

Copyright © 2005 IEEE

Reprinted from:

2005 3rd IEEE International Conference on Industrial Informatics
(INDIN) Perth, Australia 10-12 August 2005

IEEE Catalog Number ISBN 05EX1057
ISBN 0-7803-9094-6

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of Curtin University of
Technology's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

2005 3rd IEEE International Conference on Industrial Informatics (INDIN)

Comparison of Web Service Architectures Based on Architecture
Quality Properties

Chen Wu and Elizabeth Chang
School of Infornation Systems, Curtin University of Technology

Perth, Australia
{chen.wu, elizabeth.chang} @cbs.curtin.edu.au

Abstract - Web service research has been focused on the
issues of automatic binding, performance, scalability,
and security, however, little research has been done in
evaluation of web service architectures, namely Broker
based. Examples of these are Matchmaker Broker,
Layered Matchmaker, Facilitator, Layered facilitator,
and Peer to peer (P2P) based, such as P2P Discovery,
Match Maker and P2P, Split Code and P2P execution,
Mobile Code with P2P etc. Another consideration is its
impact on the adoption in distributed Internet
environment. In this paper we introduce a methodology
for measuring and evaluating web service architecture
style, and we present our development of a set of
architectural quality properties, and use these quality
properties to carry out comparison and contract of
current web services architectures. We provide a
detailed analysis and critique of these, and these could
be served as a guidelines for the next generation of web
services development, which could adopted into the
distributed environment

I. INTRODUCTION

While a large number of enterprises are now developing
web services technologies (e.g. WSDL, SOAP, UDDI) to
build information systems[l], the majority of the adoption
of current web services only occur on Intranets rather than
on the Internet, where formal 'Web Services' originated.
One of the underlying reasons for this approach is that the
true nature of web services adoption challenges has been
relatively unstudied. It has been addressed using either the
WS-* standards enhancement or the detailed work-around
solution, rather than the rigorous software architectural
approach established by formal software engineering
discipline. Therefore, in this paper, we investigate and
review state-of-the-art architectural styles, and evaluate
them against those well-identified quality architectural
properties. The major contributions of our research in this
paper lie in four folds:
* We introduce a methodology of measuring and

evaluating architecture styles for web services;
* We identify key architectural properties related to

quality aspects of web services architecture;
* We summarize nine web services architectural styles in

current literature; and

* The evaluation analysis result delivers useful decision
support for web services architect.

This paper is organized as follows: Section 2 introduces
the architectural methodology used in this research. In
section 3, we summarize the architectural properties against
which our evaluation and comparison work can be
achieved. Sections 4 and 5 explore two different categories
of common architectural styles used in academia and
industry. Formal comparative evaluation studies of these
architectural styles are discussed in Section 6. Conclusion
and future prospects for future work are provided in Section
7.

II. ARCHITECTURAL MEASUREMENT AND EVALUATION

The early comprehensive research about software
architecture can be found in Perry and Wolf [2]. They built
the foundation for software architecture, and presented a
model consisting of three components: elements (what?),
form (how?), and rationale (why?). Based on Perry and
Wolf [2] data-centric and property-based approach,
Fielding [3] further described that 'software architecture is
defined by a configuration of architectural elements
constrained in their relationships in order to achieve a
desired set of architectural properties'. Architectural
properties define the minimum 'load-bearing wall' of the
architecture design based on system requirements
(functional or non-functional, e.g. quality), which in turn
constrains the overall architectural design.

It is worth noting that non-functional properties are often
ignored in architectural design [4]. Nevertheless, we believe
it is such non-functional requirements, quality properties in
particular, that make tremendous difference between a
system that 'just works' and one that 'works well' [5]. In
this paper we focus on identifying intrinsic quality-based
architectural properties inherent in Internet-wide distributed
web services systems. The use of patterns and styles is
pervasive in software discipline to leverage past experience
in order to produce better designs. Software architectural
style encapsulates important decisions about the
architectural elements, and it emphasizes important (not
necessarily more) constraints on the elements and their
relationships.

0-7803-9094-6/05/$20.00 @2005 IEEE 746

requirements ualent to_1 sp c4 c

specific

requirements 4

- - - - * - - -- - -- - -- - -e

*
----- --

* captured byt design t
i principles - 2
A; t

system fulfill ?
)bjectives

match?
8 combite into

properbes 8 drive assemble Web Services
00 } 6 Architectural00

Modeling
5vtderue 7 select from

nuI

Software
Architecture
Factory

Figmie 1. Architecturalmethodobgy

Having these basic understandings of software
architecture, we now can propose our architectural
methodology used in this paper to compare and evaluate
web services architecture. Figure 1 depicts this
methodology process flow and major artefacts with their
relationships. The methodology is basically separated into
two parts: architecture modelling and software architecture
factory. Architectural factory collects user requirements
from various applications, experienced advice from
software engineers and architects led to the technology
being organized into architectural design principles, which
can be furthered captured by architectural constraints [2 and
3]. These constraints can be composed and combined into
various architectural styles stored in the factory. During the
architectural modelling time, the application requirement
will form into a specific business 'context' mapping to one
or more constraints, and eventually derive certain
architectural properties from these mapped constraints.

Based on these derived properties, an architect is able to
select relevant styles that induce such properties and
combine them into the final architecture. From the figure 1,
it is not difficult to find that in order to evaluate an
architectural design, the most effective way is to check
whether it fulfils all the system objectives reflecting
equivalent system requirements. Thus, our goal is to
examine the architectural design rationale behind the
constraints it places on a system. In order to achieve this
goal, we need to compare the quality properties derived
from constraints which form into the architectural styles to
the objectives of the target system - Intemet-wide
distributed web services.

Ill. ARCHITECTURE QUALITY PROPERTIES

We now explore related architectural properties in a
context where distributed web services interacting with
each other across the Internet. Based on previous related
work [3, 6 and 7], we deduce architectural properties
specifically for Intemet-based web services in distributed e-
Business environment.

Loose-coupling - A flexible relationship between two
or more computer systems that are communicating via
data transmission. Loosely-coupled systems are bound
to work well (e.g. without human intervention, at low
cost) when either side of the computer systems are
subject to frequent changes.

* Interoperability - The ability of two or more systems
or components to exchange information and to use the
information that has been exchanged. Current WS-
Architecture utilizes XML and Internet protocols (such
as HTTP) to achieve the interoperability as basic level
interactions.

* Scalability - The capability of the architecture to
support large numbers of web service consumers and
providers, or large amount of interactions among these
consumers and providers without making major
changes to the existing systems or application software
and hardware.

* Simplicity - The architecture does not impose high
barriers to entry for its intended adopters: each
individual component in this architecture should be
substantially less complex as to the extent that they
will be easier to understand and implement, otherwise
functionality of that component needs to be reallocated
(further decomposition or distiribution).

* Extensibility - The ability of the architecture to
dynamically accommodate changes without impacting
the rest of the system. For instance, the architecture
should allow the service consumer to dynamically add
additional information to the message other than what
is specified in the shared schema.

* Performance - This may include network performance,
user-perceived performance, and network efficiency.

* Security - The security of Web services across
distributed domains and platforms and privacy
protection for the consumer of a Web service across
multiple domains and services.

* Reliability - The degree to which architecture is
susceptible to failure at the system level in the presence
of partial failures within components, connectors, or
data.

* Visibility - The ability of a component to monitor or
mediate the interactions between two other
components. Visibility can affect several other
architectural properties such as performance, reliability
and security. For instance, the header of the SOAP can
help content routing and security inspection through
the gateway or the company firewall.

* Composability - The ability of the architecture to
enable the services be composed at lower cost (e.g.
without human intervention) to execute certain
business process smoothly and securely.

747

IV. BROKER-BASED ARCHITECTURE

Brokers (a.k.a Middle Agent in agent research literature)
are widely used in distributed information systems such as
multi-agent systems and distributed databases. Wong and
Sycara [8] presented a comprehensive and systematic
taxonomy for middle agent in the context of multi-agent
systems. In their taxonomy there are generally two kinds of
brokers: Matchmaker and Facilitator. The facilitator differs
from matchmaker in that besides finding services, it also
intermediates transactions between the consumer and
provider. Their research is based on the observation of the
multi-agent environments; however, the research result can
apply to the web services literature very well since they
share the same nature such as distributed environment,
service consumer, and service provider.

A. Matchmaker Broker Style (MB)

Current web services architecture is based on the basic
broker architectural styles - matchmaker style, within
which a service provider registers with the central UDDI
registry its capability information and later a service

consumer contacts the registry to discover this service
provider detail information so that it can bind and interact
with it. All providers must make their services available by
publishing their interface and thus advertising their service.
This is a straightforward approach to distributed computing
that provides the advantage that clients are coupled to the
servers only via an interface rather than any service
implementation details. An MB architectural style can be
seen as the combination of client-server (CS), or client-
stateless-server (CSS) and peer-to-peer style. Figure 2
presents such centralized services architecture and their
used styles. From the figure, we can see that both 'Publish'
and 'Find' will suffer the disadvantages of CS style. In
addition 'Find' will obtain some advantages of CSS style if
it is utilized. The binding and interaction (step 3 and 4)
process will benefit from the advantages of Peer-to-Peer
style, which could be varieties of message exchange
patterns: synchronous request/response, event-based, or
asynchronous message such as publish/subscribe.
Matchmaker Broker (MB) style captures such loose-
coupling property as the most classic web services
architectural style.

Centralized
Matchmaker Broker

._~~~~~~~~h
1. Publish (CS Style) 2. Find (CS or CSS Style)

3. Bind and Invoke

4. Response (optional)
(Pee r-to-Peer style)

Service Consumerj
Se~~~~~~~

Figu 2. Matchmaker Broker Style

B. Layered Matchmaker Broker Style (LMB)

Some researchers enhance matchmaker broker style
mainly deal with service selection based on the behaviour
(e.g. Quality-of-Service, non-functional requirements) of,
rather than simple function matching in the process of
selecting service providers [9, 10 & 11]. Thus CCS style
needs to be enhanced by being combined with other styles.
Yu and Lin [10] proposed a Quality-of-Service capable web
service architecture - QCWS by a QoS broker module
collecting QoS information of providers, making selection
decisions for clients and negotiating with providers to
ensure QoS commitments. Wang, Yue, Huang and Zhou [9]
maintained that because of the distributed nature of web
services, it is very difficult to manage and predict the
quality of web services. Thus a service broker - dynamic
service selection engine, which provides QoS based service
selection, is proposed in their broker architecture. The
broker architecture given by Degwekar, Su and Lam [11] -
Constraint-based Broker - allows the service requestor to
specify their service requirements by extending the standard
WSDL speciflcation, thus a service broker is able to select

the service that best satisfies the consumer's requirements.
All these work, in an implicitly or explicitly manner, add a
middle layer to the existing matchmaker broker style in
order to augment the insufficient support of service
behaviour (e.g. QoS) from existing registry - UDDI. We
can use Layered Matchmaker Broker (LMB) style to
describe such architectural design. As depicted in Fig. 2,
LMB comprises of Layered-Client-(Stateless)-Server Style
(LCS) and Peer-to-Peer style. The publisher and requestor
brokers (or these two might come as a whole component)
work as a 'gateway' to encapsulate the request by adding or
removing some criteria such as QoS or user requirements,
sending to the inner layer - the standard UDDI registry.
Apparently, some extended data need to be stored in the
intermediary layer to help augment the standard discovery
and selection process.

The primary problem with MB and LMB lies in their
centralized indexing scheme provided by web services
registry - UDDI. 'It does not scale well because the number
and physical distribution of the UDDI clients can quickly
overwhelm this centralized configuration and can lead to
serious performance bottlenecks' [12]. Adding more servers

748

I

or implementing load-balancing strategies does not
constitute a practical solution as it implies high cost for the
operators of the UDDI [13]. Moreover, the current search
facilities offered by the latest version of UDDI do not offer
any special features for finding anyone of the distributed
web services registries themselves [14]. Besides the

performance bottleneck and single point of failure suffered
from centralized systems, the possible storage of vast
numbers of advertisements on centralized registries hinders
the timely updates, thus it is questionable whether
centralized registries will scale up to the needs of web
services [15].

CentralizedX
Mastchmaker Broker

2. Delegate Publish 4. Delegate Find (eg standard criteria)

Layered-Cient-Server St j publi Inermediary Layer re s Layered-Client-Server Stfle
LCS roS
I

1. Publish 3. Find (eg. with QoS criteria)
0 - j -1. IncU anu invoKe

6. Response (optional)
(Peer-to-Peer style)

Serice Requestor_

Figume 3. Layered Matchmaker BIker Style

C. Facilitator Broker Style (FB)

The facilitator brokers in services research literature
basically carry the role of service interaction compared to
discovery and selection provided by Matchmaker brokers.
To further reduce the coupling between service provider
and consumer, which in the case Matchmaker style is direct
Peer-to-Peer style, facilitator broker delegates all the
message request and response between them. Some
practitioners and commentators regarded facilitator broker
as 'SOA Fabric' - a central message environment that hides
the complexity of message exchanges and other interaction
issues from service providers and consumers [16].
Moreover, some researchers utilize such facilitator brokers
to provide value-added mediation services such as
homogenizing the heterogeneities among different web
services [15 & 17] The essential issue that Fuchs's broker
aims to solve is the heterogeneity: web services interfaces -
WSDL - is 'too easy to be written to specific requirements

dynamic a
reliable mes
homogenize

Figure 4. Facil
D. Layered Faciltator Broker Style (LFB)

Basic facilitator style can be enhanced in several ways.
Piers, Benevides and Mattoso's [18] broker layer addressed
the issue of heterogeneity when composing distributed web
services. They pointed out that existing mediator
architectures cannot be directly applied to develop

without being required to support a variety of possibilities
that can show up in a loosely-coupled heterogeneous
environment where different parties are evolving at
different rates'. Based on the existing SOA, the author
proposed architecture to wrap the underlying services with
an adaptation layer - the service facilitator broker- to deal
with all the aspects of message handling in heterogeneous
environment. The adaptation layer intermediates between
the underlying, or base, operations and the outside world.
Paolucci et al.[15] provided a detailed analysis about
broker's requirement and architecture regarding a broker
that performs both discovery and mediation (i.e. facilitator).
Their result indicates broker should have powerful
reasoning capability in accomplishing necessary tasks (e.g.
interpretation, finding, invocation and retuming results).
The SOA Fabric forms the basic facilitator broker
architectural style as shown in Figure 4.

or Broker
uto-binding
,sage delivery
heterogeneity

le)
t 2. Find & Invoke (CS or CSS Style)

le) I

Serice Consumer

.itator Broker Style

distributed web services composition since the web
services mediation requires homogenization of different
service interfaces - message formats. The authors
explicitly articulated why and what are the heterogeneity
problems (such as semantic dissimilarities etc.) in
distributed web services composition. The multi-layered
architecture of WebTransact illuminated some clues in

749

introducing the layered facilitator architecture style for
web services.

V. PEER-TO-PEER ARCHITECTURE

Peer-to-Peer computing is based on the principles that
'the world will be connected and widely distributed and
that it will not be possible or desirable to leverage
everything off of centralized, administratively managed
infrastructure' [19].

A. P2P Discovery Style (P2PD)

The most common application of leveraging Peer-to-
Peer technology in distributed web services environments
is in the area of service discovery [20, 21, 22, 23, 24, 25 &

/1. Publish (CS Style)

distributed nodes. Palucci et al. [23] proposed a structured
P2P based web services discovery method that considers
the process behaviour as well as functionality of web
services. Emecki, Sahin, Agrawal and Abbadi [24]
proposed decentralized discovery architecture based on a

P2P connection between Web services, where services
capability matching will be perfonned on the Gnutella P2P
infrastructure network. Their core work is to combine the
DAML-S matching with the Gnutella QUERY process and
the use the basic Gnutella protocol for Web services
discovery.

Schmidt and Parasher [25] described each web service
by a set of keywords and then mapped the corresponding
index to a DHT (Distributed Hash Table). One of the most
valuable contributions of Ayyasamy, Patel and Lee [20] is
the summnarized justification of combining the Web

Layered-Client-Server Style
LCS

"\2. Find & Invoke (CS or CSS Style)

I= 1~~~~~~~~~~~~~~~~~~~~~~~~
Senice Consumer J

S .

Figure 5. Layered Fcilitator Broker Style

eer

Peer
I

Figure 6: topology and layered arditecture ofP2P based web services

26]. Prasad and Lee [22] presented the PSI model to locate
suitable services in peer-to-peer networks (a hybrid P2P
infrastructure) using registry implemented by web
services, though web services here just play trivial role in
establishing the invocation interfaces between varieties of

In figure 6, each peer represents a provider or a
consumer or both. There is no a centralized registry to store
the meta-data for all the participated peers, the service
discovery relies solely on the capabilities of each peer by
leveraging some P2P service discovery algorithms (such as

flooded request, document routing, etc). Figure 6 also
gives an example of integrating the web services and P2P
using the layered structure. While the bottom two layers

Services and DHT based Peer-to-Peer networks in service
discovery. Banaei-Kashani [26] introduced the WSPDS
(Web Services Peer-to-Peer Discovery Service), a fully
decentralized and interoperable discovery service with
semantic-level matching capability.

remain unchanged as are in common P2P model, the Peer-
WS Adapter/Bridge layer plays the most important role
here in that it bridges the gap between P2P communication
protocol and existing web services protocols. In particular,
this layer transforms the web services and services
semantics description into the interfaces syntax and
semantics that are understood by P2P overlay, thus
wrapping the web services providers into common peers

750

Facilitator Brokers

5 lS~~omposition Brokerh

Mediatio n B]roke r

Remote Broker *
'

Web Services Semantic

Peer - Web Service Adapter/Bridge

Peer-to-Peer Overlay Infrastructure

Networks

4

which can consume the existing P2P services provided by
the underlying overlay.

However, such pure P2PD style has one critical
problem: no existing registries (e.g. UDDI) are utilized in
their service discovery approach, hence the feasibility and
compatibility of their research is questionable since they
require the complete abolition of existing service discovery
mechanisms, which are already well accepted as normative
industry standards in web services practice. In addition, this
style will introduce new security and trust threat inherent in
P2P computing paradigm.

B. Matchmaker + P2P Discovery Style (CSS-P2PD)

To utilize existing registry (i.e. UDDI) in service
discovery, some of the alternative P2P approaches have
been developed to decentralize the conventional centralized
UDDI architecture using P2P technology [27, 12 & 14].
Sivashanmugan, Verma and Sheth [14] focuses on
leveraging registry federations supported by different
domain ontologies, they mainly dealt with how web service
discovery is carried out within a federation by presenting a
scalable, high performance environment for federated web
service publication and discovery among multiple registries
[27] specifically addressed the problem of distributed
registries (UDDIs) using peer-to-peer technology. They
built the service registry peer-to-peer infrastructure based

on Edutella P2P environment. Papazoglou, Kramer and
Yang [12] also employed a federation of UDDI-enabled
peer registries that operate in a decentralized fashion rather
than requiring each peer to publish their own service
descriptors locally or centrally (on the UDDI).

Papazoglou et al. [12] envisioned that 'a P2P network
architecture that promotes a logically decentralized
arrangement of registered service descriptions and that also
provides web-service descriptions much in the same way
that UDDI does'. In this research, registry is responsible for
discovering the immediate services registered locally. If the
requested services cannot be found locally, the registry will
form the global query delegated to other registries via the
P2P network. The major difference between Papazoglou, et
al. [12], Thaden et al. [27] and Sivashanmugan, et al. [14] is
that Sivashanmugan et al. [14] used DAML-S as service
description language instead of standard UDDI tModel. In
summary, their architectures can be illustrated in Figure 7.
Service providers register themselves into the local registry,
which in turn form the P2P network registry federation in a
decentralized way. Local registry will normally be
responsible for discovering the immediate services
registered locally. If the requested services cannot be found
locally, the registry will form the global query delegated to
other registries via the P2P network. Such architecture
combines both P2P style and CS (CSS) style

/ 4 > ~~~~~Servce
MB Style community

MB Stye
0 Service PIC

Local
O registry

Figure 7. Federated UDDI arhitxcture using P2P model

C. P2P styles in service composition

Existing web services processes (e.g. BPEL4WS -
Business Process Execution Language for Web Services)
are normally executed by a single centralized coordinator
node (e.g. the BPEL engine in the case of BPEL4WS). The
coordinator is responsible for controlling and driving the
process execution, all the data should be transferred via this
central node to the involved web services providers.
Apparently, this leads to overload traffic on the network,
poor scalability and perfonnance degradation [28]. In
industry practices, existing IBM's MQSeries Workflow or
Microsoft's BizTalk offering well-engineered web services
execution guarantees, however, are not able to optimally
distribute the overall load among all service providers at

run-time. Since 'these systems follow a centralized
architecture consisting of dedicated workflow engine(s),
their scalability is limited' [29]. For instance, both Lakhal,
Kobayashi and Yokota [30] and Chafle, Chandra and Mann
[28] in their respective research postulated multiple
distributed engines architecture to coordinate and
communicate with each other in service composition and
execution; nevertheless, they in fact utilized two different
methods respectively.

D. Split Code + P2P Execution Style (SC-P2PE)

This style assumes that distributing the execution of
processes necessitate the partition of process specification
at design-time, and during the run-time each local engine

751

only obtains the partial copy of the whole process, and
finally executes it at local site where the invoked service
resides. The early rigorous studies on partitioning process
(workflow) specification can be found in Muth, Wodtke,
Weissenfels and Kotz [31]. They provided an algorithm for
transforming a centralized state and activity chart into a
provably equivalent partitioned one, suitable for distributed
execution using multiple process engines. However, their
work is not suitable for web services process composition
and execution. Project SELF-SERV [32] is the early work
that addressed the problem of decentralization of web
services processes composition and execution using such
partition method. There are, to our best knowledge, two
researches so far working on the partition of BPEL4WS.
Nanda, Chandra, and Sarka [33] presented a new code
algorithm to partition a composite web services written as a
single BPEL program into an equivalent set of
decentralized processes, with the goal of minimizing
communication costs and maximizing the throughput of
multiple concurrent instances of the input program. Based
on Nanda et al.'s [33] research result, Chafle et al. [28]
proposed a decentralized BPEL composite scheme which
contains multiple engines, each executing composite web
service specification at distributed locations. One of the
problems is that the process might have to halt in the case
of unavailability of certain involved service providers.
Another problem is how to deploy these partitioned process
pieces to those involved peer process engines at run-time.

E. Mobil Code + P2P Execution Style (MC-P2PE)

Unlike design-time partition where involved services
providers are already explicitly specified during the
partition, in process-mobilization method, the process
specification does not indicate the concrete service
providers (i.e. the peer engine). Moreover, both the whole
process specification and its related instances, which
contain their execution states, have to be dynamically
brought to the hosts on which the services reside during the
run-time of the process. Based on these issues, Haller and
Schuldt [34] presented the AMOR system that utilizes the
mobile agent to encapsulate the process specification
brought to each host where the desired services are invoked
by such mobile agent. Lakhal, Kobayashi and Yokota [30]
propose the architecture - THROWS - for a highly
available distributed execution of web services
compositions. In THROWS, the execution control is
hierarchically delegated to peer-to-peer collaborated service
process engines discovered dynamically using the CEL
(Candidate Engine List). In other words, the engine which
executes that service is also decided in an ad-hoc manner.

The mobility of process is implemented using the message
communication between peer engines.

F. Split Code + Mobile Code + P2P Execution Style (SC-
MC-P2PE)

Schuler, Weber, Schuldt and Schek [29] employed the
process mobilization method to propose a true peer-to-peer
service process execution runtime. The process mobility is
achieved by deploying the Two-Phase-Commit protocol to
ship the process instance to the target node against the
meta-information replicated from the global repositories to
each local HDB layer. However, in order to achieve better
performance and reduce the amount of data (process
specification and process instances) to be replicated,
Schuler, Weber, Schuldt and Schek [29] also utilized the
process partition method to decompose a process into a set
of distributed execution units, which only contains the
information to execute the locally corresponding service
and to navigate the process depending on the result of the
service invocation.

VI. COMPARE AND CONTRACT OF WEB SERVICE
ARCHITECTURES

A. Method

Here we use a table of style versus architectural
properties as the primary tool for evaluating and
comparison studies. Firstly, for each quality property that
we investigated, we assign a weight value to indicate the
significance that property contributes to the total objectives
of the system under certain business context. The metrics
for this weight is an integer ranging from 1 to 5, showing
the increasing trend of significance. The rationale of
assigning weight is that architectural property may present
different momentum in contributing to the system
objectives under different business context. Secondly, for
each style we will also assign a number against certain
property it will induce.

The value of this number indicates the degree to which
such style is able to exhibit the characteristics of this
particular architectural property under certain business
context. The metrics for this number is an integer ranging
from -2 to 2 inclusive. It is worth noting that if we adjust
the weight for each property; the total score will change
accordingly, impacting our architectural style decisions.
This reiterates nothing but the principle that different
requirements and context will generate different
architectural styles.

752

Derivation

05ut

0
0

k0'4

4)-0

'4

_4

4.'
,0

LI

'u
.-

*42
'4

0

41
C04

.t;-
LI
41
O
0
Mn

.40

*Xe
P:

..0
* 4

ut
4.

,0

0424

0

0

Facilitator Broker 2 j 2 1 }21 -2 I 2j -2 A 1 -2I 2 1
_~~ ~ ~ ~ ~~I I I IA, . I I - I 1Lavered Facilitator Broker 2 2 -1 -1 2 -1 -1 -1 2

Pure Peer-to-Peer Discovery 0 -2 2 0 0 1 -2 2 -2 -2
atchmaker + P2P Discovery 1 1 0 1 -1 2 -1 1

P2P :S.PlhtCode +P2P Execution 2 2 2_ 1 1 2 O 1 -2 2
Mobile Code + P2P Execution 0 1 2 -1 1 1 -2 O -2 1
SpltCode+lobileCode+ P2PE 1 1 2 2 -1 2 -2 O 2 1

Table 1. Architectuml style evaluation table

B. Analysis and Critques

As depicted in Table 1 in matchmaker broker style,
service consumer and provider are loosely-coupled, they
are not aware of each other until binding occurs between
them. The WSDL obtained from a UDDI registry makes
such syntax-level automatic binding and further interaction
possible though on the semantic level, service matching
and selection is still far from desirable, thus needs much
human intervention. Although interfaces and protocols in
such component technologies are described in proprietary
binary encoding rather than 'standardized' format which
results in implementation interoperability problems
preventing traditional component technology from
becoming dominant in the Internet era. However, we
should distinguish such 'implementation' interoperability
from architectural interoperability, which only considers
the component and their interaction relationships at
abstract level. Matchmaker broker represents the current
most popular architecture of web services, hence the
interoperability is relatively guaranteed if all the
components use well-accepted standards such as (SOAP,
WSDL, and UDDI) to communicate. Scalability is one of
the main concems [12, 13 & 15] of this architectural style
since the centralized broker will soon become the
bottleneck and single-point-failure as the number of
consumer and provider increases across the Internet.

Meanwhile in all the broker styles, the complexity of
the architecture concentrates on one centralized broker.
This situation can be alleviated by adding intermediate
layer into the broker styles (LMB and LFB) where
complexity is split and separated into each layer of the
broker, however, this will impact other properties such as
performance, security, etc since it introduces extra
communication and confidential data transfer between
layers of the central broker. For the similar Internet
network environment, the performance of matchmaker
broker is generally better than facilitator in that P2P

interactions greatly reduce the communication and
computation time burdened by the central broker. The
rationale of introducing facilitator in the architecture is to
ensure the functional requirements - the service consumer
sometimes is unable to automatically bind to the identified
provider without any intermediation from brokers due to
high heterogeneities across the distributed Intemet. Hence,
we found that the architectural design decision between
these trade-offs should not be determined or as late as
possible until detailed business contexts including
hardware configurations are clearly identified. Facilitator
broker further deteriorate the reliability in that even basic
connections among any services cannot proceed regardless
of whether they are aware of each other. Replication of
broker data is one of the methods to improve the reliability.
The latest UDDI specification (UDDI v.3) has enhanced
the replication model among distributed UDDI registry
servers. However, some researchers argue that such
replication solution is not feasible and empirical: it needs
not only a replication contract between both registry
providers but also manual system administration for each
(new private) registry. Therefore, practical replication
between UDDI registries does not occur [27]. Wang et al
also pointed out that such replication approach causes
other problems such as expensive data replication,
unnecessary global service querying when local providers
can satisfy the demands [21]. We should notice that broker
architectures especially the facilitator broker greatly reduce
the coupling between consumer and provider. For instance,
facilitator brokers can easily achieve loose-coupling by
adopting the asynchronous messaging exchange pattern,
thus working like an asynchronous message middleware
broker. Owing to this, extensibility property induced by
this architectural style is quite prominent. Ideally, the
providers can even change their interfaces without
impacting the involved service consumer since facilitator
will be responsible to interact with the updated provider

753

Style

Broker
-1Lavered Matchmaker Broker I 0 0 2 I 0 I I I

2

interfaces during the run-time. Matchmaker style does not
monitor too much on the interactions among services.
Layered matchmaker stores some data in the intermediate
layer so that some historic data can be captured for future
usage and this will result in the visibility of the interactions
and security threats as well. This visibility in matchmaker
still rely on the active involvement of stakeholder
providers and consumers, who need to explicitly notify the
broker intermediate layer attributes about the past P2P
interactions, which brings about extra burden for those
peers. The visibility in facilitator is rather implicit as long
as detailed monitor mechanism is enabled, stakeholders
can only focus on their own business, which is visible to
the facilitator broker for further usage. Privacy and trust
concerns of brokers are some other potential problems
accompanied with visibility. One of the advantages of
visibility is the centralized and consistent cache control
from the brokers.

Formal and precise cache control will dramatically
improve the performance and scalability of the systems.
Matchmaker brokers only concern the functional
requirements (interface signature) during service discovery
hence it helps little in the later composition phases of web
services. Layered matchmaker broker improve this by
fostering the non-functional criteria in assembling related
services providers, thus paving the way for feasible
composition though itself does not involve the composition
process. Facilitator broker is able to compose the services
by mediating the invocation among services, while layered
facilitator enhance such functionality by masking the local
and remote services and providing the uniform
environment layer for composition.
A paradox occurs when introducing broker-based

architectural style into the web services architecture: it is
imperative to have central broker facilitating service
discovery, binding and interaction due to the heterogeneity,
trust, and security reasons among highly autonomous web
services from different organizations across the Intemet;
on the other hand, broker style raises scalability and
performance issues since it originated from traditional
distributed object systems where components providing
services are confined in the controlled domain with limited
boundaries.

Existing P2P web services architectural styles centre on
one principle: to decentralize resources control - discovery,
synchronization, coordination, execution, etc. The pure
P2P discovery style presents the most common usage of
P2P computing model leveraged in web services
architecture. Most of the cases complied with such style
use existing P2P overlay as the default service discovery
mechanism. Since such overlay often supports ad-hoc
connectivity which in turn achieve the loose-coupling
among peer web services. Loose-coupling based on the
assumption that all the peer-service consumer or provider
are all employ the same P2P communication protocol such
as P2P overlay discovery mechanism. The downside of
such default P2P overlay discovery mechanism comes
from its scarce acceptance by the majority of web services
so far. It is questionable whether such service network can
interoperate with other web services outside of such
overlay across the Internet, which is apparently not
ubiquitous and uniform as is current WWW protocol and
web services standard (UDDI, SOAP). This is exactly
where style comes into play.

To respect the existing service discovery standard, this
style makes each UDDI registry as peer rather than turning
each service provider or consumer into peer. By doing so,
it achieves the decentralization of data while keeping the
current centralized service discovery mechanism within
each UDDI community. Such hybrid style is making a
compromise between two extremes: total centralization
and total decentralization. However, the interoperability
problem in this style is not thoroughly clear: the
communication protocol between UDDI registries is
undefined by any standards so far and will certainly
introduce complexity when any attempts of augmenting
UDDI specifications occur. Scalability is greatly improved
in pure P2P discovery due to the decentralized query and
search mechanism. While for the Matchmaker + P2P
discovery style, load balancing among federated UDDI
registries becomes significant in determining the overall
scalability of the architecture. Appropriate learning
algorithms are desirable to ensure that query load is indeed
'decentralized' across each one of these registries and
dynamically switch to those with relatively more free
resources. All this work requires inevitable enhancement
of UDDI registry server, thus raising the interoperability
issues again. Thanks to the ad-hoc connectivity nature of
P2P network, the reliability issue appears obtain sheer
resolved by avoiding utilizing any single-point-failure and
bottleneck-prone brokers during the service discovery
process. Nevertheless, the performance is not guaranteed
to improved, and in some occasion might become even
deteriorated due to the unstructured nature of P2P network
and frequent communications among registries which can
cause much network latency in an unexpected manner.
Security is probably the biggest concem when introducing
P2P style into web services. Recent research of security
and trust in P2P computing [35] proposed some
constructive solutions to address this issue; however, from
an architectural perspective, such anarchic management
model inherent in P2P architectural style is regarded the
most threatening. Visibility in such decentralized
autonomous network is rather opaque, which undoubtedly
incurs a series of monitoring and management issues.
Generally, we believe P2P styles of service execution are
'making things more complex rather than simple'. Shifting
all the tasks used to burden the broker to each peer will
make them too complex to be deployed and evolved at
large volume; in addition, distributed data management
becomes extremely difficult.

Different styles have their own advantages and
disadvantages, improving one property might lead to the
reduction of another. Architectural design is indeed a
trade-off among a number of architecture styles
constrained by the particular circumstances.

VII.CONCLUSION AND FUTURE WORK

We approached the challenges of web services from the
architectural perspective. We introduced an architectural
methodology used to measure and evaluate architecture
styles of Intemet-wide distributed web services. We then
identified key architectural properties related to quality
aspects of web services architecture. Next we summarized
nine web services architectural styles in current literature.
Finally, we evaluated these against the architectural
properties identified. Detailed methods to evaluate these

754

styles are also given. For future work, we believe there are
three issues that need to be addressed:
1. Based on this architectural evaluation, propose an

improved architecture for distributed web services
architecture with software prototype.

2. Evaluation metrics should be further formulated based
on certain factors determined by business context.

3. The proposed architectural methodology need to be
further studied to cater for Internet-wide distributed
web services environment.

VIII. REFERENCE

[1] Ciganek, A.P., Haines, M.N. & Haseman, W., 2005, 'Challenges of
adopting web services: Experiences from the financial industry',
Proceedings ofthe 38th Hawaii International Conference on System
Sciences - 2005.

[21 Perry, D.E. & Wolf, A.L., 1992, 'Foundations for the study of
software architecture', ACM SIGSOFT Software Engineering Notes,
vol. 17, no.4, Oct. 1992, pp. 40-52.

[31 Fielding, R.T., 2000, 'Architectural styles and the design of
network-based software architectures', PhD Dissertations,
University of California, Irvine CA, USA.

[4] Bosch. J., 2000, 'Design and use of software architectures -

Adopting and evolving a product-line approach', Addison-Wesley,
ISBN: 0-201-67494-7.

[5] Birman, K., Renesse, R. & Vogels, W., 2004, 'Adding high
availability and autonomic behaviour to web services', Proceedings
of the 26th International Conference on Software Engineeintg
(ICSE'04).

[61 Austin, D., Barbir, A., Ferris, C. & Garg, S,. 2004, 'Web services
architecture requirements', W3C Working Group Note February
2004, Retrieved: 5 May, 2005, from http://www.w3.org/TR/wsa-
reqs.

[71 MacKenzie, M. & Amand, S., 2004, 'Electronic business service
oriented architecture', OASIA Working Draft 047, 20 August 2004,
retrieved: 30 May 2005, from http://www.oasis-
open.org/committees/ebsoa.

[8] Wong, H.C. & Sycara, K., 2000, 'A taxonomy of middle-agents for
the internet', Proceeditngs of the Fourth International Conference
on MultiAgent Svstems, July, 2000, pp. 465 - 466.

[9] Wang, X., Yue, K., Huang, J.Z. & Zhou, A., 2004, 'Service
selection in dynamic demand-driven web services', Proceedings of
the IEEE Internatiotnl Conference on Web Services (ICWS04).

[10] Yu, T. & Lin, K., 2004, 'The design of QoS broker algorithms for
QoS-capable web services', Proceedings of the 2004 IEEE
International Conference on e-Technology, e-Commerce and e-
Service (EEE'04).

[11] Degwekar, S., Su, S.Y.W. & Lam, H., 2004, 'Constraint
specification and processing in web services publication and
discovery', Proceedings of the IEEE International Conference on
Web Services (ICWS' 04).

[12] Papazoglou, M.P., Kr-amer, B.J. & Yang, J., 2003, 'Leveraging
web-services and peer-to-peer networks, Springer-Verlag Berlin
Heidelberg 2003.

[13] Pilioura, T., Kapos, G. & Tsalgatidou, A., 2004, 'PYRAMID-S: A
scalable infrastructure for semantic web service publication and
discovery', Proceedings of the 14th International Workshop on
Research Issues on Data Engineering: Web Services for E-
Commerce and E-Government Applications (RIDE'04).

[141 Sivashanmugam, K., Verma, K. and Sheth, A., 2004, 'Discovery of
web services in a federated registry environment', Proceedings of
the 16th Internautional Conference on Software Engineering &
Knowledge Engineering (SEKE2004): Workshop on Ontology in
Action, Banff, Canada, June 21-24, 2004, pp. 490493.

[15] Paolucci, M., Soudry J., Srinivasan, N. & Sycara, K., 2004, 'A
broker for OWL-S web services', Proceedings of First International
Web Services Symposium, 22- 24 March, 2004.

[16] Malek, H.B., 2005, 'Service-orientation: A brief introduction',
OASIS SOA Reference Model TC Public Documents, Retrieved:
May 29th 2005, from http://www.oasis-
open.org/committees/download.php/I2834/Service-Orientation.pdf

[171 Fuchs, M., 2004, 'Adapting web services in a heterogeneous
environment', Proceedings of the IEEE International Conference on
Web Services (ICWS'04).

18] Piers, P., Benevides, M. & Mattoso, M.,- 2003, 'Mediating
heterogeneous web services', Proceedings of the 2003 Symposium
on Applications and the Internet (SAINT' 03).

[19] Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J.,
Richard, B., Rollins, S. & Xu, Z., 2003, 'Peer-to-peer computing',
Hewlett-Packard Company Technology Report.

[201 Ayyasamy, S., Patel, C. & Lee, Y., 2003, 'Semantic web services
and DHT-based peer-to-peer networks: A new symbiotic
relationship', Position Paper, School of Interdisciplinary Computing
and Engineering University of Missouri - Kansas City.

[211 Wang, Q., Yuan, Y., Zhou, J. & Zhou, A., 2003, 'Peer-Serv: A
framework of web services in peer-to-peer environment', WAIM
2003, LNCS 2762, pp. 298 - 305, 2003, Springer-Verlag Berlin
Heidelberg 2003.

[221 Prasad, V. & Lee, Y., 2003, 'A scalable infrastructure for peer-to-
peer networks using web service registries and intelligent peer
locators', Proceedings of the 1st International Symposium on
Cluster Computing and the Grid, p. 216.

[231 Paolucci, M., Sycara, K., Nishimura, T. & Srinivasan, N., 2003,
'Using DAML-S for P2P discovery', Proceedings of Internatiotal
Conference on Web Services, ISWS, 2003

[241 Emekci, F., Sahin, O., Agrawal, D. & Abbadi, A., 2004, 'A peer-to-
peer framework for web service discovery with ranking',
Proceedings of the IEEE International Conference on Web Services
(ICWS'04), 0-7695-2167-3/04 IEEE.

[25] Schmidt, C. & Parashar, M., 2004, 'A peer-to-peer approach to web
service discovery', World Wide Web, vol. 7, no. 2, pp. 211-229.

[26] Banaei-Kashani, F., Chen, C-C. & Shahabi, C., 2004, 'WSPDS:
Web services peer-to-peer discovery service', Proceedings of
International Symposium on Web Services and Applications
(ISWS'04), Las Vegas, Nevada, USA, June 2004, pp. 733-743.

[27] Thaden, U., Siberski, W. & Nejdl, W., 2003, 'A semantic web based
peer-to-peer service registry network', Technical Report, Learning
Lab Lower Saxony, University of Hanover. Germany.

[28] Chafle, G., Chandra, S. & Mann, V., 2004, 'Decentralized
orchestration of composite web services', Proceedings of World
Wide Web, 17-22 May, 2004, New York, USA.

[29] Schuler, C., Weber, R., Schuldt, H. & Schek, H., 2004, 'Scalable
peer-to-peer process management - The OSIRIS approach',
Proceedings ofthe IEEE International Conference on Web Services
(ICWS'04).

[301 Lakhal, N.B., Kobayashi, T. & Yokota, H., 2004, 'THROWS: an
architecture for highly avallable distributed execution of web
services compositions', Proceedings of the 14th International
Workshop on Research Issues on Data Engineering: Web Services
for e-Commerce and e-Government Applications.

[311 Muth. P., Wodtke, D., Weissenfels, J. & Kotz, D.A., 1998, 'From
centralized workflow specification to distributed workflow
execution', Journal ofIntelligent Infornation Systems (JIIS), vol. 10,
no. 2.

[321 Benatallah, B., Dumas, M., Sheng, Q. & Ngu, A., 2002,
'Declarative composition and peer-to-peer provisioning of dynamic
web services', Proceedings ofthe 18th International Conference on
Data Engineering (ICDE'02).

[331 Nanda, M.G., Chandra, S. & Sarkar, V., 2004, 'Decentralizing
execution of composite web services', Proceedings of the 19th
annual ACM SIGPLAN Conference on Object-oriented
programming, systems, languages, and applications, vol. 39, iss. 10,
October 2004, Vancouver, British Columbia, Canada.

[34] Haller, K. & Schuldt, H., 2003, 'Consistent process execution in
peer-to-peer information systems', Proceedings of the 15th
Conference on Advanced Information Systems Engineering (CAiSE),
Klagenfurt/Velden, Austria, 2003.

[35] Hussain, F.K., Chang, E. & Dillon, T., 2004, 'Trustworthiness and
CCCI metrics in P2P communication', International Journal of
Computer Systems Science & Engineering, vol. 19, no. 3/4.

755

