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Abstract 
This paper reviews the fundamental definitions of geodetic 
and geocentric coordinate systems, whilst clarifying the 
distinction between coordinates and coordinate systems.  It is 
then argued that the transformation of coordinates from a 
local geodetic datum to a geocentric datum should first 
employ a change of the coordinate system using a six- or 
four-parameter transformation, followed by further 
modelling of the distortion in the coordinates.  It is also 
argued that the horizontal coordinate transformation should 
not include height information, since this forms an entirely 
different coordinate in another coordinate system.   
 

1. Introduction 
As is now well known, Australia will implement the 
Geocentric Datum of Australia (GDA94) in the year 2000.  
Several papers have already been published that explain the 
rationale and technical arguments behind this change (eg. 
Featherstone, 1996; Steed, 1995; Inter-governmental 
Committee on Surveying and Mapping, 1994 and 1997) and 
these will not be duplicated here.  The primary consequence 
of the introduction of the GDA94 is that existing coordinates, 
related to the Australian Geodetic Datum (which has two 
realisations: AGD66 and AGD84), may have to be 
transformed to the GDA94.  Of course, there remains the 
option of a user or organisation retaining the AGD66 or 
AGD84.  Nevertheless, this decision will also require the 
transformation of GDA94 coordinates to these datums.   
 
In 1997, the Australian Surveying and Land Information 
Group (AUSLIG) released several new sets of transformation 
parameters with which to transform coordinates from the 
AGD66 and AGD84 to the GDA94.  These parameters apply 
to several common mathematical models for datum 
transformations (eg. Featherstone, 1997).  Of the conformal 
datum transformations, the seven-parameter transformation is 
endorsed, since it offers the highest accuracy.  This 
transformation has been used for a number of years in 
Australia to transform AGD coordinates to the World 
Geodetic System 1984 (WGS84) in order to provide 
approximate initial coordinates for GPS baseline processing.  
Parameters for the transformation between AGD84 and 
WGS84 have been calculated by Higgins (1987) and between 
AGD66 and WGS84 in New South Wales by the Land 
Information Centre, for example.   
 
In this paper, the appropriateness of the seven-parameter 
model for the transformation of coordinates between 
horizontal geodetic datums will be challenged.  Instead, it will 
be proposed that, for rigour and conceptual clarity, a two-
stage process should be used to achieve the transformation of 
these coordinates.  The first stage changes the coordinate 
system and the second changes the coordinates by modelling 
distortions that occur mostly because of the practical 
realisation of the terrestrial geodetic datum.  It will also be 
argued that heights should not be used in the transformation 
of horizontal coordinates, since these belong to a completely 
different coordinate system.  Indeed, heights are not actually 
needed in the transformation of horizontal coordinates. 
 
 
2. Basic Definitions and Terminology 
Coordinates and coordinate systems are ubiquitous in 
virtually all aspects of surveying and mapping.  Importantly, 
they allow the users of spatial data to easily conceptualise 
coordinates (ie. positions) with respect to some convenient 
coordinate system.  Indeed, there are very few applications 
that can exist without the use of coordinates and coordinate 
systems.  As such, both coordinates and coordinate systems 
have had, and will continue to have, an essential role to play 
in the spatial sciences.   
 
A coordinate system is essentially an abstract idea that forms 
the ‘scaffolding’ for the representation of positions and 
features, and is purely independent of the geometrical objects 
described by them.  As a simple example, a two-dimensional 
polygon feature can be held in a geographical information 
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system (GIS) in terms of geographical coordinates, map-grid 
coordinates or coordinates given in an arbitrary coordinate 
system as specified by the creator of the GIS.   
 
There is the following distinction that can be made between 
coordinate systems and coordinates.  A coordinate system can 
be chosen somewhat arbitrarily, as exemplified by the above.  
Importantly, a coordinate system forms a common frame of 
reference for the description of positions.  On the other hand, 
coordinates are simply an ordered set of numbers that are 
used to describe the positions of points or features in a 
coordinate system.  Accordingly, the terms coordinates and 
positions can be used interchangeably, but always refer to a 
specific coordinate system.   
 
2.1  Cartesian and curvilinear coordinate systems 
In geodesy, two common classes of coordinate system have 
been used to describe positions in relation to the Earth.  These 
comprise the geodetic coordinate system and the Cartesian 
coordinate system.  Historically, geodetic coordinates have 
been used since these are conceptually more appropriate for 
describing positions on or near the Earth’s curved surface.  
However, Cartesian coordinates have taken an increasing role 
because of the widespread use of GPS and other satellite-
based positioning systems.  The geometrical relationship 
between these two coordinate systems is shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  The geometrical relationship between the geodetic 

coordinate system (φ, λ, h) and the Cartesian coordinate 
system (X, Y, Z). 

 
The geodetic coordinate system uses a triplet of orthogonal, 
curvilinear coordinates of geodetic latitude (φ), geodetic 
longitude (λ) and geodetic (or ellipsoidal) height (h).  These 
coordinates refer to the surface of a specific ellipsoid of 
revolution about its minor axis.  Accordingly, they are 
dependent upon the size, shape and three-dimensional 
orientation of the ellipsoid.  Examples of such ellipsoids are 
the Australian National Spheroid or ANS (National Mapping 
Council, 1986), the World Geodetic System 1984 (WGS84) 
ellipsoid (Defense Mapping Agency, 1991) and the Geodetic 
Reference System 1980 (GRS80) ellipsoid (Moritz, 1980).   
 
The geodetic coordinates are defined as follows: 

 
• The geodetic latitude is the angle, reckoned in the 

meridional plane, between the ellipsoidal surface normal 
at the point of interest and the equatorial plane of the 
ellipsoid (-90° ≤ φ ≤ +90°).   

 
• The geodetic longitude is the angle, reckoned in the 

equatorial plane, from the Greenwich meridian to the 
meridian through the point of interest (0° ≤ λ ≤ 180°E 
and -180°W ≤ λ ≤ 0°).   

 
• The geodetic height is the distance above the surface of 

the ellipsoid, reckoned positive away from the ellipsoid 
along the ellipsoidal surface normal.   

 
The horizontal coordinate components in this coordinate 
system (ie. geodetic latitude and geodetic longitude) have 
commonly been used since they are a conceptually more 
convenient coordinates for describing points on or near the 
Earth’s surface.  Also, if the ellipsoid is oriented in such a 
way that it is a best fit to the geoid in a particular region, 
astronomical measurements can be assumed to be coincident 
with their geodetic counterparts for some applications.  This 
is because the deflections of the vertical from the ellipsoidal 
normal are small enough to be neglected for some 
applications.  However, the geodetic height is not used since 
it has no physical meaning.  Instead, heights based on mean 
sea level, and thus in the Earth’s gravity field, are used for 
practical purposes.   
 
The three-dimensional Cartesian coordinate system comprises 
three orthogonal axes in the X, Y and Z directions (Figure 1).  
A corresponding triplet of Cartesian coordinates refers to 
these axes.  The Cartesian coordinate system is named after 
René Descartes, a French mathematician in the 17th century, 
so is spelt as a proper noun.  When applied to the Earth: 
 
• The X axis is directed towards the intersection of the 

Greenwich meridian and equatorial plane. 
 
• The Z axis is aligned towards the north pole of rotation.  
 
• The Y axis is orthogonal to the X and Z axes and 

completes the right-handed coordinate system.  That is, if 
the X axis is rotated towards the Y axis, a right-handed 
screw would be propelled along the Z axis.  

 
For any geodetic coordinate system (φ, λ, h), there exists a 
representative three-dimensional Cartesian coordinate system 
(X, Y, Z).  This is shown in Figure 1, where the Cartesian 
coordinate system is aligned in such a way that its axes are 
coincident with the major and minor axes of the ellipsoid; the 
third is, by definition, orthogonal.  The origin of the 
representative Cartesian coordinate system (X=0, Y=0, Z=0) 
is coincident with the geometrical centre of the ellipsoid, 
where the minor and major axes intersect.   
 
The relationship between coordinates in these two coordinate 
systems (ie. the coordinate transformation) can be derived 
using Euclidean geometry.  Accordingly, the conversion from 
geodetic coordinates to Cartesian coordinates is given by: 

X = (v + h) cos φ cos λ    (1)  
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Y = (v + h) cos φ sin λ    (2) 

Z = (v(1 - e2 ) + h) sin φ    (3) 

with  

v = a (1 - e2 sin2 φ)-1/2    (4) 

where a is the semi-major axis length of the ellipsoid and e is 
its first numerical eccentricity, which are effectively the 
coordinate transformation parameters.  Together, these 
parameters define the size and shape of the reference ellipsoid 
and are integral to the definition of the geodetic coordinate 
system.  In many cases, the flattening (f) of the ellipsoid is 
given instead of the first numerical eccentricity; these are 
related according to e2 = 2f – f 2 
 
The transformation from Cartesian to geodetic coordinates is 
a little more involved because iteration is usually required to 
solve for the geodetic latitude.  Several authors have 
proposed efficient iterative methods (eg. Bowring, 1985).  
Alternatively, closed formulae, which require no iteration, 
have also been proposed (eg. Paul, 1973).  However, the 
relative merits of these conversions will not be discussed 
here.  Instead, the simple rearrangement of equations (1), (2) 
and (3) yields: 

λ = tan–1 Y/X     (5) 

φ = tan–1 [(Z+e2vsinφ)/(X 2+Y 2)-1/2]   (6) 

h = (X 2+Y 2)/cosφ - v    (7) 

which also requires the transformation parameters of the 
appropriate ellipsoid.  Therefore, geodetic coordinates can 
easily be transformed to their corresponding Cartesian 
coordinates, and vice versa. 
 
2.2  Geocentric and geodetic coordinate systems 
In geodesy, two different classes of the above coordinate 
systems have been adopted.  These comprise the geocentric 
and geodetic coordinate systems, whose origins and axes of 
the associated Cartesian coordinate system are different.   
 
• The geocentric coordinate system has its origin at or 

close to the geocentre.  The letter C will be used to 
denote this coordinate system.  Examples of C-systems 
are the conventional terrestrial coordinate system, such as 
the International Earth Rotation Service’s Terrestrial 
Reference Frame (ITRF), and the instantaneous 
terrestrial coordinate system, which are both geocentric 
but differ in their orientation due to the effects of polar 
motion.   

 
• The geodetic coordinate system does not necessarily 

have its origin at or close to the geocentre.  In what 
follows, G will be used to denote this coordinate system.  
An example of the G-system is the Australian Geodetic 
Datum, whose origin is offset from the current best 
estimate of the geocentre by approximately 200 metres 
(eg. Mather, 1970).   

 
Associated with the C and G coordinate systems is the 
definition and use of a datum.  Accordingly, there can be a 
geodetic horizontal datum or geocentric horizontal datum.  

The datum uses coordinates referred to the surface of some 
appropriately defined ellipsoid of revolution.   
 
As stated, the ellipsoid for a local geodetic datum is usually 
chosen so as to give as best fit to the geoid in the region of 
interest.  This simplifies the subsequent reduction of survey 
data to the datum.  That is, certain corrections are made 
sufficiently small that they can be neglected in routine 
surveys.  Therefore, integral to the definition of any datum, 
two additional parameters, typically the semi-major axis and 
flattening, are specified in its definition.  Conceptually, the 
datum is a reference surface to which coordinates are 
referred.   
 
Using an ellipsoid in a G-system (ie. h=0) yields a ‘horizontal 
geodetic datum’.  For instance, the Australian Geodetic 
Datum uses the Australian National Spheroid (National 
Mapping Council, 1986).  On the other hand, using an 
ellipsoid in a C-system (ie. h=0) yields a ‘horizontal 
geocentric datum’.  Therefore, the Geocentric Datum of 
Australia uses the Geodetic Reference System 1980 (GRS80) 
ellipsoid (eg. Featherstone, 1996).   
 
Given the above definitions, coordinates are simply ordered, 
numerical values that describe positions in a given coordinate 
system.  According to the origin of the coordinate system, 
these coordinates can either be geocentric (C-system) or 
geodetic (G-system).  It is also instructive to make the 
distinction between a coordinate system and a geodetic 
network.  A geodetic network is simply a geometrical 
configuration of geodetic measurements between ground 
points that are independent of the coordinate system chosen.  
Therefore, a geodetic network can be used to produce 
positions in a C-system or G-system.  Also, the coordinates 
used can be Cartesian (X, Y, Z) or geodetic (φ, λ, h).   
 
 
3.  Practical Realisation of a Coordinate System 
The idea of a coordinate system must be linked to physical 
reality using an appropriate mathematical model.  Therefore, 
in order to provide the infrastructure for positioning on or 
close to the Earth’s surface, a convenient coordinate system 
must be realised.  This consists of: 
 
• the adoption of specific idea; 
 
• the adoption of a position in the coordinate system (ie. its 

origin) with respect to the Earth; 
 
• the adoption of an orientation of the coordinate system 

(ie. the directions of the coordinate axes) with respect to 
the Earth; 

 
• a prescription of how to determine coordinates 

(positions) in the realised coordinate system and to relate 
these to the prescribed origin point.  

 
There are two specific examples of the above that are of 
interest in geodesy.  These are:  
 
1. A classical, direct realisation of a G-system via the origin 

of a geodetic network.  This system is essentially 
topocentric, with its origin being on the topography.  For 
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example, the realisation of the AGD uses the ANS plus 
the origin point at Johnson Geodetic Station (φ0, λ0 and 
h0).  In order to orient the G-system in space, three other 
parameters are needed.  These are the two deflections of 
the vertical and the geodetic azimuth at the origin station.  
Each of these was effectively defined for the Johnson 
origin for the AGD (Bomford, 1967). 

 
2. A modern, indirect realisation of a C-system via a set of 

positions determined from geodetic satellites and other 
space-based techniques.  For example, the realisation of 
the GDA94 uses the GRS80 ellipsoid (Moritz, 1980) and 
the eight points comprising the Australian Fiducial 
Network (AFN).  The origin of the GDA94 is assumed to 
be close to the geocentre, since the satellites used in the 
establishment of the AFN are assumed to orbit about the 
geocentre.  However, the geocentre is known to vary with 
time.  The orientation of the GDA is implied by the 
positions of the AFN with respect to the Earth’s mean 
spin axis over a specific period of time.   

 
It is important to note that the idea of a coordinate system 
(whether it be Cartesian, geodetic or any other) by itself is 
quite useless for positioning.  Instead, the surveyor must rely 
upon the practical realisation of the coordinate systems in 
order to carry out positioning.   
 
 
4.  Advantages and Disadvantages of Geocentric 

and Geodetic Coordinate Systems 
Two advantages of a geocentric coordinate system (and thus a 
geocentric datum) are:  
 
• The horizontal coordinates of points from different 

localities on the Earth can be treated as being referred 
(approximately) to the same coordinate system.  This, 
most of the time, obviates the necessity of transforming 
coordinates from one system into another when using a 
multitude of these positions.  This has positive 
consequences in applications such as national boundary 
demarcation and intercontinental ballistic missile 
guidance.  It can be argued that military issues have 
driven the need for a single global datum.  For instance, 
in World War 2, the multitude of different datums (and 
map projections) was particularly problematic in Europe. 

 
• Coordinates and coordinate differences determined from 

satellite positioning systems (eg. the Global Positioning 
System or GPS) can usually be treated as being referred 
directly to the geocentric coordinate system.  
Importantly, this requires less work because the GPS-
derived coordinates are directly compatible with the 
horizontal geodetic datum and coordinate 
transformations are not required.   

 
The principal disadvantage of a geocentric coordinate system 
is that: 
 
• It will always be only approximately geocentric.  

Modern, indirect realisations of geocentric coordinate 
systems may be subject to changes (re-definitions) when 
the coordinates used for the positioning and orientation 
of the geocentric coordinate system are re-observed and 

re-computed.  A notable example is the case of the North 
American Datum 1983 (NAD83), which was originally 
thought to be geocentric, but is now known to be offset 
by a few metres.  Thus, a geocentric coordinate system 
should either be considered to be really non-geocentric 
and adopted as such by a convention, or be considered as 
truly geocentric, and thus the subject of gradual 
‘improvement’, and thus change.  Importantly, ‘the rules 
of the game’ should be decided ahead of adopting a 
geocentric datum.   

 
The advantage of a geodetic coordinate system is that: 
 
• It is inherently immutable.  This system was the order of 

the day before the advent of satellite positioning systems.  
Its realisation was direct and every G-system was really 
fixed and oriented with respect to the origin of the 
network for good.  Such a system is thus quite 
transparent to the user, since it is understood that the 
system relates to something that has been optimised for a 
particular country.  For instance, the origin of the 
coordinate system can be physically seen. 

 
The disadvantage of a geodetic coordinate system is that:  
 
• It is quite different from continent to continent (empire to 

empire, country to country, municipality to municipality).  
Thus, dealing with positions of points in different G-
systems (on different geodetic datums) requires a 
knowledge of transformation equations and parameters, 
which is generally a fairly complicated matter.  This is 
reasonably well understood by most professionals 
working with these data, but is not understood by the 
majority of lay users. 

 
 
5.  Terrestrial- and Satellite-derived Geodetic 

Networks 
Only horizontal positions are considered in what follows, 
because horizontal terrestrial networks have been developed 
in a differential manner from the origin of the network.  The 
horizontal positions have been obtained from a least-squares 
adjustment, often a piece-wise adjustment, of observations 
made by terrestrial geodetic instruments: distances, horizontal 
angles and/or directions, azimuths and other auxiliary 
observations.   
 
An important fact that should be borne in mind is that the 
points belonging to horizontal geodetic networks have their 
horizontal positions known as accurately as it was possible to 
determine them, while their heights are known only 
approximately, or not at all.  Height networks are entirely 
different entities, which have been designed and constructed 
using entirely different principles.  Therefore, they should not 
be mixed with horizontal networks.  Though heights are 
required in the establishment of a horizontal geodetic datum, 
to reduce observations from the surface of the Earth to the 
ellipsoid, they do not form part of the horizontal geodetic 
datum.  For instance, the Australian Height Datum (AHD) is 
separate from the AGD and GDA.  It was established in 1971, 
was independent of the AGD66 and AGD84, and will not be 
affected by the introduction of the GDA94 and vice versa.   
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Satellite geodetic networks are configurations of points whose 
coordinates have been determined by satellite positioning 
systems.  These positions are inherently three-dimensional, 
and are normally computed in the Cartesian coordinate 
system.  These positions can be readily transformed to the 
horizontal geodetic coordinates, latitude and longitude on the 
geocentric horizontal datum, using equations (1) through (7). 
Of note, the horizontal coordinates comprising satellite 
geodetic networks are generally known to a much better 
accuracy than their terrestrial counterparts, especially over 
long distances.  For instance, Savage et al., (1996) show a 
systematic difference may exist between GPS and terrestrially 
derived distances.  This is most likely to be due to scale-
dependent errors in the terrestrial instrumentation.  This alone 
provides a rationale for adopting satellite-derived coordinate 
systems.   
 
When terrestrially and satellite-derived positions are to be 
considered side by side, the tendency has been to convert the 
terrestrial positions to three-dimensional positions and 
combine the networks in three dimensions.  Indeed, this 
approach has been taken in Australia.  This practice is 
considered dangerous because the heights of points belonging 
to terrestrial networks are clearly of very different 
provenance compared to their horizontal positions, as well as 
compared to the heights of points belonging to satellite 
networks.  Therefore, it is recommended that the combination 
of these geodetic networks in the definition and realisation of 
horizontal datums remains a horizontal process (eg. Vanicek 
and Steeves, 1996). 
  
 
6.  Horizontal Network Distortions 
As professional providers of position, it is important for 
surveyors to always track errors in positions.  Essentially, a 
position should be considered as unreliable unless it has an 
associated estimate of its accuracy.  When dealing with 
geodetic networks, one should be aware of the fact that the 
individual positions are subject to both systematic and 
random errors.  The random errors are characterised by 
statistical techniques, whereas the systematic errors have to 
be modelled using deterministic techniques.   
 
The systematic errors are particularly dangerous, amounting 
easily to tens of metres.  When applied to geodetic networks, 
these systematic errors are generally called ‘distortions’, so as 
to distinguish them from their random counterpart.  It is these 
distortions that complicate the combination of terrestrial and 
satellite positions.  This is principally because one wishes to 
preserve the existing investment in positions and, at the same 
time, to take the advantages of the modern satellite 
positioning capabilities.  Importantly, the Australian Geodetic 
Datum appears to contain distortions (eg. Collier et al., 
1998).   
 
Distortions are much worse in the case of terrestrial geodetic 
networks, so much so that, in comparison, the distortions of 
satellite networks can be often disregarded altogether.  The 
distortions in terrestrial geodetic networks come mostly from 
the past practice of approximate observation reductions (eg. 
ignoring the geoid-ellipsoid separation or deflection of the 
vertical) and from approximate adjustment procedures.  In 
Australia, the State/Territory surveying and mapping agencies 
are now making a concerted effort to model these distortions 

and produce a mathematical expression for predicting the 
distortion vector D as a function of position (φ, λ).  Note that 
the distortion D(φ,λ) is really a pair of real numbers; a 
horizontal vector that is applied to the horizontal position of 
point (φ, λ) to obtain its more correct horizontal position.  
The random errors in the modelled distortions can and should 
also be estimated.  In Australia, these distortion models will 
be provided as coordinate grids of distortion vectors, from 
which the user can interpolate the appropriate distortion to be 
applied at each point. 
 
Applying the distortion modelling process can improve the 
accuracy of the transformed coordinates with respect to the 
new coordinate system.  This is because the simple conformal 
transformations both carry and ‘smear’ the systematic errors 
in the original coordinates into the new coordinates.  As such, 
the full benefit of a new datum will not be realised when 
using this approach.  Therefore, it is recommended that 
distortion modelling is included in the transformation 
process. 
 
 
7.  Transformations between Coordinate 

Systems 
Now that the concepts of and distinctions between coordinate 
systems and coordinates have been given, together with the 
general notions of distortions in terrestrial geodetic networks, 
it is now possible to discuss the transformation of coordinate 
systems and the coordinates as realised via geodetic 
networks.  
 
7.1 Transformation of coordinate systems 
The transformation between coordinate systems, as distinct 
from coordinates, consists of three translations (related to the 
origin positions of the two systems) and three rotations 
(related to the alignment of the two systems).  These six 
quantities correspond to the six degrees of freedom of any 
rigid body, which a three-dimensional coordinate system is.  
It is therefore essential to realise that a scale difference (ie. 
the seventh parameter in the seven-parameter transformation) 
has no role to play in the transformations between coordinate 
systems.   
 
Any scale differences, as well as the network distortions 
discussed above, only come into consideration when 
transforming the (distorted) coordinates.  Coordinate systems 
can never be considered as distorted, even coordinate systems 
that have been realised (positioned and oriented) indirectly 
via coordinates.  The principal reason why coordinate 
systems must be considered undistorted is to keep their 
position and orientation immutable.   
 
On the other hand, it has been common practice, both in 
Australia and elsewhere, to transform coordinates based on 
seven transformation parameters, which comprise the six 
degrees of freedom and an additional scale change.  This 
scale change inherently includes a component for the 
distortion in the coordinates.  When taking this approach, the 
concept of the transformation between coordinates and 
coordinate systems becomes blurred.  Comparing the scale 
factor for Higgins’s and AUSLIG’s transformation 
parameters shows a notable example of this.  The scale factor 
‘changes’ from +0.0983ppm to –0.191ppm.  When 
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interpreted alone and applied across the continent, this 
implies that there has been a change in distortion of around 
one metre.  Therefore, it is argued that the transformation of 
coordinate systems and the transformation of the distorted 
coordinates, usually in the terrestrial geodetic system, are 
treated separately.   
 
The basic transformation to be dealt with here is that between 
the practical realisation of a G-system and the practical 
realisation of a C-system.  For the sake of clarity, this can be 
reduced to the transformation between their respective, 
representative Cartesian coordinate systems using equations 
(1) to (7).  Importantly, the transformation of the coordinate 
system consists of three translations to coincide the origins 
and three rotations to align the three axes. Using matrix-
vector notation, the transformation of coordinate systems is 
achieved via 

rG = R(rx, ry, rz) rC – tC    (8) 

where rG = (XG, YG, ZG) T is the position vector in the G-
system and rC = (XC, YC, ZC) T is the position vector in the C-
system, the superscript T denotes the transpose, R is the 
rotation matrix, (rx, ry, rz) are the angles of the misalignment 
of the three axes between each system, and tC is the 
translation vector between the origins of the two systems.  
Essentially, tC is the position vector of the origin of the G-
system in the C-system, and it follows that tC = -tG.   
 
For small misalignment angles, the rotation matrix can be 
linearised to leave a three-by-three matrix with a single 
rotation term in each element.  Using this approximation, 
equation (8) is rearranged to give 

R(rx, ry, rz) rC = rC + w × rC   (9) 

where × is the vector cross product, w = (rx, ry, rz)T is the 
transpose of the misalignment vector, which can be written as  

w = w (cos φm cos λ m, cos φ m sin λ m, sin φ m) T  (10) 

where w is the magnitude of the misalignment and (φ m, λ m) 
are the horizontal geodetic coordinates of the misalignment 
axis (Vanicek and Wells, 1974).  If the G-system has been 
realised in the classical way (via the local astronomical 
coordinate system at the topocentric origin of network), then 
(φ m, λ m) = (φ o, λ o).  That is, the misalignment axis is at the 
origin of the geodetic network.  In this case, only one 
misalignment angle, w = w o, appears in the transformation 
equation (9) and the six transformation parameters are 
reduced to only four. 
 
Because of the nature of the initial orientation of any G-
system, its misalignment with respect to a C-system is 
constrained: this misalignment rotation can only take place 
around the ellipsoidal normal at the origin of the geodetic 
network.  In the unlikely event when the G-system had been 
oriented some other way (rather than vis-a-vis the local 
astronomic system at the origin of the network) then three 
unconstrained rotations would have to be used.  Therefore, 
transformations should consider involving either four or six 
transformation parameters. 
 
7.2  Determination of coordinate system transformation 
parameters  

The six or four transformation parameters cannot be 
determined from the observations collected for the original 
positioning and orientation of the G-system.  Instead, they 
have to be determined from the positions of a common set of 
points known in both coordinate systems (ie. G and C).  
However, this approach unavoidably includes all the random 
errors and distortions that affect both these positions.  
Accordingly, these propagate into the derived transformation 
parameters.  Therefore, an effort must be made to model and 
eliminate as much of the distortions in the coordinates as 
possible before the coordinates are used for the 
transformation parameter estimation.  If the distortions have 
not yet been reliably determined, the distortion parameters 
D(φ,λ) can be solved for together with the four or six 
unknown transformation parameters.  Note that these 
transformation parameters are immutable in time and in 
space.  The random errors in these transformation parameters 
should also be estimated. 
 
The following derivations can be used to estimate the four or 
six transformation parameters, assuming that the distortions 
have already been modelled and removed.  Firstly, equation 
(8) is rewritten as 

rG = rC + w × rC – tC    (11) 

or  

ri
G – ri

C = w × ri
C – tC    (12) 

for the generalised use of i = 1,…n points 
 
From the commutative law of matrix multiplication 

w × ri
C = – ri

C × w = -Qi w   (13) 

where  

        (   0, -Zi,  Yi) 
Qi = (  Zi,   0, -Xi) 
        (-Yi,   Xi,   0) 

which is a three-by-three matrix containing the positions of 
each point i in the C-system, and  

∀i=1,…n: ri
G – ri

C = -Qi w – tC  (14) 

or 

∀i=1,…n: ∆ri = Ai x   (15) 

where Ai = [-Qi , I] is the design matrix and x = [w, tC]T is the 
vector of the unknown parameters to be estimated. 
 
Equation (15) yields a system of 3n linear observation 
equations for four or six unknowns, depending upon the 
conditions described earlier.  If the variance-covariance 
matrix (C∆r = CrG + CrC) is known, then the least-squares 
estimate of the transformation parameters is 

x = (AT C∆r –1 A) –1  A T C∆r –1 ∆r   (16) 

and the (random) error estimate in these transformation 
parameters is 

Cx = (AT C∆r –1 A) –1    (17) 
 
7.3  The role of heights in the horizontal datum 
transformation 
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In computing ∆ri above, the ellipsoidal heights hi are assumed 
to have been used.  However, for the reasons outlined earlier, 
this should not be done!  Therefore, the following alternative 
is proposed. 

∀i=1,…n: ∆ri = (∆Xi, ∆Yi, ∆Zi) T = J(∆φi, ∆λ i, ∆hi) T (18) 

where J is the Jacobian and this represents an exact 
relationship.  Substituting this into equation (15) gives 

∀i=1,n:  J(∆φi, ∆λ i, ∆hi) T = Ai x   (19) 

or 

∀i=1,n:  ∆ri  = Ji
 –1 Ai x = A*i x   (20) 

 
The least-squares solution to equation (20) is  

x = (A*T C∆r –1 A*) –1  A* T C∆r –1 ∆r  (21) 

with a (random) error estimate of  

Cx = (A*T C∆r –1 A*) –1    (22) 
 
When heights are omitted from the transformation equations, 
as it is argued they should be, and the common points are 
taken to be on the ellipsoid. 
 
 
8.  Transformation of Coordinates 
Often surveyors are required to use coordinates determined in 
one network, in one coordinate system (on one datum) in the 
context of coordinates belonging to the other network, in the 
other coordinate system (on the other datum).  Consider the 
following example: a GPS-determined position of a parcel 
corner is to be reconciled with the rest of parcel’s boundary 
that is defined by points whose positions are known on the 
AGD, and have been derived from a terrestrial network.  A 
transformation of the coordinate systems has to be used first 
to get coordinates in the desired coordinate system, then the 
transformed coordinates have to be distorted to fit into the 
fabric of existing points. 
 
8.1  The often-used solution 
Some surveying and mapping agencies put distortion models 
together with transformation parameters into one 
transformation package, notably the seven-parameter model.  
In such an approach, the transformation parameters often 
masquerade as varying with position, which must look very 
odd to anyone who understands the issue correctly.  Of 
course, this coordinate transformation package can be used to 
transform coordinates from one datum to another and, at the 
same time, to distort them (albeit to a limited extent) to fit the 
fabric of points on the other datum (whether one wants to do 
this or not!).   
 
Why this is done is not clear.  What is clear, however, is that 
keeping the two concepts of coordinate systems and 
distortions in coordinates (and thus the two sets of 
parameters) separate, gives the user more flexibility, more 
insight into the working of the transformations and more 
appreciation for the individual error contributions.  On the 
other hand, it requires the user to be a bit more sophisticated 
and knowledgeable; is this the only reason why the simplistic 
package is opted for?  
 
 

9.  Summary  
Based on the difference between coordinate systems and the 
coordinates realised by geodetic or geocentric datums, it has 
been argued that the transformation should follow two stages:   
1. Transformation of the coordinate systems,  
2. Modelling of the distortions between the coordinates.   
In addition, it has been argued that heights be excluded from 
a horizontal coordinate transformation, since these comprise 
an entirely different coordinate system.  
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