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Abstract

In this paper, stability criteria and switching controllers design problems for un-
certain impulsive switched systems with input delay are investigated by using the
receding horizon method. Some LMI conditions are derived to guarantee asymp-
totical stability of an impulsive switched system under a certain designed delayed
controller. Finally, a numerical example is presented to illustrate the effectiveness
of the results obtained.
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1 Introduction

Within the past several years, there is an increasing interest in the qualitative
theory of impulsive switched systems. The reason is that impulsive switched
systems can model nonlinear systems which exhibit not only impulsive dy-
namical behaviors but also switching phenomena. Nowadays, there are vari-
ous stability results available in the literature for impulsive switched systems
with or without uncertainty. For example, results on the uniformly asymptot-
ical stability of impulsive switched systems with uncertainty are obtained in
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[1] by using an LMI approach. Robust stabilization conditions for uncertain
impulsive switched systems with definite attenuance are derived in [2], where
the corresponding robust H∞ optimal control law is also presented. In [3], a
unified approach is used to the study of stability criteria of impulsive hybrid
systems.

In practice, many systems arising in disciplines, such as physics, chemistry, bi-
ology and engineering, often involve after effects or time lags. These systems,
which are called time delay systems, are often described by functional differ-
ential equations with time delays. See, for example, [4]-[6] and the references
therein. If a controller contains time delays, it is called a delayed controller.
Recently, there are some results focused on the stability analysis of dynamical
systems with delayed controllers. For example, a receding horizon method is
used in [7] to design a delayed controller to stabilizing a linear system. Stabil-
ity analysis and control of switched systems with input delay are studied in
[8]. However, it appears that no results are available for stability analysis and
controller design for impulsive switched systems with delay input.

In this paper, we consider a class of uncertain impulsive switched systems.
By using a receding horizon method, some LMI-based sufficient conditions for
asymptotic stability of the impulsive switched system are obtained. Further-
more, a design procedure for the construction of a delayed stabilizing controller
is given.

The remainder of the paper proceeds as follows. In Section 2, we formulate the
problem described by this class of impulsive switched systems with delayed
input. In Section 3, we derive sufficient conditions for asymptotic stability of
the uncertain impulsive switched system with delayed input. Furthermore, we
devise a method for the design of switched delayed controllers. In Section 4,
an illustrative example is presented, showing the effectiveness of the results
obtained. Section 5 contains some concluding remarks.

2 Problem statement

Consider the following impulsive switched systems with delay input





ẋ(t) = (Aik + ∆Aik)x(t) + Biku(t) + Ciku(t− h)

−Aik

∫ t
t−h eAik

(t−s−h)Ciku(s)ds t 6= tk

∆x(t) = Ik(t, x) = Dkx(t) + Dk

∫ t
t−h eAik

(t−s−h)Ciku(s)ds t = tk

x(t) = ϕ(t) − τ ≤ t ≤ 0,

(1)
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where x(t) ∈ Rn, u(t) ∈ Rp, u(t− h) ∈ Rq, with n, p, q ∈ N , are, respectively,
the state and control vectors, while N denotes the set of all positive natural
numbers. Aik , Bik , Cik are constant real matrices of appropriate dimensions.
Ik(t, ·) : Rn → Rn, ∆x(tk) = x(t+k ) − x(t−k ), x(tk) = x(t−k ) = lim

υ→0+
x(tk − υ),

x(t+k ) = lim
υ→0+

x(tk +υ). x(tk) = x(t−k ) means that the solution of the impulsive

switched systems (1) is left continuous. h represents a control delay. t0 < t1 <
t2 < ... < tk < ...(tk → ∞ as k → ∞). ik ∈ {1, 2, ...m}, with k, m ∈ N ,
is a discrete state variable and tk is an impulsive switching point. {tk, ik}
represents a switching law of the systems (1), i.e. at tk time point, the system
switches to the ik subsystem from the ik−1 subsystem. The matrix ∆Aik(·)
is an unknown real norm-bounded matrix function representing time-varying
parameter uncertainty. Assume that admissible uncertainties are of the form

∆Aik(t) = EikFik(t)Hik , (2)

where Eik , Hik are known real constant matrices, Fik(t) is an unknown real
time-varying matrix satisfying F T

ik
(t)Fik(t) < I, in which I represents the

identity matrix of appropriate dimension.

By virtue of the receding horizon method reported in [7], we define, for the
impulsive switched systems (1) with delay input,

y(t) = x(t) +

t∫

t−h

eAik
(t−s−h)Ciku(s)ds, (3)

where u(t − h) is an arbitrary control, t ∈ (tk, tk+1], k = 1, 2, · · ·, and ik ∈
{1, 2, · · · ,m}, and m ∈ N .

Lemma 2.1: The uncertain impulsive switched system (1) is equivalent to

ẏ(t) = [Aik + EikFik(t)Hik ]y(t) + [Bik + e−Aik
hCik ]u(t) (4)

−[Aik + EikFik(t)Hik ]

t∫

t−h

eAik
(t−s−h)Ciku(s)ds

∆y(t) = Dky(t) (5)

y(t) = ϕ(t) +

t∫

t−h

eAik
(t−s−h)Ciku(s)ds − τ ≤ t ≤ 0, (6)

where t ∈ (tk, tk+1], k = 1, 2, · · · , ik ∈ {1, 2, · · · ,m}, and m ∈ N .
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Proof. When t ∈ (tk, tk+1], define y(t) = x(t) +
∫ t
t−h eAik

(t−s−h)Ciku(s)ds. y(t)
can be rewritten as:

y(t) = x(t) +

t∫

a

eAik
(t−s−h)Ciku(s)ds−

t−h∫

a

eAik
(t−s−h)Ciku(s)ds

= x(t) + eAik
t

t∫

a

eAik
−(s+h)Ciku(s)ds− eAik

t

t−h∫

a

eAik
−(s+h)Ciku(s)ds,

where a is a real number.

Consider the time derivative of y(t), we obtain

ẏ(t) = ẋ(t) + Aike
Aik

t

t∫

a

e−Aik
(s+h)Ciku(s)ds + eAik

te−Aik
(t+h)Ciku(t)

−Aike
Aik

t

t−h∫

a

e−Aik
(s+h)Ciku(s)ds− eAik

te−Aik
tCiku(t− h)

= ẋ(t) + Aik

t∫

t−h

eAik
(t−s−h)Ciku(s)ds + e−Aik

hCiku(t)− Ciku(t− h)

= (Aik + ∆Aik)x(t) + Biku(t) + e−Aik
hCiku(t)

= (Aik + ∆Aik)y(t) + (Bik + e−Aik
hCik)u(t)

−(Aik + ∆Aik)

t∫

t−h

eAik
(t−s−h)Ciku(s)ds

= (Aik + EikFik(t)Hik)y(t) + (Bik + e−Aik
hCik)u(t)

−(Aik + EikFik(t)Hik)

t∫

t−h

eAik
(t−s−h)Ciku(s)ds

Next, when t = tk,

∆y(t) = y(t+k )− y(t−k )

= x(t+k ) +

t∫

t−h

eAik
(t−s−h)Ciku(s)ds− (x(t−k ) +

t∫

t−h

eAik
(t−s−h)Ciku(s)ds)
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= x(t+k )− x(t−k ) = Dkx(t) + Dk

t∫

t−h

eAik
(t−s−h)Ciku(s)ds = Dky(t)

For −τ ≤ t ≤ 0, y(t) = ϕ(t) +
∫ t
t−h eAik

(t−s−h)Ciku(s)ds since x(t) = ϕ(t).

This completes the proof.

Our objective is to devise a design method for constructing linear switch-
ing controllers that can stabilize (6) with admissible uncertainties under an
arbitrary switching law.

3 Main results

The following result is well known.

Lemma 3.1[9]. Let E, H and F (t) be real matrices of appropriate dimensions
with F T (t)F (t) ≤ I. Then, for any scalar ε > 0, it holds that

EF (t)H + HT F T (t)ET ≤ 1

ε
EET + εHT H. (7)

Assumption 3.1.
∫ t
t−h yT (s)Φ(s)y(s)ds ≤ yT (t)(

∫ t
t−h Φ(s)ds)y(t), where Φ is a

symmetric positive definite matrix.

Theorem 3.1. Suppose that Assumption 3.1 holds and that there exist sym-
metric positive definite matrices Pik , Qik and some positive scalars ε1, ε2, ε3,
such that the following conditions are satisfied.

(a)




−(ε−1
1 EikE

T
ik

+ ε1H
T
ik
Hik + Qik) ε−1

1 EikE
T
ik

+ ε1H
T
ik
Hik + Qik 0

ε−1
1 EikE

T
ik

+ ε1H
T
ik
Hik + Qik AT

ik
Pik + PikAik Pikϕik

0 ϕT
ik
Pik −I




< 0,(8)

(b)




Pik−1
(I + Dk)

T Pik

Pik(I + Dk) Pik


 > 0, (9)
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where

ϕikϕ
T
ik

= −2I + ε−1
2 AikA

T
ik

+ ε2hUik + ε−1
3 EikE

T
ik

+ ε3hÛik , (10)

while

Uik ≥ (Bik + e−Aik
hCik)

−T CT
ik

(

0∫

−h

e
−AT

ik
(s+h)

e−Aik
(s+h)ds)Cik

×(Bik + e−Aik
hCik)

−1 (11)

and

Ûik ≥ (Bik + e−Aik
hCik)

−T CT
ik

(

0∫

−h

e
−AT

ik
(s+h)

HT
ik
Hike

−Aik
(s+h)ds)Cik

×(Bik + e−Aik
hCik)

−1. (12)

Then, the impulsive switched system (1) can be robustly asymptotically sta-
bilized under an arbitrary given switching law by the following switching con-
troller

u(t) = −(Bik + e−Aik
hCik)

−1Piky(t). (13)

Proof. For t ∈ (tk, tk+1], k = 1, 2, · · · ; ik ∈ {1, 2, · · · ,m}; m ∈ N , define

V (t) = yT (t)Piky(t) +

t∫

t−h

yT (s)Qiky(s)ds (14)

where Pik > 0, Qik > 0. We shall show that V is a Lyapunov function.

Taking the differentiation of (14) along the trajectory of system (4)-(6), we
obtain

V̇ (t) = ẏT (t)Piky(t) + yT (t)Pik ẏ(t) + yT (t)Qiky(t)− yT (t− h)Qiky(t− h)

= [(Aik + EikFik(t)Hik)y(t) + (Bik + e−Aik
hCik)u(t)

−(Aik + EikFik(t)Hik)

t∫

t−h

eAik
(t−s−h)Ciku(s)ds]T Piky(t)
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+y(t)T Pik [(Aik + EikFik(t)Hik)y(t) + (Bik + e−Aik
hCik)u(t)

−(Aik + EikFik(t)Hik)

t∫

t−h

eAik
(t−s−h)Ciku(s)ds]

+yT (t)Qiky(t)− yT (t− h)Qiky(t− h)

= S1(t) + S2(t) + S3(t) (15)

where

S1(t) = yT (t)(AT
ik
Pik + PikAik)y(t) + yT (t)Qiky(t)− yT (t− h)Qiky(t− h),(16)

S2(t) = yT (t)(HT
ik
F T

ik
(t)ET

ik
+ EikFik(t)Hik)y(t), (17)

and

S3(t) = 2uT (t)(Bik + e−Aik
hCik)

T Piky(t)

−2yT (t)Pik(Aik + EikFik(t)Hik)

t∫

t−h

eAik
(t−s−h)Ciku(s)ds. (18)

By Lemma 3.1, we obtain

S2(t) ≤ yT (t)(ε−1
1 EikE

T
ik

+ ε1H
T
ik
Hik)y(t), (19)

and

S3(t) = −2yT (t)P 2
ik
y(t)− 2yT (t)PikAik

t∫

t−h

eAik
(t−s−h)Ciku(s)ds

−2yT (t)PikEikFik(t)Hik

t∫

t−h

eAik
(t−s−h)Ciku(s)ds

≤ −2yT (t)P 2
ik
y(t) + ε−1

2 yT (t)PikAikA
T
ik
Piky(t)

+ε2(

t∫

t−h

eAik
(t−s−h)Ciku(s)ds)T

t∫

t−h

eAik
(t−s−h)Ciku(s)ds

+ε−1
3 yT (t)PikEikE

T
ik
Piky(t)
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+ε3(

t∫

t−h

Hike
Aik

(t−s−h)Ciku(s)ds)T

t∫

t−h

Hike
Aik

(t−s−h)Ciku(s)ds. (20)

Applying the following inequality to (20),

(

t∫

t−h

x(s)ds)T (

t∫

t−h

x(s)ds) ≤ h

t∫

t−h

xT (s)x(s)ds, (21)

we obtain

S3(t) ≤ −2yT (t)P 2
ik
y(t) + ε−1

2 yT (t)PikAikA
T
ik
Piky(t)

+ε2h

t∫

t−h

(eAik
(t−s−h)Ciku(s))T eAik

(t−s−h)Ciku(s)ds

+ε−1
3 yT (t)PikEikE

T
ik
Piky(t)

+ε3h

t∫

t−h

(Hike
Aik

(t−s−h)Ciku(s))T Hike
Aik

(t−s−h)Ciku(s)ds. (22)

Substituting the expression of u(t) given by (13) into (22), we obtain

S3(t) ≤ −2yT (t)P 2
ik
y(t) + ε−1

2 yT (t)PikAikA
T
ik
Piky(t)

+ε2hyT (t)Pik(Bik + e−Aik
hCik)

−T CT
ik

ΦikPiky(t)

+ε−1
3 yT (t)PikEikE

T
ik
Piky(t)

+ε3hyT (t)Pik(Bik + e−Aik
hCik)

−T CT
ik

Φ̂ikPiky(t). (23)

where

Φik = (

t∫

t−h

e
AT

ik
(t−s−h)

eAik
(t−s−h)ds)Cik(Bik + e−Aik

hCik)
−1 (24)
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and

Φ̂ik = (

t∫

t−h

e
AT

ik
(t−s−h)

HT
ik
Hike

Aik
(t−s−h)ds)Cik(Bik + e−Aik

hCik)
−1. (25)

Combining (16), (19) and (23) with (15), it follows that

V̇ (t) ≤ yT (t)(AT
ik
Pik + PikAik + ε−1

1 EikE
T
ik

+ ε1H
T
ik
Hik − 2P 2

ik
)y(t)

+ε−1
2 yT (t)PikAikA

T
ik
Piky(t) + ε2hyT (t)PikUikPiky(t) + ε−1

3 yT (t)PikEikE
T
ik
Piky(t)

+ε3hyT (t)PikÛikPiky(t) + yT (t)Qiky(t)− yT (t− h)Qiky(t− h)

= yT (t)(AT
ik
Pik + PikAik + ε−1

1 EikE
T
ik

+ ε1H
T
ik
Hik + Qik − 2P 2

ik
)y(t)

+yT (t)(ε−1
2 PikAikA

T
ik
Pik + ε2hPikUikPik + ε−1

3 PikEikE
T
ik
Pik + ε3hPikÛikPik)y(t)

−yT (t− h)Qiky(t− h), (26)

where Uik and Ûik are defined in (11) and (12), respectively.

Clearly, V̇ (t) < 0 is implied by

Wik < 0 (27)

where

Wik = AT
ik
Pik + PikAik + ε−1

1 EikE
T
ik

+ ε1H
T
ik
Hik + Qik − 2P 2

ik
+ ε−1

2 PikAikA
T
ik
Pik

+ε2hPikUikPik + ε−1
3 PikEikE

T
ik
Pik + ε3hPikÛikPik . (28)

Furthermore, Wik < 0 is equivalent to



−I

Wik

−I




< 0. (29)

Define

Zik =




(ε−1
1 EikE

T
ik

+ ε1H
T
ik
Hik + Qik)

1/2 0 0

−(ε−1
1 EikE

T
ik

+ ε1H
T
ik
Hik + Qik)

1/2 I −Pikϕik

0 0 I




, (30)
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where

ϕikϕ
T
ik

= −2I + ε−1
2 AikA

T
ik

+ ε2hUik + ε−1
3 EikE

T
ik

+ ε3hÛik .

Then, by left multiplying Zik and right multiplying ZT
ik

, we obtain condition
(a) of the theorem given by (8), which is satisfied by assumption.

Thus, Wik < 0 and hence V̇ (t) < 0 during the whole continues time parts
(i.e., excluding impulsive and switching time points) of the time horizon.

Next, for the impulsive and switching time point tk, we have

V (t+k )− V (tk) = y(t+k )T Piky(t+k )− y(tk)
T Pik−1

y(tk)

≤ y(tk)[(I + Dk)
T Pik(I + Dk)− Pik−1

]y(tk) < 0.

Clearly, V (t+k ) < V (t−k ) is implied by

(I + Dk)
T Pik(I + Dk)− Pik−1

< 0. (31)

By virtue of Schur complements, the inequality(31) is equivalent to that of
condition (b) of the theorem given by (9) , which is satisfied by assumption.

Therefore, V (t) defined by (14) decreases along the whole trajectory of system
(4)-(6) and is a Lyapunov function. Thus, the impulsive switched system (1)
is robustly asymptotically stable under the switching controller (13).

This completes the proof.

As a consequence, the following results are valid for system (1) with no switch-
ing.

Corollary 3.1. Suppose that Assumption 3.1 holds and that there exist sym-
metric positive definite matrices P , Q and some positive scalars ε1,ε2,ε3, such
that the following LMIs are satisfied.

(a)




−(ε−1
1 EET + ε1H

T H + Q) ε−1
1 EET + ε1H

T H + Q 0

ε−1
1 EET + ε1H

T H + Q AT P + PA Pϕ

0 ϕT P −I




< 0, (32)

10



(b)




P (I + Dk)
T P

P (I + Dk) P


 > 0, (33)

where

ϕϕT = −2I + ε−1
2 AAT + ε2hU + ε−1

3 EET + ε3hÛ, (34)

while

U ≥ (B + e−AhC)−T CT (

0∫

−h

e−AT (s+h)e−A(s+h)ds)C(B + e−AhC)−1 (35)

and

Û ≥ (B + e−AhC)−T CT (

0∫

−h

e−AT (s+h)HT He−A(s+h)ds)C(B + e−AhC)−1.(36)

Then, system (1) without switchings can be robustly asymptotically stabilized
by the following controller

u(t) = −(B + e−AhC)−1Py(t). (37)

4 A numerical example

In this section, an illustrative example will be presented to show the effective-
ness of the results obtained. Consider the impulsive switched systems with the
following specifications

A1 =



−0.24 −0.8

−0.6 −2.2


 , E1 =




0.5 0.4

0.2 0.4


 , H1 =




0.7 0.7

0.7 0.7


 ,

B1 =




0.8 0.9

1.2 1.1


 , A2 =



−2.2 −0.6

−0.6 −2


 , E2 =




0.3 0.1

0.6 0.4


 ,

H2 =




0.7 0.7

0.7 0.7


 , B2 =




1.3 1.1

0.8 0.5


 , C1 =




0.6 0.4

0.2 0.8


 ,
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C2 =




0.8 0.6

0.3 0.5


 , D1 = D2 =



−0.5 0

0 −0.5


 , h = 0.3.

Choose ε1 = ε2 = ε3 = 1. Then, by solving LMIs (8)-(9), we obtain the
following symmetric positive define matrices,

P1 =




1.6423 −1.3092

−1.3092 2.0908


 , P2 =




1.8959 −1.3228

−1.3228 1.8825


 ,

Q1 =




0.1514 −0.0106

−0.0106 0.3096


 , Q2 =




0.5443 0.1320

0.1320 0.2655


 .

By Theorem 3.1, the following switching controller

u1(t) =



−2.2635 2.4620

2.2194 −2.6337


 y(t), u2(t) =



−2.5453 2.5298

2.7588 −2.9888


 y(t).

is obtained. It asymptotically stabilizes the impulsive switched system accord-
ing to Theorem 3.1.

5 Conclusion

This paper studied a class of uncertain impulsive switched systems with de-
layed input. Based on the receding horizon method, these systems can be
transformed into switched systems without time delay. Some LMIs conditions
are derived ensuring asymptotical stability of the impulsive switched systems
under delayed controllers obtained. A numerical example is solved, from which
we see that results obtained are effective.
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