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Abstract: The main problem of the rigorous definition of the orthometric height is the 

evaluation of the mean value of the Earth’s gravity acceleration along the plumbline within 

the topography.  To find the exact relation between rigorous orthometric and [Molodensky] 

normal heights, the mean gravity is decomposed into: the mean normal gravity, the mean 

values of gravity generated by topographical and atmospheric masses, and the mean gravity 

disturbance generated by the masses contained within geoid.  The mean normal gravity is 

evaluated according to Somigliana-Pizzeti’s theory of the normal gravity field generated by 

the ellipsoid of revolution.  Using Bruns’s formula, the mean values of gravity along the 

plumbline generated by topographical and atmospheric masses can be computed as the 

mean linear potential gradient between the Earth’s surface and geoid.  Since the gravity 

disturbance generated by masses inside the geoid (multiplied by the geocentric radius) is 

harmonic above the geoid (after removal of the topographic and atmospheric masses), its 

mean value along the plumbline between the Earth’s surface and the geoid is obtained by 

solving the inverse Dirichlet boundary value problem.  Numerical results for a test area in 

the Canadian Rocky Mountains show that the difference between the rigorously defined 

orthometric height and the Molodensky normal height reaches ~0.5 m.   

 

Keywords: Mean gravity – Normal height – Orthometric height – Plumbline  

 

1. Introduction 

The orthometric height is the distance, measured positive outwards along the plumbline, 

from the geoid (zero orthometric height) to a point of interest, usually on the topographic 

surface (e.g., Heiskanen and Moritz 1967, chap 4; Vaníček and Krakiwsky 1986; chap 

16.4).  The [curved] plumbline is at every point tangential to the gravity vector generated 
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by the Earth, its atmosphere and rotation.  The orthometric height can be computed from 

the geopotential number, if available, using the mean value of the Earth’s gravity 

acceleration along the plumbline between the geoid and Earth’s surface.  Alternatively and 

more practically, it can be computed from spirit levelling measurements using the so-called 

orthometric correction, embedded in which is the mean value of gravity (cf. Strang van 

Hees 1992).  Ignoring levelling errors and the many issues surrounding practical vertical 

datum definition (see, e.g., Drewes at al. 2002; Lilje 1999), the rigorous determination of 

the orthometric height reduces to the accurate determination of the mean value of the 

Earth’s gravity acceleration along the plumbline between the geoid and the point of interest.   

An appropriate method for the evaluation of the mean gravity has been discussed 

for more than century.  The first theoretical attempt is attributed to Helmert (1890).  In 

Helmert’s definition of the orthometric height, the Poincaré-Prey gravity gradient is used to 

evaluate the approximate value of mean gravity from gravity observed on the Earth’s 

surface (also see Heiskanen and Moritz 1967, chap 4; Vaníček and Krakiwsky 1986; chap 

16.4).  Later, Niethammer (1932) and Mader (1954) included the gravitational effect of the 

topography by adding the mean value of the gravimetric terrain correction within the 

topography.  Heiskanen and Moritz (1967, p 165) also mentioned a general method for 

calculating mean gravity along the plumbline that includes the gravitational attraction of 

masses above a certain equipotential surface, thus accounting for the shape of the terrain.  

More recently, Vaníček et al. (unpublished), Allister and Featherstone (2001) and Hwang 

and Hsiao (2003) introduced further corrections due to vertical and lateral variations in the 

topographical mass-density.  In addition to the above theoretical developments, numerous 

empirical studies have been published on the orthometric height (e.g., Rapp 1961; 

Krakiwsky 1965; Strange 1982; Kao et al. 2000; Allister and Featherstone 2001; Tenzer 
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and Vaníček 2004; Hwang and Hsiao 2003; Tenzer et al. 2003; Dennis and Featherstone 

2003).  

Asserting that the topographical density and the actual vertical gravity gradient inside 

the Earth could not be determined precisely, Molodensky (1945, 1948) formulated the 

theory of normal heights.  Here, the mean actual gravity within the topography is replaced 

by the mean normal gravity between the reference ellipsoid and the telluroid (also see 

Heiskanen and Moritz 1967, chap 4).  Normal heights have been adopted in some countries, 

whereas (usually Helmert) orthometric heights have been adopted in others.  An 

approximate formula relating normal and orthometric heights is given in Heiskanen and 

Moritz (1967, Eq. 8-103), with a more refined version given by Sjöberg (1995).  Given that 

the principal difference between orthometric and normal heights is governed by the effect 

of physical quantities (i.e., the gravitational effects of the topography and atmosphere, and 

the gravity disturbance generated by the masses contained within the geoid) on the mean 

gravity, these are investigated in this article.  It can also be argued that Molodensky’s 

objection to the orthometric height is no longer so convincing because more and more 

detailed information is becoming available about the shape (i.e., digital elevation models) 

and mass-density distribution (e.g., from geological maps, cross-sections, boreholes and 

seismic surveys) inside the topography.   

 

2. Mean gravity along the plumbline 

Let us begin with the ‘classical’ definition of the orthometric height , (e.g., 

Heiskanen and Moritz, 1967, Eq. 4-21)  

(ΩOH )

:OΩ∈Ω∀  ( ) ( )[ ]
( )Ω
Ω

=Ω
g
rCH tO ,       (1) 
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where  is the geopotential number of the point of interest, which in this case will 

be taken on the Earth’s surface 

( )[ ΩtrC ]

( )[ ]Ωtr , and ( )Ωg  is the mean value of the magnitude of 

gravity along the plumbline between the Earth’s surface 

( ) ( ) ( )( )Ω

)

+Ω≅ΩΩ∀ OHrg

(ΩΩ∈Ω∀ gr:O

Ω∈ O : rt  and the geoid surface for which the geocentric radius 

is denoted by .  To describe a 3D position, the system of geocentric 

coordinates φ , λ  and r  is used throughout this paper, where φ  and λ  are the geocentric 

spherical coordinates ( )λφ ,=Ω , OΩ∈Ω ( )π2;2/2/πO ≤≤−∈Ω λφ 0 ≤π≤ , and r  

denotes the geocentric radius )( )∞+,0∈+ℜℜ+∈r .   

According to the theorem of integral mean (e.g., Gradshteyn and Ryzhik 1980), the 

mean gravity (Ωg )  along the plumbline is defined by 

:OΩ∈Ω∀   ( ) ( ) ( ) ( )( )
( )

( ) ( )
∫

Ω+Ω

Ω=
Ω−Ω

Ω
=Ω

O

d,,cos,1
O

Hr

rr

g

g

rrrg
H

g org ,  (2) 

where ( )( )org ,,cos Ω− r

or

 is the cosine of the deflection of the plumbline from the geocentric 

radial direction, and  is the unit vector in the geocentric radial direction.  Equation (2) is 

equivalent to the integral taken along the [curved] plumbline as given in Heiskanen and 

Moritz (1967, Eq. 4-20).  

In order to analyse the mean gravity along the plumbline, the actual gravity ( )Ω,rg  

in Eq. (2) is decomposed into the normal gravity ( )φγ ,r , the gravity disturbance generated 

by masses inside the geoid , and the gravitational attraction of topographical and 

atmospheric masses  and 

( Ω,NT rgδ

)Ω

)

( ,rg t ( )Ω,rg a , respectively, so that (Tenzer et al. 2003) 

:,O
+ℜ∈Ω∈Ω∀ r  ( ) ( ) ( ) ( ) ( )Ω+Ω+Ω+=Ω ,,,,, NT rgrgrgrrg atδφγ .  (3) 
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Applying the above decomposition to Eq. (2), the mean gravity ( )Ωg  becomes 

:OΩ∈Ω∀  ( ) ( ) ( ) ( ) ( )Ω+Ω+Ω+Ω=Ω at gggg
NT

δγ .    (4) 

The relation between the mean normal gravity ( )Ωγ  within the topography in Eq. (4) and 

Molodensky’s mean normal gravity is formulated in Appendix A.   

The main problem to be discussed in the sequel is the evaluation of the mean gravity 

disturbance generated by the masses inside the geoid ( )ΩNT
gδ , and the mean topography-

generated gravitational attraction ( )Ωtg .  The superscript NT is used here in accordance 

with the notation introduced in Vaníček et al. (2004) to denote a quantity reckoned in the 

so-called “no-topography” space, where the gravitational effect of the topographic and 

atmospheric masses has been removed and treated separately.  The last term in Eq. (4), i.e., 

the mean atmosphere-generated gravitational attraction ( )Ωag , is derived in Appendix B.  

 

3. Mean gravity disturbance generated by masses with the geoid 

The mean gravity disturbance generated by the geoid ( )ΩNT
gδ  in Eq. (4) is given exactly 

by  

:OΩ∈Ω∀  ( ) ( ) ( ) ( )( )
( )

( ) ( )
∫

Ω+Ω

Ω=
Ω−Ω

Ω
=Ω

O

d,,cos,1 NT
O

NT Hr

rr

g

g

rrrg
H

g orgδδ . (5) 

In a spherical approximation ( ( ) R:O ≈ΩΩ∈Ω∀ , where gr R  is the mean radius of the 

Earth, see Bomford 1971), Eq. (5) reduces to 

:OΩ∈Ω∀  ( ) ( ) ( )( )
∫

Ω+

=
Ω

Ω
≅Ω

OR

R

NT
O

NT d,1 H

r
rrg

H
g δδ .      (6) 

Considering an accuracy of <1 mm, the spherical approximation of the geoid 

surface cannot be applied directly to the evaluation of the mean gravity in Eq. (2).  This is 
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because the Earth’s gravity is at least 1.5x103 larger than the geoid-generated gravity 

disturbance and topography-generated gravity.  Therefore, the correction to the orthometric 

height due to the deflection of the vertical is investigated in Appendix A. Assessing from 

the estimation of the maximum magnitude of the correction of mean normal gravity due to 

the deflection of the plumbline, the spherical approximation in Eq. (6) causes, at most, a 

few µGal error in the computation of ( )ΩNT
gδ , which propagates as an error in the 

orthometric height of <1 mm. 

In order to evaluate the geoid-generated gravity disturbance  on the 

right-hand-side of Eq. (6), Poisson’s solution to the Dirichlet boundary value problem is 

used.  This is described by the Poisson integral (e.g., Kellogg 1929) 

( Ω,NT rgδ )

:R,O ≥Ω∈Ω∀ r  ( ) ( ) ( )[ ] Ω′Ω′Ω′Ω=Ω ∫∫
Ω∈Ω′ O

dR,;,KR
π4

1, NTNT
grgr

r
rg δδ ,   (7) 

where  is the spherical Poisson kernel, and ( Ω′Ω R,;,K r ) ( )[ ]Ωgrg NTδ  denotes the geoid-

generated gravity disturbance specifically at the geoid surface.  Inserting for  in 

Eq. (6) from Eq. (7), the mean gravity disturbance 

( Ω,NT rgδ )

( )ΩNTgδ  becomes  

:OΩ∈Ω∀  ( ) ( ) ( )( ) ( )[ ] Ω′Ω′Ω′Ω
Ω

≅Ω ∫∫ ∫
Ω∈Ω′

Ω+

=

−

O

O

ddR,;,KR
π4

1 NTR

R

1
O

NT
g

H

r
rgrrr

H
g δδ . (8) 

The radially integrated Poisson’s kernel ( )Ω′Ω R,;,rK  in Eq. (8) can be formulated 

as follows 

:R,, O ≥Ω∈Ω′Ω∀ r   ( ) ( )( )
∫

Ω+

=

− Ω′Ω=Ω′Ω
OR

R

1 dR,;,KR,;,K
H

r
rrrr  

( ) ( ) ( )Ω+

=

− Ω′Ω+−
+Ω′Ω−=

OR

R

1

sin
R,;,cosRlnR,;,R2

H

r
r

rrr
ψ

ψ l
l ,  (9) 
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where  is the direct [Euclidean] distance between the computation and roving 

points, and the argument 

( Ω′′Ω ,;, rrl )

ψ  stands for the geocentric spherical distance.   

To obtain the mean gravity disturbance from Eq. (8), the gravity disturbances 

generated by the geoid have to be first downward continued from the Earth’s surface onto 

the geoid.  Vaníček et al. (2004) define the gravity disturbances and anomalies at the 

Earth’s surface as generated by the masses inside the geoid, as well as the evaluation of the 

inverse Dirichlet’s boundary value problem in the (no-topography) NT-space. 

Alternatively, the mean value of the geoid-generated gravity disturbance ( )ΩNTgδ  can be 

obtained directly from the gravity disturbances ( )[ ]Ωtrg NTδ  at the Earth’s surface, which, in 

turn, is obtained from the real gravity disturbances ( )[ ]Ωtrgδ  by subtracting the 

gravitational attraction of topographical and atmospheric masses from them (ibid.), i.e.,  

:OΩ∈Ω∀  ( )[ ] ( )[ ] ( )[ ] ( )[ ]Ω−Ω−Ω=Ω t
a

t
t

tt rgrgrgrg δδ NT .     (10) 

We shall now show how this is achieved for discrete values of the gravity disturbance. 

The solution to the inverse Dirichlet’s boundary value problem is described by the 

Poisson integral equation.  To define its discretized form, the surface integration domain 

 is split into a finite number  of ‘rectangular’ geographical cells OΩ∈Ω

i

N

iii λφφ ∆∆cos=∆Ω ; Ni ,...,2,1∈ , where φ∆  and λ∆  represent steps of numerical 

discretization in latitude and longitude.  For each geographical cell, the average value of the 

geoid-generated gravity disturbance ( )[ ]iΩtrg NTδ ; Ni ,...,∈ 2,1  is evaluated at the 

Earth’s surface.  Equivalently for each corresponding geographical cell at the geoid surface, 

the solution of the Poisson integral equation is parameterized by discrete values of 

( )[ ]jΩgrg NTδ ; N,...,2j ,1∈ .   
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The functional ( )[ ]jitrb ΩΩ ,R;  of the Poisson integral that defines the relation 

between 
 
and ( )[ ]itrg ΩNTδ ( )[ ]jgrg ΩNTδ  is equal to  

:,...,2,1, Nji ∈∀  ( )[ ] ( ) ( )[ ] jjit
it

jit r
r

rb ∆ΩΩΩ
Ω

=ΩΩ ,R;KR
π4

1,R;  

( )
( )
( )[ ] jjj

jit

it

it r
r

r
λφφ ∆∆

ΩΩ
−Ω

Ω
= cos

,R;
RR

π4
1

3

222

l
.     (11) 

Denoting the vector of the gravity disturbances ( )[ ]itrg ΩNTδ
 
by  and the 

vector of the gravity disturbances 

( )[ it
NT Ωrδg ]

( )[ ]jgrg ΩNTδ
 
by ( )[ ]jΩg

NT rδg , the discrete form of 

Poisson’s integral equation is expressed by (Martinec 1996; Vaníček et al. 1996; Sun and 

Vaníček 1998) 

( )[ ]( ) ( )[ ] ( )[ ]( )T1T
it

NT
jitjg

NT ΩrδgΩR,;ΩrBΩrδg −= ,     (12) 

where ( )[ ]jit ΩR,;ΩrB  is the matrix of coefficients ( )[ ]jitrb ΩΩ ,R; .  

Consequently, the discrete form of the radially integrated Poisson’s integral in Eq. 

(8) can be formulated as follows.  The relation between the scalar value of the mean geoid-

generated gravity disturbance ( )ΩNTgδ  and the vector of the geoid-generated gravity 

disturbances referred to the geoid surface ( )[ ]jg
NT Ωrgδ

 
is introduced by   

:OΩ∈Ω∀  ( ) [ ] ( )[ ]( )TNT
jg

NT
j ΩrδgΩR,Ω;r,b=Ωgδ ,      (13) 

where [ ]jΩR,Ω;r,b
 

is the vector of radially integrated Poisson’s kernels ( )jr ΩΩ R,;,K  

(Eq. 9). It reads 

[ ] ( )
( ) jjjjr

H
λφφ ∆∆ΩΩ

Ω
= cosR,;,KR

π4
1

OjΩR,Ω;r,b , Nj ,...,2,1∈ .  (14) 
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Substituting Eq. (12) into Eq. (13), the mean gravity disturbance generated by the geoid is 

obtained by solving the following system of linear algebraic equations 

( ) ( ) ( )( ) ( )[ ]( )T1NT
it

NT
jitj ΩrδgΩR,;ΩrBΩR,Ω;r,b −≅Ωgδ ,    (15) 

where the inequality shows that there remains only the discretization error.   

A numerical experiment was conducted in our test area in the Canadian Rocky 

Mountains, for which digital elevation and gravity data are available. This is the same test 

area used for previous studies (e.g., Huang et al. 2001; Martinec 1996). For the 

computation of the mean geoid-generated gravity disturbances ( )ΩNTgδ  by solving the 

system of linear algebraic equations in Eq. (15), the geoid-generated gravity disturbances 

 
at the earth surface averaged for 5’ x 5’ geographical grid and corresponding 

mean orthometric heights have been used. The number of equations has been reduced by 

solving Eq. (15) only for the near-zone integration sub-domain, while the far-zone 

contribution can be estimated from the global gravity model.   

( )[ Ωtrg NTδ ]

From Fig. 1, the contribution of the mean gravity disturbance generated by the geoid 

on the orthometric height varies between –8 cm and +44 cm (corresponding to heights 

ranging from 4 m to 2736 m, and geoid-generated gravity disturbances at the earth surface 

ranging from –153 mGal to 116 mGal).   

 

4. Mean topography-generated gravitational attraction 

By analogy with Eq. (6), the spherical approximation of the geoid surface 

(∀ ) is assumed to evaluate the mean value of the topography-

generated gravitational attraction; this gives 

( ) R:O ≈ΩΩ∈Ω gr
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:OΩ∈Ω∀   ( ) ( ) ( )( )
∫

Ω+

=
Ω

Ω
≅Ω

OR

RO d,1 H

r

tt rrg
H

g .     (16) 

Expressing the gravitational attraction ( )Ω,rg t  as a negative radial derivative of the 

gravitational potential of topographical masses ( )Ω,rtV , Eq. (16) is rewritten as 

:OΩ∈Ω∀  ( ) ( )
( )( )

∫
Ω+

= ∂
Ω∂

Ω
−≅Ω

OR

RO d,1 H

r

t
t r

r
rV

H
g .      (17) 

According to the Bruns formula (1878), the topography-generated gravitational attraction 

( )Ωtg  in Eq. (17) becomes expressed as a mean linear potential gradient within the 

topography 

:OΩ∈Ω∀  ( ) ( )[ ] ( )[ ]
( )Ω

Ω−Ω
≅Ω OH

rVrV
g t

t
g

t
t .       (18) 

The gravitational potential of topographical masses ( )Ω,rtV  is given by Newton’s volume 

integral (e.g., Martinec 1998), which is evaluated at the points ( )Ωgr  and  ( )Ωtr

:,O
+ℜ∈Ω∈Ω∀ r  ( ) ( )( ) ( ) Ω′′′Ω′′ΩΩ′′=Ω ∫∫ ∫

Ω∈Ω′

−Ω′+

=′
dd,;,,G, 21R

R
O

O

rrrrrrV
H

r

t lρ ,   (19) 

where  denotes Newton’s gravitational constant, and G ( )Ω,rρ  is the actual density of the 

topographical masses.  

The Newtonian integral (Eq. 19) can be rewritten as a sum [superposition] of the 

contributions from the spherical Bouguer shell (cf. Wichiencharoen, 1982), ‘terrain 

roughness’ term (Martinec and Vaníček, 1994) and anomalous topographical density 

distribution.  For the interior of topography ( )Ω+∈∩Ω∈Ω O
O R,R Hr , it reads 

(Wichiencharoen, 1982; see also Martinec 1998, Eq. 3.14) 
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( ) ( ) ( )[ ] 







−−Ω+Ω+=Ω 2

3
2OO2

o 3
1R

3
2R2RρGπ2, r

r
HHrV t  

( )
( )

( )
∫∫ ∫
Ω∈Ω′

Ω′+

Ω+=′

− Ω′′′Ω′′Ω+
O

O

O

R

R

21
o dd,;,ρG

H

Hr
rrrrl  

( ) ( )( )
Ω′′′Ω′′ΩΩ′′+ ∫∫ ∫

Ω∈Ω′

Ω′+

=′

− dd,;,,G
O

OR

R

21 rrrrr
H

r
lδρ ,    (20) 

where the topographical density ( )Ω,rρ  is divided between the mean topographical density 

 and anomalous topographical density oρ ( )Ω,rδρ , such that  ( ) ( Ω+ )=Ω ,ρ, o rr δρρ .  

Substitution of Eq. (20) into Eq. (18) yields   

:OΩ∈Ω∀  ( ) ( ) ( )







 Ω
+Ω≅Ω

R3
21ρGπ2

O
O

o
HHg t  

( ) ( ) ( )[ ]( )
( )

( )
Ω′′′Ω′′Ω−Ω′′Ω

Ω
+ ∫∫ ∫

Ω∈Ω′

Ω′+

Ω+=′

−− dd,;,;,R
ρG

O

O

O

R

R

211
O

o rrrrr
H

H

Hr tll  

( ) ( ) ( ) ( )[ ]( )( )
Ω′′′Ω′′Ω−Ω′′ΩΩ′′

Ω
+ ∫∫ ∫

Ω∈Ω′

Ω′+

=′

−− dd,;,;,R,G

O

OR

R

211
O rrrrrr

H
H

r tllδρ .  (21) 

Treating the spherical Bouguer shell and terrain roughness terms separately, computations 

were performed in the same test area of the Canadian Rocky Mountains (cf. Fig. 1).  The 

mean values of the gravitational attraction generated by the spherical Bouguer term have 

been computed simply according to the first term in Eq. (21), while for computation of the 

mean spherical terrain corrections the detailed 3” x 3” digital terrain model has been used 

for the numerical integration up to 3 degree of the spherical distance ψ  around the 

computation point. Since the reciprocal spatial distances  and 

 are practically equal for 

( )Ω′′− ,,R1 rl Ω;

( )[ Ω′′Ω− ,;1 rrtl ] o3>ψ , the far-zone contribution in the second 

term on the right-hand-side of Eq. (21) is negligible. The effect of the spherical Bouguer 
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shell on the orthometric height ( )ΩOH , given by the first term on the right-hand-side of 

Eq. (21), ranges from 0 cm to – 74.4 cm (Fig. 2).  Likewise, the effect of terrain roughness 

term on the orthometric height ( )ΩOH  ranges between –10 cm and + 6 cm (Fig. 3).  These 

values assume a constant topographical mass-density.   

δ

Disregarding water bodies, the variation of actual topographical mass density is 

mostly within ±300 kg.m-3 of the mean value 2670ρo =  kg.m-3.  Therefore, the influence 

of anomalous topographical density ( )Ω,rρ  amounts to ~10% of the total effect of 

topographical masses (Huang et al. 2001).  However, larger topographical mass density 

variations (20-30%) are encountered in some other parts of the world (e.g., Tziavos and 

Featherstone 2000).  Therefore, mass density variations generate cm to dm effects on the 

orthometric height (Vaníček et al. 1995; Tenzer et al., 2003; Tenzer and Vaníček, 2004; cf. 

Hwang and Hsiao 2003; Allister and Featherstone 2001).  In the test area used here, this 

effect ranges from –7 to +2 cm (Fig. 4), where the topographical mass density data are the 

same as those used by Huang et al. (2001). Finally, the total effect of topography on the 

orthometric height, as described by Eq. (21), varies between +0.1 cm and –86.5 cm in the 

test area (Fig. 5).  

 

5. Discussion and conclusions 

The definition of mean gravity along the plumbline in Eq. (4), which is essential to 

rigorously compute the orthometric height, can be considered to consist of two parts.  The 

first part, independent of the actual gravity field, represents the mean normal gravity 

(Appendix A), while the second part defines the mean value of the actual gravity 

disturbance between the geoid and Earth’s topography surface.  According to Eq. (4), this 

 13



mean gravity disturbance is further decomposed into the mean gravity disturbance 

generated by the geoid (Section 3) and the mean values of the gravitational attraction of 

topographical masses, comprising the Bouguer shell, terrain roughness and lateral density 

variations (Section 4), and the [smaller-valued] atmospheric masses (Appendix B). 

It follows from the theoretical investigation in Appendix A that the mean normal 

gravity between the Earth’s surface and the geoid is defined in terms of Molodensky’s 

mean normal gravity between the telluroid and the ellipsoid surface, plus the reductions of 

mean normal gravity due to the deflection and curvature of the plumbline, the height 

anomaly and the geoid-to-quasigeoid separation.  Considering now their global effects:  

The correction of mean normal gravity due to the height anomaly is introduced in Eq. 

(A12).  For the maximum value of the height anomaly m , this correction reaches 

 mGal, which in turn corresponds to an influence on the orthometric height of up to 25 

cm.  Considering that the maximum vertical displacement between the geoid and 

quasigeoid is ~2 m (e.g., Sjöberg 1995), the geoid-to-quasigeoid correction to the mean 

normal gravity can reach up to 0.3 mGal.   Based on Eq. (A14), the maximum magnitude of 

the correction of mean normal gravity due to the deflection of the plumbline is estimated to 

be ~2.1 mGal for an [extreme] 2-arc-minute deflection.  Hence, the geoid-to-quasigeoid 

correction to the mean normal gravity and the correction of mean normal gravity due to the 

deflection of the plumbline cause, at most, a few mm change in the orthometric height. 

m0.100

31±

From the numerical investigations conducted in a high-elevation and rugged part of 

the Canadian Rocky Mountains (Sections 3 and 4), the effect of topography and the effect 

due to the gravity disturbance generated by the masses inside the geoid cause up to several 

dm of change in the orthometric height.  The total influence of these two effects on the 
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orthometric height, which is identical to the difference between the rigorous orthometric 

height defined here and Molodensky normal height, varies from –0.1 cm to –45.6 cm (Fig. 

6).  The absence of positive difference values in this test area is because the dominant part 

of the influence is caused by the spherical Bouguer term (Fig. 2).  On the other hand, from 

Appendix B and Tenzer et al. (2004), the mean atmosphere-generated gravitational 

attraction varies between – 0.01 mGal and – 0.10 mGal and thus has a negligible influence 

(<<1 mm) on the orthometric height.   
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Appendix A: Mean normal gravity within the topography 

The mean normal gravity ( )Ωγ  in Eq. (4) reads 

:OΩ∈Ω∀  ( ) ( ) ( ) ( ) ( )( )
( )

( ) ( )
∫

Ω+Ω

Ω=
Ω−Ω

Ω
=Ω

O

d,,cos,cos,1
O

Hr

rr

g

g

rrrr
H

orgθφγγ ,  (A1) 

where ( Ω,cos r )θ  reduces the normal gravity along the ellipsoidal normal to the plumbline.   

The deflection of the plumbline from the geocentric radial direction is given by 

(Vaníček et al. 1999) 

:,O
+ℜ∈Ω∈Ω∀ r  ( )( ) ( )( ) ( )

2
,

2
,2sinf1,,cos

22 Ω
−

Ω+
−≈Ω−

rrr ηξϕorg ,  (A2) 

where ϕ  denotes the geodetic latitude, f  is the first numerical flattening of the geocentric 

reference ellipsoid, and ( Ω,r )ξ  and ( )Ω,rη  are, respectively, the meridian and prime 

vertical components of the deflection of the vertical ( )Ω,rθ ;  

.  

:,O
+ℜ∈Ω∈Ω∀ r

( )Ω ( )+Ω= ,, 222 rr ηξθ ( )Ω,r

The cosine of the deflection of the plumbline ( )Ω,rθ  can be expressed by (Vaníček 

and Krakiwsky 1986) 

:,O
+ℜ∈Ω∈Ω∀ r  ( ) ( ) ( ) ( )

2
,

2
,1

2
,1,cos

222 Ω
−

Ω
−=

Ω
−≈Ω

rrrr ηξθθ .   (A3) 

Multiplying Eqs. (A2) and (A3) gives the following relation  

:,O
+ℜ∈Ω∈Ω∀ r

( )

    

( )( ) ( ) ( )
2

2sinf,2sinf,1,,
22

2 ϕθϕξ −Ω−Ω−≈Ω− rrr orgcos,cosθ Ωr .  (A4) 

Considering Eq. (A4), the mean normal gravity ( )Ωγ  in Eq. (A1) is rewritten as 
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:OΩ∈Ω∀         

( ) ( ) ( ) ( ) ( )
( )

( ) ( )
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g
rrrr

H
ϕθϕξφγγ . (A5) 

Molodensky’s (1945 and 1960) mean normal gravity ( )ΩNγ  between the telluroid 

 and the surface of the geocentric reference ellipsoid :OΩ∈Ω∀ ( ) ( )Ω+ NHro φ

:2/π,2 ( )/π−∈∀φ φor  reads 

:OΩ∈Ω∀   ( ) ( ) ( ) ( )( )
( )

( ) ( )
∫

Ω+

=
−

Ω
=Ω

N

d,,cos,1
N

N Hr

rr

o

o

rrr
H

φ

φ
φφγγ orγ ,   (A6) 

where ( )φ,rγ  is the vector of normal gravity, and ( )ΩNH  is the [Molodensky] normal 

height.  Using the relation between geocentric and geodetic latitudes (Bomford 1971), i.e., 

:2/π,2/π−∈∀φ  ( )( ) ( ) ϕϕφ 2sinf
2
112sinfcos,,cos 22−≈=− orγ r ,    (A7) 

Equation (A6) further takes the form 

:OΩ∈Ω∀   ( ) ( ) ( )
( )

( ) ( )
∫

Ω+

=






 −

Ω
=Ω

N

d2sinf
2
11,1 22

N
N Hr

rr

o

o

rr
H

φ

φ
ϕφγγ .   (A8) 

The first term on the right-hand-side of Eq. (A5), i.e., the mean normal gravity 

along the radial direction, can be defined as the mean linear gradient of the normal gravity 

potential between the geoid and the Earth’s surface 

:OΩ∈Ω∀   ( ) ( ) ( )
( )

( ) ( ) ( )[ ] ( )[ ]
( )Ω

Ω−Ω
=

Ω
≅Ω ∫

Ω+Ω

Ω= OO

O

d,1
H

rUrU
rr

H
tgHr

rr

g

g

φγγ .  (A9) 

By analogy with Eq. (A9), the first term of Molodensky’s mean normal gravity in Eq. (A8) 

is defined as the mean linear gradient of the normal gravity potential between the ellipsoid 

surface and the telluroid, so that  
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Comparing Eqns. (A9) and (A10), the following relation is obtained  

:OΩ∈Ω∀   

 ( ) ( ) ( )
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( ) ( )
( )

( ) ( )( )Ω−Ω
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n
, HHrr

oo rrrr φφ
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where (Ω)ς  is the height anomaly. 

It therefore follows from Eq. (A11) that two corrections are needed to reduce 

Molodensky’s mean normal gravity ( )ΩNγ  to the mean normal gravity ( )Ωγ  between the 

geoid and the Earth’s surface: one due to the height anomaly, and another due to the geoid-

to-quasigeoid separation. 

1. The correction of mean normal gravity due to the height anomaly (Ως
γε ) represents 

the shift of the integration interval from the telluroid to the Earth’s surface 

:OΩ∈Ω∀  ( ) ( )
( )

( ) ( ) ( )Ω−≈Ω
∂

∂
≅Ω

=

ςφγςφγε
φ

ς
γ a

2
n
, o

rr o

r ,    (A12) 

where ( )φγ o  is the normal gravity on the ellipsoid surface.   

2. The geoid-to-quasigeoid correction to the mean normal gravity ( )ΩH
γε  caused by a 

different length of the integration intervals is given by  

:OΩ∈Ω∀  

 ( ) ( )
( )

( ) ( )( ) ( ) ( ) ( )( )Ω−Ω≈Ω−Ω
∂
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1 HHHHr o
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φγφγε
φ

γ .  (A13) 
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Comparing the second-order terms in Eqs. (A5) and (A8), the correction of mean normal 

gravity due to the deflection of the plumbline ( )Ωθ
γε  is introduced finally as 

:OΩ∈Ω∀   ( ) ( ) ( ) ( ) ( )( )
( )

( ) ( )
∫

Ω+Ω

Ω=
Ω+Ω
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−≅Ω
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d,2sinf,,1 2
O

Hr

rr

g

g

rrrr
H

θϕξφγε θ
γ .  (A14) 
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Appendix B: Mean atmosphere-generated gravitational attraction 

By analogy with Eq. (18), the mean value of the atmosphere-generated gravitational 

attraction (Ωag ) in Eq. (4) reads  

:OΩ∈Ω∀   ( ) ( ) ( )( ) ( )[ ] ( )[ ]
( )Ω

Ω−Ω
=Ω

Ω
≅Ω ∫

Ω+

= O

R
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d,1
H

rVrV
rrg

H
g t

a
g

a
H

r

aa ,  (B1) 

where V  is the gravitational potential of the atmospheric masses.  ( Ω,ra )

)

Considering only the radially distributed atmospheric mass-density , the 

gravitational potential V  of atmospheric masses is given by (Sjöberg 1999, 2001; 

Novák 2000) 

( )raρ

( Ω,ra
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+=′

− dd,;,G 2r
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1

O
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rrrrr
r

a lρ .   (B2) 

The volume integration domain within the Earth’s atmosphere in Eq. (B2) is divided into an 

‘atmospheric spherical Bouguer shell’ and an ‘atmospheric roughness term’ (analogously 

with the treatment of the topographic masses).  The atmospheric spherical shell is defined 

between the upper limit of the topography maxO HRr: +=Ω∈Ω∀  

( )( )Ω=Ω∈Ω∀ O
maxO maxH: H  and the upper limit of the atmosphere limO rr: =Ω∈Ω∀ . 

The atmospheric roughness term is enclosed by the Earth’s surface and the upper limit of 

topography.  Essentially, this is a mirror of the complete spherical Bouguer correction, but 

applies to the atmosphere and is consequently a smaller-valued term.   
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Since the gravitational potential of atmospheric spherical shell (given by the second 

integral on the right-hand side of Eq. B2) is constant in the interior maxO HR +<∩Ω∈Ω r  

(e.g., MacMillan 1930) 

( ) ( ) ( )∫∫∫ ∫ +=′
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the mean value (Ωag )  of the atmosphere-generated gravitational attraction in Eq. (B1) 

reduces to 

:OΩ∈Ω∀            (B4) 
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Figure 1. Effect of the mean gravity disturbance generated by masses inside the geoid on 

the orthometric height (units in cm) 
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Figure 2. Effect of the spherical Bouguer shell’s gravitation on the orthometric height 

(units in cm) 
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Figure 3. Effect of terrain roughness term’s gravitation on the orthometric height (unis in 

cm) 
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Fig. 4. Effect of anomalous topographical density distribution on the orthometric height 

(units in cm) 
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Figure 5. Combined effect of the topography (i.e., Bouguer shell, terrain roughness term, 

and anomalous topographic density) on the orthometric height (units in cm) 
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Figure 6. Differences between the rigorous orthometric height and normal height (units in 

cm) 
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