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Abstract 
 

An improved solution of a heated three layered structure for shearing stresses subjected to uniform temperature change is 
presented in this paper. Earlier solutions of three layered structure were proposed by Schmidt in 1999 and Suhir in 2003. 
However, there exist some contradictions and inconsistencies in both the solutions of Schmidt and Suhir. The contradiction 
arises in consideration of the exponent parameter k in the characteristic equation. Both Schmidt and Suhir showed that the 
exponent parameter k in the shearing stresses contains two roots. But for both cases considered only one root for k and as a 
consequence it leads to a mathematical inconsistency in the solution. In the present approach both the roots for the 
exponent parameter µ  of the characteristic solution are considered in the characteristic equation which eliminates the 
mathematical inconsistencies in the earlier solution. The contradictions in Schmidt’s and Suhir’s solutions are highlighted 
in this paper. The analytical computation of shearing stress based on the present, Schmidt’s and Suhir’s model are 
presented in graphical form and compared with results from numerical simulation. The numerical example is carried out 
for a known three layered electronic packaging case (die-die attach-substrate), which was used by Suhir for comparison. 
The comparison between the present improved model and the finite element solution shows reasonably good agreement.   
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Introduction 
 
Thermo-mechanical analysis of Tri-material assembly in electronic packages follows essentially the same lines as the well-
known bi-material assembly analysis method, the only difference being the need for enforcing compatibility at more than one 
interface. But there are some inconsistencies as highlighted below:  
 
(a) Schmidt [1] addressed the problem on the above lines and obtained the governing equations in the form of a coupled integral 
equation for the two interface shearing stresses. However, the solution was incomplete and ambiguous, because the characteristic 
equation for the exponent parameter k in the shearing stresses had two roots , whereas the assumed solution form had unknown 
constants enough in number to account for only one root. It was not stated which root had to be considered. The reason for 
discarding any one of the roots was also not clear. Even if any one root was considered for any reason, there were more 
equations to be satisfied than the number of unknowns. These anomalies are highlighted in [3]  
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(b) Suhir [2] provided another formulation for the tri-material assembly. The governing equations obtained were in the form of a 
coupled second order differential equations for the axial forces in the top and bottom layers, rather than the interface shearing 
stresses. As the interface shearing stress is first derivative of the axial force, Suhir’s and Schmidt’s formulations were 
mathematically equivalent. Suhir, like Schmidt, also considered only one root for k for no particular reason, but the difference 
was that Suhir was specific about which root be considered. Again, as in Schmidt’s solution, there were more equations than 
unknowns and there is a contradiction in the solution obtained. The anomalies are also highlighted in [3] 
 
 
Sujan et al [4] extended Schmidt’s [1] uniform temperature shearing stress model for three layered assembly primarily by 
introducing two temperature ratio parameters m1(=∆ T2/∆ T1) and m2(=∆ T3/∆ T2) to account for differential temperatures 
developed in the layers. Subsequently a model was proposed for peeling stress at the interfaces in a three layered structure 
accounting for differential temperatures in the layers. But these extensions were based on inconsistent uniform temperature 
model proposed by  Schimdt [1] and Suhir [2]. It is therefore seen that the existing solution [1, 2, 4] for the tri-material problems 
are not satisfactory and have inherent flaws. Both the analyses [1, 2] use incomplete solutions to the governing equations which 
lead to contradictions. In the present work, the complete solution using both the roots for k is considered.  
 
 
Developing model of shearing stress with uniform temperature changes in the layers. 
 
Figure 1 shows the model with the three layers designated as 1, 2, and 3 and a free body diagram for a cut at some arbitrary x 
location. 
 

 
Figure 1: Geometrica and material parameters, and free-body diagram of the present model. 

 
 
To develop the analytical model of shearing stress, we can refer to Sujan’s [4] until basic governing equations (6). The summary 
of the important equations are presented from equation 1 to equation 4 as below: 
 
The condition at the two interfaces can be written as  

(1) (2)
B T

x x∈ =∈ and  (2) (3)
B T

x x∈ =∈ ,                               (1) 

 
The expression for radius of curvature is 
 

21 2 31( ) ( )1 22 2

h h h h
F F

R D D

+ +
= +                           (2) 

 
 The axial strains at the interfaces of the uniformly heated three layered structure take the form, 
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                          (3) 

 
Substituting (3) into (1) and using (2), can get  
 

1 ( )12 12 1 20 2 1 2

2 ( )23 20 1 23 2 2 3

K F F T
x

 K F F T
x

 

τ
λ λ α α

τ
λ λ α α

∂
− + = ∆ −

∂
∂

+ − = ∆ −
∂







,                      (4) 

where Kij = Ki + Kj ,    
( )( )1 2 2 3

20 2 4

h h h h

D
λ λ

+ +
= − , and 

2( )
 

4

h hi j
ij i j D
λ λ λ

+
= + + . 

The solution of the equation (4) is assumed to be of the form: 
(1) (2)( ) ( )1 2A sinh k x A sinh k xi i iτ = + ,                                   (5) 

 

where (1)Ai  and (2)Ai  are arbitrary constants and 1k and 2k  are, as we see later, roots of a certain characteristic equation.  
 
It is at this point that the present approach deviates from both Schmidt’s[1] and  Suhir’s[2] solutions. It may be seen that both the 
terms on the right hand side of eq. (5) are mathematically similar. Both Schmidt and Suhir considered only one of the terms on 
the right hand side of eq. (5). In other words, they considered only one root k of the characteristic equation, whereas in the 
present case both the roots k1 and k2 have been considered.  The need for considering both the roots was already highlighted in 
the introduction and discussed in detail. 
 

Differentiating (5),  (1) (2)( ) ( )1 1 2 2
i k A cosh k x k A cosh k xi ix

τ∂
= +

∂
                                  (6) 

and integrating (5),       

{ }

{ }

1

1 1
1
2

2 2
2

( )x AiF dx cosh( k x ) cosh( k L )i i kL

( )Ai cosh( k x ) cosh( k L )
k

τ= = − +∫
−

−

                       (7) 

Using (6) and (7), eqs. (4) becomes, 
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                                    (8)  

 

Eq. (8) must be valid for all x, which imposes the requirement that the coefficients of ( )1cosh k x and ( )2cosh k x , as well as the 
constant terms on either sides of the above two equations (8) must be equal. Employing these conditions gives the following 
three sets of algebraic equations 
 

( )
( )

(1) (1)2 01 12 12 1 20 2
(1) (1)2 01 23 23 2 20 1

− + =

− + =






k K A A

k K A A

λ λ

λ λ
                    (9)

    

( )
( )

(2) (2)2 02 12 12 1 20 2
(2) (2)2 02 23 23 2 20 1

− + =

− + =






k K A A

k K A A

λ λ

λ λ
                        (10) 
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{ }

{ }

{ }
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    
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A A cosh k L
k

A A cosh k L T
k
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k
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k

λ λ

λ λ α α

λ λ
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                (11) 

Equation sets (9) and (10) are similar and can be replaced by a single set as follows: 
 

( )
( )

( ) ( )2 012 12 1 20 2
( ) ( )2 023 23 2 20 1

− + =

− + =






i ik K A Ai
i ik K A Ai

λ λ

λ λ
 where i = 1, 2.                 (12) 

 

For a solution other than ( ) ( ) 01 2= =i iA A , the determinant of the coefficients of ( )
1

iA and ( )
2
iA  in eq. (12) must be zero. This 

means 
 

2 2 2( )( ) 012 12 23 23 20− − − =k K k Ki iλ λ λ                     (13) 
 
Solving eq. (13) for 2

ik , 
1

2 24 12 23
2

2 12 23

± −

=

     
  

r r K K s

ki K K
,                    (14) 

         

where 12 23 23 12= +r K Kλ λ  and 2
12 23 20= −s λ λ λ  

 
So there are two roots for 2

ik  which are interpreted as 2
1k  and 2

2k . For each of these values of 2
ik , there are two values of ik , 

equal in magnitude but of opposite sign. Here only one root is needed to be considered because the solution for shearing stress 

iτ  involves ( )sinh k xi  and the solution involving ( )−sinh k xi is not independent.  
 

Now to determine all the four constants (1)Ai and (2)Ai  for i =1, 2 in eq. (5), there are six equations available namely eq. (9), 
(10), and (11). One may wonder that there are six equations for four unknowns. At first sight, it may appear that something is 
wrong. Actually, it is not so. The second of each of equations (9) and (10) is same as the first one in each case. The values of k1 
and k2 are determined from that condition only (i.e., the condition of equivalence of equations (9) and (10)). So actually we have 
only four independent equations, namely, the first of eq. (9), the first of eq. (10) and the two eqs. (11). Now the four 

constants (1)Ai and (2)Ai  are solved by reducing the problem to two linear simultaneous equations by carefull manipulation of the 
algebra. Eqs. (12) can be written as, 
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( ) ( ) ( )2
12 1 20 2 12 1

i i iA A k K Aiλ λ− =  where i = 1, 2.                 (15) 
( ) ( ) ( )2

23 2 20 1 23 2
i i iA A k K Aiλ λ− = ,                    (16)     

 
Using eq. (15) into the first of the eqs. (11), gives 
 

( )(1) (2) 1 2( ) ( )1 1 1 2 2 1
12

− ∆
+ =

T
k cosh k L A k cosh k L A

K

α α
                 (17) 

 
Similarly, using eq. (16) into the second of eqs. (11), gives 
 

( )(1) (2) 2 3( ) ( )1 1 2 2 2 2
23

− ∆
+ =

T
k cosh k L A k cosh k L A

K

α α
                (18) 

 
But it can be observed from the homogeneous eqs. (12) that ( )

2
iA bears a known ratio to ( )

1
iA for i =1 and 2. This ratio can be 

obtained from either of the two identical eqs. (12).  
 
Using the first of the eqs. (12), 
 

 ( ) ( )2( ) /2 12 12 20 1= − 
 

i iA k K Aiλ λ  for i = 1, 2.                      (19) 

                  
 
Using eq. (19), eq. (18) becomes, 
 

( )(1) (2) 2 3
1 1 2 1

23

− ∆
+ =

T
Z A Z A

K

α α
,                    (20) 

 

where 
2( )12 12 ( )

20

−
=

k k Ki iZ cosh k Li i
λ

λ
   for i = 1, 2                  (21) 

 
Now it needs to solve eqs. (17) and (20) for (1)

1A  and (2)
1A  and then determine (1)

2A  and (2)
2A  using eq. (19). 

Eqs. (17) and (20) can be represented in the following form: 
 

(1) (2)
1 1 2 1 1+ =L A L A B                        (22) 

and 
(1) (2)

1 1 2 1 2+ =Z A Z A B ,                      (23) 

where ( )=L k cosh k Li i i , 
( )1 2

1
12

− ∆
=

T
B

K

α α
, and 

( )2 3
2

23

− ∆
=

T
B

K

α α
 

Solving eqs. (22) and (23) for (2)
1A and substituting into eq. (22) results in  

 
Substituting (2)

1A  into eq. (22) results in 
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2( ) 2012 2 12( ) ( )1 2 2 3
12 23(1)

1 2 2( ) ( )1 12 2 1 1

− +
∆ − + −

=
−

 
 
  

k K
T

K K
A

k K k k co sh k L

λλ
α α α α

  

Substituting the above expression for (1)
1A  and (2)

1A  in eq. (19), (1)
2A  and (2)

2A are also determined. 
 
Finally results in the following: 
 

( ) ( )(1) 1 2 2 2 3
1 2 2( ) ( )1 12 2 1 1

( ) ( )(2) 1 2 1 2 3
1 2 2( ) ( )2 12 2 1 2

( ) ( )(1) 1 2 2 2 3
2 3 2 2( ) ( )1 12 2 1 1

( ) ( )(2) 1 2 1 2 3
2 4 (2 12

∆ − + −
=

−

∆ − − −
=

−

∆ − + −
=

−

∆ − − −
=

  

  

  

  

T
A

k K k k co sh k L

T
A

k K k k co sh k L

T
A

k K k k co sh k L

T
A

k K k

α α β α α γ

α α β α α γ

α α β α α γ
β

α α β α α γ
β 2 2 ) ( )2 1 2−














k cosh k L

,              (24) 

 

where
2

12 1 12
1

12

( )k K
K

λβ −
= ,

2
12 2 12

2
12

( )k K
K

λβ − +
=

2
12 1 12

3
20

( )k Kλβ
λ
−

= , 
2

12 2 12
4

20

( )k Kλβ
λ
−

= , and 20

23K
λγ =  

Shear stresses 1τ  and 2τ at the two interfaces are now determined from eq. (5) written for i = 1 and 2, as all the arbitrary 
constants appearing in the equation are determined and given by eq. (24). 
           
Results and Discussions 
 
Analytical computation of shearing stress based on the present, Schmidt’s and Suhir’s model are presented in graphical form and 
compared with numerical simulation. Analytical and numerical results of peeling stress based on the present model are presented 
in table form. The numerical example is carried out for the same electronic packaging case as used by Suhir [2] for comparison 
purpose. The package consists of a silicon chip (layer 2) which is attached to a printed circuit board (layer 1) and is over-molded 
by an epoxy molding compound (layer 3). The following input data is used: E1 = 34.5x103 MPa, ν1 = 0.33, α1 = 15.0x10-6 /°C, h1 
= 1.0 mm, E2 = 120.7x103 MPa, ν2 = 0.24, α2 = 3.2x10-6 /°C, h2 = 0.508 mm, E3 = 6.9x103 MPa, ν3 = 0.35, α3 = 12.0x10-6 /°C, h3 
= 1.2 mm. The length of the assembly is 2L = 0.02 m. In this computation ∆T is taken as -120°C. For numerical simulation a 3D 
model is considered and one quarter of the model is analyzed due to the condition of symmetry. The size of the quarter assembly 
is 10 mm x 5 mm x 2.708 mm.  Lengthwise, from x/L =0 to 0.6, course meshing is applied and from x/L = 0.6 to 1, fine meshing 
is applied. The number of elements for each layer is as follows: 
 
 
Results are presented from x/L= 0.52 to 1 only, since the stress values are significantly small beyond that limit. 
 

From eq. (14), considering positive sign of the square root component, produces 

1
2

1
1

12 232
r rk
K K

 +
=  
 

= 2307 and considering 

negative sign, produces 

1
2

1
2

12 232
r rk
K K

 −
=  
 

= 1011,  where 
1

2 2
1 12 234 = − r r K K s . 
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Table 1: Shearing stress along layers 1-2 interface(MPa) 
x/L 1Schmidt 2Schmidt *Suhir *Present *FEM 
1 -41.15 -18.03 -41.15 -23.82 -15.61 

0.99 -32.67 -16.30 -32.67 -20.69 -17.91 
0.98 -25.94 -14.73 -25.94 -17.99 -17.05 
0.97 -20.60 -13.31 -20.60 -15.66 -15.63 
0.96 -16.35 -12.03 -16.35 -13.66 -13.45 
0.94 -10.31 -9.83 -10.31 -10.42 -10.41 
0.92 -6.50 -8.03 -6.50 -7.99 -7.78 
0.90 -4.10 -6.56 -4.10 -6.16 -6.13 
0.88 -2.58 -5.36 -2.58 -4.78 -5.03 
0.86 -1.63 -4.38 -1.63 -3.72 -3.66 
0.84 -1.03 -3.58 -1.03 -2.91 -3.03 
0.82 -0.65 -2.92 -0.65 -2.29 -2.16 
0.80 -0.41 -2.39 -0.41 -1.81 -1.81 
0.76 -0.16 -1.59 -0.16 -1.15 -1.27 
0.72 -0.06 -1.06 -0.06 -0.74 -0.89 
0.68 -0.03 -0.71 -0.03 -0.48 -0.62 
0.64 -0.01 -0.47 -0.01 -0.32 -0.42 
0.60 -0.004 -0.32 -0.004 -0.21 -0.27 
0.56 -0.002 -0.21 -0.002 -0.14 -0.15 
0.52 -0.001 -0.14 -0.001 -0.09 -0.09 

 
Table 1 represents shearing stress comparison along the interface of layers 1 and 2. Here 1Schmidt represents shearing stress 
using positive sign root of k1=2307 and 2Schmidt represents shearing stress computation using negative sign root of k2=1011. For 
Suhir, positive sign root k1=2307 is used and for *present, shearing stress is computed using both roots as shown in the proposed 
accurate model. For column *FEM, the finite element results are presented for numerical simulation using ANSYS. The 
comparison shows reasonably good agreement between columns *present and *FEM at all x/L locations except near the vicinity of the 
free end possibly indicating free surface effect. 
 
 

Table 2: Shearing stress along layers 2-3 interface (MPa) 
x/L 1Schmidt 2Schmidt *Suhir *Present *FEM 
1 -25.83 -11.32 -25.83 9.16 4.18 

0.99 -20.51 -10.23 -20.51 8.51 8.74 
0.98 -16.28 -9.25 -16.28 7.90 9.69 
0.97 -12.93 -8.36 -12.93 7.31 9.01 
0.96 -10.26 -7.55 -10.26 6.77 8.18 
0.94 -6.47 -6.17 -6.47 5.76 5.61 
0.92 -4.08 -5.04 -4.08 4.89 4.43 
0.90 -2.57 -4.12 -2.57 4.13 5.0 
0.88 -1.62 -3.36 -1.62 3.48 3.32 
0.86 -1.02 -2.75 -1.02 2.93 2.93 
0.84 -0.64 -2.25 -0.64 2.45 2.58 
0.82 -0.41 -1.83 -0.41 2.05 2.24 
0.80 -0.26 -1.50 -0.26 1.72 1.94 
0.76 -0.10 -1.00 -0.10 1.19 1.06 
0.72 -0.04 -0.67 -0.04 0.83 0.75 
0.68 -0.02 -0.45 -0.02 0.57 0.52 
0.64 -0.006 -0.30 -0.006 0.40 0.36 
0.60 -0.003 -0.20 -0.003 0.27 0.23 
0.56 -0.001 -0.13 -0.001 0.19 0.16 
0.52 -0.0004 -0.09 -0.0004 0.13 0.13 

 
Table 2 represents similar information to the table 1 except the shearing stress is computed along the interface of layers 2 and 3. 
Comparison again shows good agreement between columns *present and *FEM at all x/L locations except one location near the free 
end as expected. 
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Conclusion  
In the present analysis the authors have presented the complete solution of tri-material material assembly for shearing stress. 
Both the roots for the exponential parameter are considered which leads to the correct solution. The comparison between the 
corrected proposed model and the finite element solution suggests reasonably good agreement.   
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Appendix 
 
Some symbols and their meanings: 
 
i=  Material layer no. as subscript, =1, 2, and 3;   E = Young’s modulus :  hi = Thickness   
αi = Coefficient of thermal Expansion ;  νi = poison’s ratio;  R = Radius of curvature 

Shear modulus, 
2(1 )

=
+

EiGi
iν

  ;     Flexural rigidity, Di = 
3

212(1 )−

E hi i

iν
   where D = D1+ D2 + D3    

Axial compliance, 
2(1 )−

= i
i E hi i

ν
λ  ;   Coefficient of interfacial compliance, 
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