

SOFTWARE ENGINEERING ONTOLOGIES AND THEIR IMPLEMENTATION

Wongthongtham, P.1, Chang, E.2, Dillon, T.S.3 & Sommerville, I.4
1, 2 School of Information Systems, Curtin University of Technology, Australia

pornpit.wongthongtham, elizabeth.chang@cbs.curtin.edu.au
3Faculty of Information Technology, University of Technology Sydney, Australia

tharam@it.uts.edu.au
4Department of Computer Science, Lancaster University, Lancaster, UK

is@comp.lancs.ac.uk

ABSTRACT
In this paper, we propose a new approach to software
engineering. We organize software engineering concepts,
ideas and knowledge along with software development
methodologies, tools and techniques into ontologies and
use them as a basis for classifying the concepts in
communication and allowing knowledge sharing. The
explanation of software engineering knowledge formed in
our ontologies clarifies the software engineering concepts,
thereby making them not only explicit but also aiding in
the formalization of a consistent use by team developers.
Furthermore, the ontology form can be understood by
computers.

KEY WORDS
Software Engineering, Ontology, Ontology Development

1. Introduction

We note that software engineering training and practice
vary quite significantly between cities and countries.
Some universities’ computer science and engineering
faculties do not have a subject on software engineering or
software engineering methodologies such as object
oriented analysis and design in UML.

In many large IT organizations and large IT teams, some
software engineer state they have never undertaken a
subject called software engineering, however, they are
‘software engineers’. We found it can be difficult to
communicate between teams and among team members if
strict software engineering principles are not understood
and followed within the same project team. Also,
inconsistency in presentation, documentation, design and
diagrams are likely to result, which could exclude other
teams or members from thorough understanding.
Sometimes they are ignored because they were not
understood (such as a diagram using non-standard
notation) and clarification is not requested.

The software engineering body of knowledge is
commonly accepted and is an easily learned subject using
some of the latest technologies and methodologies such as
UML which can be easily adopted. However, different

teams within the same project could have different books
and references on software engineering and while some
books are titled software engineering are actually mainly
on Java. Some books use other words for ‘software
engineering’ such as ‘Code Complete’ or ‘Object
Oriented’. Different members may use books titled IT
project management as software engineering books as an
independent guide when communicating. Thus, each
member of the team may have a varying understanding of
terms being used. Many times the issues raised are
related to inconsistency in understanding of software
engineering theories and practice. Therefore, we present a
foundation of software engineering knowledge based on
Sommerville’s book [1] together with ‘Software
Engineering, the body of Knowledge’
(http://www.swebok.org) [2]. Ontologies are intended for
knowledge representation, sharing, management,
modeling, engineering and education among others. We
organize software engineering concepts, ideas and
knowledge, software development methodologies, tools
and techniques into ontologies and use them as a basis for
classifying the concepts in communication and enabling
knowledge sharing.

In this paper, we describe the features of software
engineering ontologies and illustrate how software
engineering ontologies can be developed, used and
customized to assist communication among teams within
the same project and allowing knowledge sharing. Section
2 provides details on proposed software engineering
ontologies. Section 3 gives an idea of ontology modeling
and design. Section 4 describes some ontology
representation languages. Section 5 focuses on the
ontology development tool – Protégé. Section 6 describes
ontology implementation. Section 7 shows our software
engineering platform and the final section offers a
conclusion and points to ongoing and future work.

2. Software Engineering Ontologies

We propose two ontologies of software engineering: (1)
generic ontology and (2) application-specific ontology.
Generic ontology is a set of software engineering terms
including the vocabulary, the semantic interconnections,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195640175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and some simple rules of inference and logic for software
development. We link an object to its semantic
description, ontology. The generic ontology provides the
vocabulary for the terms in software engineering. The
contents of software engineering are annotated with a
concept or relationship from the generic ontology. It will
enable software engineering content to be machine-
readable and man-machine-interoperable.

Application-specific ontology is an explicit specification
of software engineering for a particular software
development project. This ontology can be used for
communication in project agreement providing consistent
understanding among project members. Software agents,
for instance, can be utilized to extract and or subtract
information within the project team.

Figure 1: An overview of generic ontology and application-specific
ontology of software engineering

The software engineering discipline covers many aspects
of software development, such as core components
(business functions and logic), critical components
(security, fault tolerance etc.) as well as legacy systems.
Since each project is different, they may only need a
subset of the software engineering ontology. Therefore,
this information resource allows one to generate a subset
ontological knowledge about software engineering,
known as application-specific ontology. Instances
represented by the project specific knowledge, which
specifically meet a particular project need, will be put into
the application-specific ontology. Note that application-
specific ontology and its instances may vary based on its
use for a particular project. Figure 1 shows an overview
of the generic software engineering ontology and the
application-specific ontology of software engineering.
The ontological representation of software engineering
not only represents the commonly agreed knowledge but
also provides detailed relationships (descriptions)
between the concepts and associated diagrams, notations
systems and templates, such as documents or tools. The
application-specific ontology of software engineering can
also be customized. Once created, it is available to be
shared among the team. All team members are
encouraged to obtain knowledge from it through software

agents, studying, obtaining answers, classifying
knowledge and using it as a basis of conceptual
discussion and raising questions including specification,
design, implementation and documentation

3. Ontology Modeling and Design

Before development, a designer has to have a model of
the conceptual structure of the domain i.e. the ontology as
well as an understanding of the structure of information
describing instances of these concepts and their
relationships [3]. A critical aspect of modeling and
designing ontology is lack of graphical notation [4]. We
use UML to model ontology. UML object diagrams can
be interpreted as declarative representations of
knowledge. Instance information can be conveyed as a
UML object diagram that shows the values of object
attributes and the link i.e. instances of associations that
exist between objects. There are benefits for using the
same paradigm for modeling ontologies and knowledge.
Even standard UML cannot express advanced ontology
features such as restrictions, cannot easily conclude
whether the same property was attached to more than one
class, and cannot create a hierarchy of properties [5].
However, it is a kind of agile modeling method for
ontology design. The main aim of this use of UML
notation is simply to create a graphical representation of
ontologies to make them easier to understand. This use of
UML notation to model the underlying ontology should
be distinguished from its use in software development to
model the application domain model.

4. Ontology Representation Languages

In this section, we provide examples of ontology
modeling and designing. It is a portion of application-
specific ontology. We model and design concepts of an
object class diagram in object-oriented design which is
shown in Figure 2. Figure 3 illustrates our ontology
modeling and design for the ‘use case’ representing
concept of use case diagram in object-oriented design. For
the purpose of brevity of paper, we did not show
modeling and design of the following ontologies:
‘activity’, ‘state chart’, ‘package’, ‘sequence’ and
‘collaborative’ defining concepts of activity diagram,
state chart diagram, package diagram, sequence diagram,
and collaborative diagram respectively. There are many
ontology representation languages for creating ontology
including Knowledge Interchange Format (KIF) [6],
Simple HTML Ontology Extension (SHOE) [7], ISO
standard for describing knowledge structures (Topic
Maps) [8], Ontology Exchange Language (XOL) [9],
Ontology Markup Language (OML) [10], Ontology
Inference Layer (OIL [11], DAML+OIL [12]) and Web
Ontology Language (OWL)[13]. We have chosen OWL
because as it has now become the official W3C standard
since February 2004 released by the World Wide Web
consortium [14].

Figure 2: An example of ontology modeling and design describing concept of ‘class’ diagram in object-oriented design

Figure 3: An example of ontology modeling and design describing concept of ‘use case’ diagram in object-oriented design

Ontologies are used to capture knowledge in some
domains of interest. Ontology describes the concepts in
the domain and also the relationships that hold among
those concepts. Different ontology languages provide
different facilities [15]. The most current development in
standard ontology languages is OWL. Likewise Protégé
OWL makes it possible to describe concepts but it also
provides different facilities. It is based on a different logic
model which makes it possible for concepts to be defined
and described [15].

OWL ontology consists of Individuals, Properties, and
Classes.

• Individuals represent objects in the domain of
interest. Individuals are also known as instances. It can be
referred to as being instances of classes or concepts. For
example, from an object class diagram in Figure 4
instances or individuals of operation concept of customer
class are NewCustomer, SaveCustomer, EditCustomer,
ViewCustomer, CancelCustomer, and SearchCustomer.

Figure 4: An example of class diagram put into the ontology as

instances

• Properties are relationships between two things i.e. a
concept/individual links to a concept/individual known as
object property or a concept/individual link to an XML

schema datatype value or an rdf literal known as datatype
property. For example, the object property hasAttribute
links the concept ObjectClass to the concept Attribute and
the datatype property ObjectClassName links the concept
ObjectClass to string, XML schema datatype. Properties
can have inverses. For example, the inverse of
hasRelationship is isRelatedTo. Properties can be limited
to having a single value; to being functional or multiple
values i.e. to being non-functional. Also, they can be
either transitive or symmetric. These property
characteristics are explained in greater detail in the next
section. Properties are also known as roles in description
logics, slots in Protégé, and attributes in UML and other
object-oriented notions.

• Classes are a concrete representation of concepts
interpreted as sets that contain individual(s). Individuals
may belong to more than one class. Classes may be
constructed in a superclass-subclass hierarchy, which is
also known as taxonomy. Subclasses are subsumed by
their superclasses. For example, in object-oriented design,
association dependency and generalization are all a
relationship between object classes. Association,
dependency and generalization are subclass of
Relationship shown in Figure 2.

5. Ontology Development Tool – Protégé

Protégé is an open-source ontology-development tool
developed at Stanford Medical Informatics. It can
represent ontologies consisting of classes, properties,
property characteristics and restriction and instances.
Apart from Protégé there are more leading ontology
editors including OntoEdit, OilEd, Chimaera. Protégé has
a number of different plug-ins including OWL Plug-in.
The OWL Plug-in is a complex Protégé extension which
can be used to edit and create OWL files and databases. In
this paper, we are using Protégé and OWL Plug-in for
developing an ontology. In the next section we will
describe creating an ontology of software engineering
using Protégé – OWL.

6. Ontology Implementation

In this section, we describe how to create ontology of
software engineering.

6.1 Ontology Classes

As can be seen in Figure 2, there are nine classes or
concepts to be named and constructed in the hierarchy.
The class hierarchy of its nine classes is shown in Figure
5. The class owl:Thing is the class that represents the set
containing all individuals. Thereby, all classes are
subclasses of owl:Thing. OWL classes are assumed to
overlap. Therefore, one cannot assume that an individual
is only a member of a particular class; it can be a member
of more than one class. In order to separate a group of
classes, we must make them disjoint from each other.

This assures that an individual who has been asserted to
be a member of one of the classes in the group cannot be
a member of any other class in that group. For example,
Association, Dependency, and Generalization have been
disjointed from one another. This means that there is no
chance for an individual to be an association and
dependency and generalization relationship. Likewise,
Attribute, ObjectClass, Operation, and Relationship have
been disjointed also, because individual such as an
Attribute cannot be individual of either ObjectClass,
Operation, or Relationship in the group of
ObjectClassDiagramEntity.

Figure 5: Class hierarchy shown concept of object class diagram in the

object-oriented design

6.2 Ontology Properties

Figure 6: An object property

There are three types of properties: Object properties,
Datatype properties, and Annotation properties. (i) Object
properties link one class or individual to another; (ii)
Datatype properties link a class or an individual to an
XML schema datatype value or an rdf literal; (iii)
Annotation properties are used to add information to
classes, individuals and object and datatype properties.
Figure 6 is screenshot from Protégé depicted that the
object property named AssocCls linking from class
Association to class ObjectClass. Figure 7 shows that the
property named RoleName is Datatype property linking
from class Association to XML’s datatype valued string.

Figure 7: A datatype property

Figure 8: Various characteristics set in Protégé

The meaning of properties is enriched through the use of
property characteristic. The various characteristics that
properties have are functional, inverse functional,
transitive, and symmetric. In Protégé these characteristics
can be set as shown in the circle in Figure 8.

6.2.1 Functional Properties

Figure 9: Functional and non-functional properties

If a property is functional, there will be at most one
individual that is linked to the individual through the
property. Figure 7 shows that a property named
RoleName is a functional property and meant only having
a single string. Figure 9 is a screenshot from Protégé of
our generic ontology showing SoftwareEngineering class
properties. This says that hasDefinition and

hasAbbreviation are functional property; and
hasAdvantage, hasDisadvantage, and hasTool are non-
functional property.

6.2.2 Inverse Properties
If property links individual x to individual y then its
inverse property will link individual y to individual x.
Figure 6 also shows the property AssocCls and its inverse
property inverse_of_AssocCls. If the individual
Association links with property AssocCls to the individual
ObjectClass then because of the inverse property it can
infer that the individual ObjectClass also links with
property inverse_of_AssocCls to the individual
Association. If a property is inverse functional then it
implies that inverse property is functional also.

6.2.3 Transitive Properties
If property x is transitive and the property x relates
individual a to individual b and also individual b to
individual c, then it can be inferred that individual a is
related to individual c via property x. For example, if
extreme programming is an agile method and agile
method is a rapid software development then it can be
inferred that extreme programming is a rapid software
development.

6.2.4 Symmetric Properties
If property x is symmetric and the property links
individual a to individual b then individual b is also
linked to individual a via property x. For example in ‘use-
case’ ontology as diagram shown in Figure 3 hasLink can
be set as a symmetric property. If the individual Actor is
linked to the individual UseCase through hasLink then it
can be inferred that the individual UseCase must also be
linked to Actor through the hasLink property. In other
words, the property has its own inverse property.

7. Software Engineering Ontology Platform

In this section, we illustrate how software engineering
ontologies facilitate communication and allow knowledge
sharing. Figure 9 shows software engineering knowledge
base allowing knowledge sharing. Any concept related to
software engineering can be fetched showing the
concept’s details e.g. its definition, abbreviation,
principles, advantage, disadvantage, output, template,
tool, involved concept, etc. If the user clicks on relevant
concepts which are arranged in hierarchy, user will see all
details of the concept as well. This can be done by
utilizing generic ontology and software agent to go
through the ontology. Furthermore, from generic ontology
software agent will be able to extract information e.g.
from templates stored in the ontology as instances and
create a handle book for the project. Figure 10 is a typical
example of global communication which does not create
consistent understanding. By utilizing application-specific
ontologies (e.g. diagrams shown in Figure 2 and 3) and
individuals/instances of a particular project data (e.g.
diagram shown in Figure), it can convert the plain text

Figure 9: Screenshot of generic software engineering ontology search

I am struggling to understand why we need it. I think the system
will be simpler for people to understand if we deleted the
insurance registered driver.

My reasons for this are that the insurance registered driver is a
sub type of the customer. This means that for every insurance
registered driver object there must be a corresponding customer
object. However, in the customer object we store values like
customer type, insurance history value and rental history value. It
does not make sense to have these values for the insurance
registered driver. I also think people will be confused because we
have the rental registered driver as an association with the rental
customer (which is a sub type of the customer) but the insurance
registered driver is a sub type of the customer.

Figure10: An example of plain text communication

into a UML-like diagram that helps communication
among the team members within the same project and
provides consistent understanding. Software agents can be
utilized to extract information from ontology described in
OWL. To do so, the software agent consults, for example,
the ‘object class’ ontology. The ontology shows how class
is formed in the class diagram; and each class contains a
name, attributes, and operations; and relationships
between the classes. Therefore, the software agent
dynamically acts to retrieve involved class names,
involved class attributes, involved class operations, and
involved relationships to draw a class diagram.

References:

[1] I. Sommerville, Software Engineering (7th ed.

Pearson Education Limited, 2004).
[2] P. Bourque, et al., The Guide to the Software

Engineering Body of Knowledge, IEEE Software,
16(6), 1999, 35-44.

[3] S. Cranefield, J. Pan, & M. Purvis. A UML ontology
and derived content language for a travel booking
scenario, OAS'03 Ontologies in Agent Systems, 2nd

International Joint Conference on Autonomous
Agents and Multi-Agent Systems, Melbourne,
Australia, 2003.

[4] D. Gašević, V. Devedžić, D. Djurić, MDA Standards
for Ontology Development, International Conference
on Web Engineering (ICWE2004), Munich,
Germany, 2004.

[5] S. Cranefield & M. Purvis, A UML profile and
mapping for the generation of ontology-specific
content languages, Knowledge Engineering Review,
17(1), 2002, 21-39

[6] M.R. Genesereth, R.E. Fikes, et al., Knowledge
Interchange Format Version 3 Reference Manual,
Logic-92-1, Stanford University Logic Group, 1992.

[7] S. Luke & J. Heflin, SHOE 1.01 Proposed
specification, SHOE Project, Feb. 2000.

[8] G. Librelotto, J.C. Ramalho, P.R. Henriques, XML
Topic Map Builder: Specification and Generation. In:
XATA: XML, Aplicaes e Tecnologias Associadas,
2003.

[9] R. Karp,V. Chaudhri, & J. Thomere, “XOL:An
XML-Based Ontology Exchange Language, Aug.
1999.

[10] R. Kent, Conceptual Knowledge Markup Language,
1998.

[11] I. Horrocks et al., OIL in a Nutshell, Proc.ECAI ’00
Workshop on Application of Ontologies and PSMs,
Berlin, Germany, 2000.

[12] I. Horrocks & F. van Harmelen, Reference
Description of the DAML+OIL Ontology Markup
Language, draft report, 2001.

[13] McGuinness, D.L. & F.V. Harmelen, OWL Web
Ontology Language Overview. 2004.

[14] Lacourba, V., Archive of W3C News in 2004. 2004.
[15] Horridge, M., A Practical Guide To Building OWL

Ontologies With The Protege-OWL Plugin, 1.0,
Editor. 2004, University of Manchester.

