley LD, Shand J (2002). Trichromacy in
Australian Marsupials. Curr Biol 12: 657–660.

8. Arrese CA, Rodger J, Beazley LD, Shand J (2003). Topographies of retinal cone

photoreceptors in two Australian marsupials. Vis Neurosci 20: 307–311.
9. Ebeling W, Natoli RC, Hemmi JM (2010). Diversity of Color Vision: Not All

Australian Marsupials Are Trichromatic. PLoS ONE 5 (12): e14231.
10. Arrese CA, Oddy AY, Runham PB, Hart NS, Shand J et al. (2005). Cone

topography and spectral sensitivity in two potentially trichromatic marsupials,

the quokka (Setonix brachyurus) and quenda (Isoodon obesulus). Proc R Soc Lond B
272: 791–796.

11. Arrese CA, Beazley LD, Neumeyer C (2006). Behavioural evidence for
marsupial trichromacy. Curr Biol 16: R193-R194.

12. Cowing JA, Arrese CA, Davies WL, Beazley LD, Hunt DM (2008). Cone visual
pigments in two marsupial species: the fat-tailed dunnart (Sminthopsis crassicaudata)

and the honey possum (Tarsipes rostratus). Proc R Soc Lond B 275: 1491–1499.

13. Deeb SS, Wakefield MJ, Tada T, Marotte L, Yokoyama S et al. (2003). The

Cone Visual Pigments of an Australian Marsupial, the Tammar Wallaby

(Macropus eugenii): Sequence, Spectral Tuning, and Evolution. Mol Biol Evol 20:

1642–1649.

14. Hunt DM, Chan J, Carvalho LS, Hokoc JN, Ferguson MC et al. (2009). Cone

visual pigments in two species of South American marsupials. Gene 433: 50–55.

15. Strachan J, Chang L-YE, Wakefield MJ, Marshall Graves JA, Deeb SS (2004).

Cone visual pigments of the Australian marsupials, the stripe-faced and fat-tailed

dunnarts: Sequence and inferred spectral properties. Vis Neurosci 21: 223–229.

16. Kelber A, Vorobyev M, Osorio D (2003). Animal colour vision – behavioural

tests and physiological concepts. Biol Rev 78: 81–118.

17. Vorobyev M, Osorio D, Bennett ATD, Marshall NJ, Cuthill IC (1998).

Tetrachromacy, oil droplets and bird plumage colours. J Comp Physiol A 183:

621–633.

18. Upton GJG (1992). Fisher’s Exact Test. J R Statist Soc A 155: 395–402.

19. Blakeslee B, Jacobs GH, Neitz J (1988). Spectral mechanisms in the tree squirrel

retina. J Comp Physiol A 162: 773–780.

20. Neitz J, Geist T, Jacobs GH (1989). Color vision in the dog. Vis Neurosci 3: 119–

125.

21. Jacobs GH (1981). Comparative color vision. New York: Academic Press. 209 p.

22. Roth LSV, Balkenius A, Kelber A (2007). Colour perception in a dichromat.

J Exp Biol 210: 2795–2800.

23. Jacobs GH, Deegan JF II (1994). Spectral Sensitivity, Photopigments, and

Colour Vision in the Guinea Pig (Cavia porcellus). Behav Neurosci 108: 993–1004.

24. Carroll J, Murphy CJ, Neitz M, Ver Hoeve JN, Neitz J (2001). Photopigment

basis for dichromatic colour vision in the horse. J Vision 1: 80–87.

25. Geisbauer G, Griebel U, Schmid A, Timney B (2004). Brightness discrimination

and neutral point testing in the horse. Can J Zool 82: 660–670.

Dichromacy in Wallabies

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e86531


