

Copyright © 2005 IEEE

Reprinted from:

2005 3rd IEEE International Conference on Industrial Informatics
(INDIN) Perth, Australia 10-12 August 2005

IEEE Catalog Number ISBN 05EX1057
ISBN 0-7803-9094-6

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of Curtin University of
Technology's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195640455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Merging Application Models in a MDA Based Runtime Environment for
Enterprise Information Systems

Jon Davis1, Andrew Tierney2 and Elizabeth Chang3

1J. Davis, Curtin University of Technology, Bentley, 6102, Australia, Jon.Davis@cbs.curtin.edu.au
2A. Tierney, Curtin University of Technology, Bentley, 6102, Australia, Andrew.Tierney@cbs.curtin.edu.au
3E. Chang, Curtin University of Technology, Bentley, 6102, Australia, Elizabeth.Chang@cbs.curtin.edu.au

Abstract—The issue of merging source code based applica-

tions is very problematic, particularly when involving code
from disparate sources, due to the typical unsuitability of
available source code for software merging. The relatively re-
cent field of Model Driven Architecture is primely involved in
the definition and development of the source model structures
for model based applications and in developing transforma-
tions from the abstract models to various executable formats.
The authors are also involved in these MDA activities in the
development of their G2 prototype system targeted at the spe-
cific domain of Enterprise Information System style applica-
tions. They have reviewed various methods for merging appli-
cation models within this domain and describe the fundamen-
tals of three application model integration methods from their
G2 system; Standard Element Referencing, Virtual Data Ele-
ment Mapping and Element Envelopment that can be used to
provide practical and simple application model merging at
both the design time and runtime of a model based production
system, to produce a working integrated merged application.

Index Terms—Model Driven Architecture, application mod-
els, model management, merging models, Enterprise Informa-
tion Systems.

I. INTRODUCTION

The overwhelming majority of computer applications in
existence today are the result of highly labour intensive and
repetitive development activities. Traditional system devel-
opment methodologies such as the Waterfall, Spiral, Foun-
tain and V models [1] have not been fundamentally altered
as a result of modern technologies and in general the soft-
ware development industry still maintains variations of the
basic paradigm for system development; analysis, design,
develop code, test and deploy. New system development
methodologies such as Prototyping, Agile Processes and the
Big Ball of Mud [2], [3], [4] typically propose differing lev-
els of task decompositions, parallelism and end-user inter-
action and can provide specific advantages when dutifully
employed but they are not guaranteed to necessarily change
the magnitude of the total effort.

Since 1997, the Object Management Group (OMG) has
championed the introduction of Model Driven Architecture
(MDA) [5] as its candidate solution to fundamentally im-
prove on current development processes. MDA provides a
guiding methodology based on the use of Unified Model-
ling Language (UML) [6] to define a Platform Independent
Model (PIM) that represents an abstract yet accurate model
of the requirements of an application, following through

with the efficient development and deployment of the final
target system as an instance of the then Platform Specific
Model (PSM).

There is an increasingly large body of research that is in-
vestigating various aspects of MDA related work including;
PIM model definition, automating the transformation proc-
ess from the PIM to the PSM, and further separation of the
application layers such as the user interface layers to facili-
tate deployment of MDA applications to any platform.

MDA has not yet been realised as a proven concept let
alone as a deployable technology and there is a healthy de-
gree of scepticism as to whether it will prove to become
worthwhile. Accordingly the bulk of MDA research is mo-
tivated to developing the basic technology alternatives that
will establish MDA as a realistic and practical system de-
velopment option.

The authors of this paper are proponents of MDA and
are constructing a new version of their model based system
called G2 which is aimed at the domain of Enterprise In-
formation System (EIS) style applications [7].

In developing G2, we have also assumed that the success
of MDA is assured (at some stage) and have further consid-
ered development activities in a post MDA-technology era
where we believe that the current focus on developmental
and technological issues such as components, reuse and
cross platform compatibility will become obsolete and re-
placed by the concepts of Model Development and Model
Integration (MI) as the primary focus. We justify this state-
ment by the acknowledgement that when and if MDA suc-
ceeds, the PIM model of applications effectively becomes
the only variable in application development (except for the
ongoing development of the core runtime components that
would support the execution of the PSM model). Once the
PIM has been defined then the PSM transformations should
automatically generate the application for any supported
platform using the most current generation of the common
runtime components that constitute the execution environ-
ment.

While we firmly believe that MDA will revolutionise the
development of software and technically make all software
available to all users, the field of Model Integration will of-
fer the ability to mix and match model based applications
and application fragments to form new model based appli-
cations that will more readily conform to the exacting re-
quirements of each user and user group. MDA success also
implies the potential availability of end-user model defini-

3rd International Conference on Industrial Informatics(INDIN 2005)
©2005 IEEE.

tion and editing capability for non-technical users (or at
least not very technical users), which when combined with
Model Integration will extend the capability of application
model authoring, merging and editing to the common user
and usher in a new age of accessible and efficient computer
usage and information access.

In this paper we review the progress of application merg-
ing efforts, identify areas requiring further attention and
present the Model Integration opportunities that we are in-
cluding in our G2 system.

II. RELATED WORKS

In traditional application development where the major-
ity of the source is hand coded, the issue of merging appli-
cations is very problematic. This is largely due to the vari-
ability of application source code due to issues such as; the
availability of the source code at all in some cases, the de-
gree of the use of comments to document the code, the
availability of any model files used to fully or partially gen-
erate the code, the availability of supporting system design
documents, the programming language(s) and versions used
to develop the system, the use of third party components,
the age of the source code and currency of development
tools, the relative nationality of the developers of the source
code in terms of coding practices such as object naming,
and the variety of platforms and application layers em-
ployed.

As is evident, the level of variability in some or all of
these factors can very quickly escalate the issue of source
code usability to the status of virtually unusable as has been
well known throughout the software industry since the early
days of software development. In many well documented
cases, applications are rarely merged – rather than attempt-
ing to merge the applications the software developer will
reproduce the functionality of the smaller application as a
redevelopment of the larger application. [8]

When source code is not available, alternative integra-
tion methods such as; “screen scraping” to interoperate ap-
plications via automated manipulation of the user interface,
direct manipulation of the application’s database, and use of
an application’s Application Programming Interface (API)
if available, are often used to access an application’s fea-
tures although these are application integration options
rather than application merging options [9].

The introduction of newer technology such as; compo-
nents, multi-tiered applications, CASE tools, UML and
other modelling tools have all served to incrementally re-
duce overall development effort. Various other methods
that utilise text processing and syntax analysis of the source
code [10], [11] have attempted to assist in application merg-
ing and can produce syntactically correct merged applica-
tion code however they do rely heavily on the use of com-
mon source code bases, which is not a typical occurrence by
observation of the previously stated variability factors.

In the relatively recent field of Model Driven Architec-
ture, majority effort is expended towards the definition and
development of the models and the associated transforma-

tion of the abstract models to either direct execution or for
source code generation that can then be modified and com-
piled to produce the required system [12], [13], [14]. There
is a substantial volume of publications on generalised on-
tologies but minimal available literature that views past the
current technical problems towards scenarios when MDA
systems may become de rigueur.

III. MODEL INTEGRATION OPTIONS

Application models and ontologies in general are com-
monly represented as directed graphs. With the existence of
two or more models, say M1, M2, … etc, the combined set
of vertices from the models becomes available to define ad-
ditional new edges in the new combined model and thus
provide integration between the models.

In a context free graph, model integration is extremely
simple as an edge can be defined to connect any vertex to
any other vertex. In a highly structured application model
such as a PIM representation, each vertex must be typed to
some degree in order to provide the correct context within
the model syntax or structure. The practical restrictions of a
domain specific application model (as used in G2) necessar-
ily imposes limitations on which vertices can be logically
joined by an edge. Note that to avoid confusion with object
terminology we refer to model vertices as elements.

This paper does not address the direct editing of models
and model elements as this process is identical (within each
particular domain solution) regardless of whether there is
one model or multiple models merged together into a com-
bined but not yet integrated model. We do define these ma-
jor classes of application model integration in the G2 sys-
tem:

• Standard Element Referencing – the simplest
merge option involves creating new references in
one model to existing elements in a second model to
provide access to application features of the second
model to users of the first model.

• Virtual Data Element Mapping – provides infra-
structure level merging and integration of similar
data type elements between multiple models that
achieves an underlying rationalisation of relational
data structures.

• Element Envelopment – the highest level of model
integration is to absorb an element from one model
as a virtual instantiation of a similar element from
the other model.

A. Standard Element Referencing (SER)

When considering the functionality of the applications
represented by the models, the simplest and therefore most
likely initial model integration points would be expected to
be:

• Merging application model menu elements to create
the appearance of a single integrated application. i.e.
the creation of a new and logical combined applica-
tion menu access structure can immediately present
the impression of a fully integrated suite of applica-

3rd International Conference on Industrial Informatics(INDIN 2005)
©2005 IEEE.

tions – the omission of unwanted, inapplicable or
duplicated application fragments from the merged
structure is also an important initial consideration
when merging application models.

• Providing simple access to features of another appli-
cation by creating new references or shortcuts to
major functions of the secondary application model
from within existing interfaces of the primary appli-
cation model. e.g. defining new interface items such
as buttons etc on existing forms of the primary ap-
plication to invoke events or initiate other forms us-
ing functionality from the secondary application can
provide an even higher level of apparent integration
in the merged application model without yet modify-
ing the underlying core logic of the modelled appli-
cations.

While the SER process is not strictly limited to Model
Integration activities, as it is also a standard model editing
feature, it does represent the simplest method to readily
achieve basic model integration.

The management of SER type model integration options
is obviously a fairly simple exercise and is an option that
would require the least technical knowledge and training for
a user to exercise. As SER type modifications do not fun-
damentally alter the context of the models’ individual work-
flows then they are classed as a safe model modification.
Figure 1 indicates the application model structure changes
as a result of SER type changes.

B. Virtual Data Element Mapping (VDEM)

It is difficult to conceive of two applications in the EIS
style application domain that have no points of similarity.
Indeed the most common entity in any EIS would be a per-
son, project or product, and virtually every EIS application
would have some level of entity representation of one or
more of these in some derivative form. Virtual Data Ele-
ment Mapping is the process of identifying similar data
elements in application models, and defining the basic rules
that will merge the data elements at the underlying physical
level.

While VDEM model integration may have no obvious
impact in the application execution of the model as per-
ceived by the end-user (which is actually one of its benefits)
it does achieve a progressive integration of the underlying
data by effectively merging relationally similar data and
thus seamlessly providing access to the combined data for
all of the originating applications.

Additionally the VDEM process does automate the cross
application availability of the user interface and workflow
support for all virtual attributes of the newly combined vir-
tual entity which may then be observed by application users
as new functionality in existing applications. i.e. the re-
quirement to satisfy mandatory entries for virtual attributes
that initially existed only in the other application model
would automatically become additional features of the sec-
ond and additional applications as managed by the model
runtime engine.

M1

Fig. 1, The initial steps in merging separate application models into a new model, creating basic inter-model
integration between the models using only Standard Element Referencing (SER) inter-model references.

Application
Model M1

Application
Model M2

Merged Application Model M3 Merged Application Model M3

M2

a. Two independent application
models M1 and M2 prior to merg-
ing.

b. Merged application models
M1 and M2 without any inter-
model references.

c. Merged application models
M1 and M2 with only basic Stan-
dard Element Referencing
(SER) inter-model references.

M1

M2

M1

M2

3rd International Conference on Industrial Informatics(INDIN 2005)
©2005 IEEE.

By progressively identifying and effecting the VDEM
process for all similar entities between the merged applica-
tion models, a fully integrated underlying database structure
is created that services all merged applications without the
ongoing inefficiencies that duplication of data causes. e.g.
application model M1 contains customer information in vir-
tual entity JOB while model M2 uses virtual entity
JOBNUM (using a different virtual attribute definition) –
by merging these two virtual entities with the VDEM proc-
ess, the unioned set of associated virtual attributes becomes
automatically available to both applications including the
associated logic required to access, enter and update associ-
ated virtual attributes of the entire unioned set (see Figure 2
for an example of the VDEM process outcome).

The VDEM process consists of two steps. The first in-
volves specifying the association rules for the identified vir-
tual entities and their component virtual attributes to ensure
valid interoperation of the merged virtual entity. A second
optional process is required if there is any data in any of the
candidate virtual entities, to effectively merge the data.

Step 1. Virtual Entity Association (VEA): requires the
identification and pairing of virtual entities from each appli-
cation model that are very similar - in relational database

terms the analogy is creating a 1:1 join between tables.
Each virtual attribute either has a mapping relationship to
one or more virtual attributes in the other virtual entity or it
is considered independent. Independent virtual attributes do
not require any further specification as all their existing
rules are known and now consistent for all models – the re-
maining non-independent virtual attributes require only the
definition of a mapping function for equivalence with the
other virtual entity. All database constraint equivalent rules
are preserved and unchanged. From the perspective of each
original application model, virtual attributes from the other
virtual entity that require mandatory access will automati-
cally become available as new user interface features in
each application – no changes are required to effect this al-
though user interface aesthetics would be expected to trig-
ger a manual forms edit at some stage rather than rely on
the automated generation output from the model runtime
engine.

Step 2. Virtual Data Association (VDA): is only ef-
fected when physical data exists in at least one of the virtual
entities. i.e. the application model merging is occurring at
runtime in a production system rather than at design time.
All existing data in both virtual entities is transformed

Fig. 2, Following application model merging, data level integration processes utilising the Virtual Data
Element Mapping (VDEM) process facilitates data merging at the application model and physical levels.

a. Two merged application
models M1 and M2 each using
a similar but currently inde-
pendent virtual entity, respec-
tively JOB and JOBNUM.

b. Merged application model M3 follows the Virtual Data Element
Mapping (VDEM) process for virtual entities JOB and JOBNUM to
define a new virtual entity CORPJOB that is used as a virtual union
of JOB and JOBNUM – the physical storage for JOB and JOBNUM
then becomes optional. Existing model elements still reference JOB
and JOBNUM separately (unchanged) and CORPJOB can now be
referenced by any model element, and is used for future references.

Application Model M3 Version 1 Application Model M3 Version 2

M1 M2

VEntity
JOB

VEntity
JOBNUM

 M1 M2

VEntity
JOB

VEntity
JOBNUM

VEntity
CORPJOB

External
Databases

3rd International Conference on Industrial Informatics(INDIN 2005)
©2005 IEEE.

based on the mapping functions defined during VEA, in-
cluding duplicate detection and new data migration. The
level of automation of VDA is dependent on the selection
of user intervention options and the level of duplication in
the data.

The outcomes of the VDEM process are as follows:
• Each original sub-model is unchanged and still ref-

erences the original virtual entity and virtual attrib-
utes.

• A new virtual entity is created as a merge of the two
other virtual entities, which is automatically refer-
enced by the model runtime engine, and is available
for future referencing within the model.

• Any data in the original two virtual entities is
merged into the new virtual entity. Continuing
physical update into the original storage for the
original virtual entities becomes optional.

• Additional application model user interface and
workflow elements are automatically defined (from
standard patterns) where any new mandatory virtual
attributes from the new virtual entity have been cre-
ated with respect to each merged application sub-
model.

A likely third step in the VDEM process is to “walk the

graph” of the meta-model and fully replace all references to
both of the original virtual entities with the corresponding
references to the new virtual entity, thus resulting in a fully
integrated model specification for the benefit of future edit-
ing. This is a simple model editor toolset function that reas-
signs the model’s virtual entity and attribute references ac-
cordingly.

The management of VDEM type model integration op-
tions requires familiarity with the data structures of the
modelled applications although not at the technical database
level. Performing the VDEM process is not analogous to
advanced database management as the merged model al-
ready contains and abstracts all database details from the
VDEM user. Some knowledge of the available system func-
tions is required in order to create mapping functions as re-
quired.

C. Element Envelopment (EE)

As useful as class inheritance is in the object world, so is
the inheritance of elements in ontologies such as application
models. Model elements that have repeated use within an
application but within different contexts (often with mini-
mal or no change) use element inheritance to speed and
simplify model editing.

New Element
Envelopment
edge

Fig. 3, Following application model merging, element rationalisation utilising the Element Envelopment
(EE) process facilitates merging user interface and workflow elements at the application model level.

a. As a result of a merge of two ap-
plication models, the merged appli-
cation has two very similar ele-
ments which are currently inde-
pendent, respectively EMPENT
and EMP_ENTRY and their inher-
ited elements. e.g. user interface
fields for the entry of employee
identifier from the two original ap-
plications.

b. Merged application model M3 follows the Element Envel-
opment (EE) process for elements EMPENT and
EMP_ENTRY by enveloping EMPENT as a virtual inheri-
tance of EMP_ENTRY. The new Element Envelopment edge
may require additional transformation metadata to be defined
to ensure any typing compatibility. Future changes to element
EMP_ENTRY will now be inherited by elements that previ-
ously inherited from EMPENT.

Application Model M3 Version 3 Application Model M3 Version 4

Element
EMPENT

Element
EMP_ENTRY

Enveloped
Element

EMPENT

Element
EMP_ENTRY

3rd International Conference on Industrial Informatics(INDIN 2005)
©2005 IEEE.

When multiple models are merged, in an analogy to the
VDEM processes for similar data level elements, other
merged model elements may perform similar functions and
should be rationalised into a cohesive model structure. e.g.
a payroll application model will have numerous instances of
a user interface element that is used to select or enter an
employee identifier – this application model may be merged
with a human resources management application model that
would have a similar element in use, although defined com-
pletely independently.

Element Envelopment is the process of identifying func-
tionally similar elements in application models, and merg-
ing the element to be enveloped (and any descendent ele-
ments of that element) into the element inheritance structure
of the other identified element. The EE process is fairly
simple in that it merely requires the identification of the
root nodes for each of the elements that are to be subjected
to the EE process. The root node of the element to be en-
veloped is then enveloped as a new descendent into the
other element’s element inheritance structure at a selected
level (see Figure 3 for an example).

In the case where the enveloped element is of a different
element type or there is a difference in the i/o patterns of the
element, then a mapping function may need to be specified
between the enveloped element and its new antecedent to
satisfy model integrity. This only needs to occur initially
and between these two elements as standard element inheri-
tance is satisfied for all other elements in the joined inheri-
tance structure. To complete the envelopment process re-
quires the determination of which standard element attrib-
utes are inherited by the enveloped element which is a stan-
dard inheritance feature for each edge.

The management of EE type model integration requires
higher familiarity with the overall model structures of the
modelled applications, the meta-model attributes, and of the
available system functions is required in order to create
mapping functions.

IV. RECAPITULATION, CONCLUSIONS AND FUTURE
WORKS

The merging of models is necessarily domain specific.
This paper has presented the practical integration options
for the G2 system, an instantiation of the domain of Enter-
prise Information System style application models.

The integration methods presented are:
• Standard Element Referencing
• Virtual Data Element Mapping
• Element Envelopment
Other forms of model integration such as merging multi-

ple versions of a single application are more readily avail-
able by using standard graph processing and comparison
algorithms as have been well researched in the public do-
main for other ontological domains [15], [16]. Such com-
parative algorithms that expect a high degree of correlation
in order to automate our process of Element Envelopment
within the models is a fairly simple extension.

V. REFERENCES

 [1] I. Sommerville, Software Engineering (6th Edition), Addison-Wesley
Pub Co, 2000.

[2] R. Pressman, Software Engineering: A Practitioner's Approach 5th

Ed, McGraw-Hill Inc, 2001.

[3] R.H. Martin and D. Raffo, “A model of the software development

process using both continuous and discrete models”, Proceedings of
Software Process: Improvement and Practice, Volume 5, Number 2-
3, June-September 2000.

[4] P. Donzelli, G. Iazeolla, “A hybrid software process simulation

model”, Proceedings of Software Process: Improvement and Prac-
tice, Volume 6, Number 2, June 2001.

[5] “OMG Model Driven Architecture – The Architecture of Choice for a

Changing World”, http://www.omg.org/mda/, 2003.

[6] “Unified Modelling Language”, http://www.uml.org/, 2003.

[7] J. Davis, A. Tierney, E. Chang, “Meta Data Framework for Enterprise

Information Systems Specification - Aiming to Reduce or Remove
the Development Phase for EIS Systems”, in Proceedings of the 6th
International Conference Enterprise Information Systems, 2004, pp.
451-456.

[8] W. Emmerich, “Distributed component technologies and their soft-

ware engineering implications", in Proceedings of the 24th Interna-
tional Conference on Software Engineering, 2002, pp. 537-546.

[9] M.B. Juric, I. Rozman, M. Hericko and T. Domajnko, "Integrating

legacy systems in distributed object architecture", SIGSOFT Softw.
Eng. Notes 25, 2000, pp 35-39.

[10] V. Berzins, "Software merge: semantics of combining changes to pro-

grams" ,ACM Trans. Program. Lang. Syst. 16, 1994, pp 1875-1903.

[11] S. Horwitz, J. Prins and T. Reps, "Integrating noninterfering versions

of programs", ACM Trans. Program. Lang. Syst. 11, 1989, pp 345-
387.

[12] A. Tolk, “Avoiding Another Green Elephant – A Proposal for the

Next Generation HLA Based on the Model Driven Architecture”, in
Fall Simulation Interoperability Workshop, 2002.

[13] S. Melnik, E. Rahmand P.A. Bernstein, "Rondo: a programming plat-

form for generic model management", in Proceedings of the 2003
ACM SIGMOD international conference on Management of data,
2003, pp. 193-204.

[14] S.J. Mellor, "Make models be assets", in Commun. ACM 45, 2000, pp

76-78.

[15] Luqi, "A Graph Model for Software Evolution", in IEEE Trans.

Softw. Eng. 16, 1990. pp 917-927.

[16] S. Uchitel and M. Chechik, "Merging partial behavioural models", in

Proceedings of the 12th ACM SIGSOFT twelfth international sympo-
sium on Foundations of software engineering, 2004, pp 43-52.

[17] M. Gruninger and J. Lee, "Ontology applications and design: Intro-

duction", in Commun. ACM 45, 2002, pp 39-41.

3rd International Conference on Industrial Informatics(INDIN 2005)
©2005 IEEE.

	32_30156_1_Merging_Application_Modesl_in_MDA.pdf
	Introduction
	Related Works
	Model Integration Options
	A. Standard Element Referencing (SER)
	B. Virtual Data Element Mapping (VDEM)
	C. Element Envelopment (EE)

	Recapitulation, Conclusions and Future Works
	References

