
Copyright © 2013 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

On Improving Capacity and Delay in Multi Tx/Rx

Wireless Mesh Networks with Weighted Links

Hung-Yi Loo, Sieteng Soh
Department of Computing

Curtin University

Perth, Australia

{hung-yi.loo@student;s.soh@}.curtin.edu.au

Kwan-Wu Chin
School of Electrical, Computer and Telecommunications Engineering

University of Wollongong

Wollongong Australia

kwanwu@uow.edu.au

Abstract—This paper considers the problem of deriving a link

schedule for Time Division Multiple Access (TDMA)-based

concurrent transmit/receive Wireless Mesh Networks (WMNs)

that results in low end-to-end delays as well as high network

capacity. We first propose a MAX-CUT heuristic approach,

called Algo-2, that maximizes link activations in each slot of a

super-frame. Algo-2 is shown to produce better network capacity

as compared to existing heuristic approaches and significantly

improves the super-frame length of an existing MAX-CUT

approach that enforces 2-phase transmit-receive restriction – a

node that transmits (receives) in slot � � � is to become a receiver

(transmitter) in slot � � �. Then, we propose a heuristic solution,

called BDA, as a complement to existing schedulers to reduce

transmission delays. Since BDA only reorders slots in the super-

frame, it maintains each original schedule’s super-frame length,

and hence capacity, while reducing delays by up to 70% in 6-

node random topology networks.

Keywords: Wireless Mesh Networks; Transmission Delay;

Multiple Transmit/Receive; Scheduler; Weighted Links;

I. INTRODUCTION

Wireless mesh networks (WMNs) are an important

advancement in communication technologies [1]. Among

others, they have been used as a communication backbone in

rural areas and during natural disasters [2]. A key issue in

WMNs is network capacity [1] [3]. Recently, researchers have

equipped routers with multiple smart or directional antennas

that allows each node to communicate with multiple

neighboring routers simultaneously, i.e., realizing a multi-

transmit-receive (MTR) network. These MTR routers,

however, must adhere to the following constraint: a node can

either transmit (Tx) or receive (Rx) on a subset of its links, but

not Tx and Rx simultaneously. For example, schedules A and

B for the WMN in Figure 1 adhere to the constraint (link

weights correspond to traffic demands). Note that deriving a

schedule is NP-hard, since determining the set of links to be

activated in each slot is equivalent to the well-known MAX-

CUT problem [1].

Chin et al. [4] have recently proposed an efficient

algorithm, called Algo-1, that derives a schedule for the said

WMNs to increase the number of link activations per timeslot.

Their greedy heuristic algorithm iteratively generates a MAX-

CUT [1] to maximize the total number of link activations

(capacity) in each slot, and hence, minimizing the super-frame

length. The algorithm considers a 2-phase transmit-receive

restriction imposed by the 2P protocol of [5] that enforces each

node that transmits in slot � to become a receiver in slot � � 1.

For example, Algo-1 generates a MAX-CUT (�� 	
1,3
, �� 	

2,4
) for the WMN in Fig. 1 to activate links
���, ���, ���
 in

Slot 1 and links
���, ���, ���
 in Slot 2. Thus, the number of

slots must always be even, as every second slot is a mirror of

the previous. This rule, however, generates super-frames that

are longer than non-2P based methods such as [3]. In

particular, Dai et al. [3] considered the scheduling problem

without the 2P restriction. Their heuristic algorithms first

generate a conflict graph. They then generate the Maximum

Independent Set (MIS) of the graph to obtain links that can be

activated at each time slot. Additionally, they showed that

relaxing the 2P restriction allows a significant improvement in

WMN capacity.

Thus far, neither [3] or [4] has considered the issue of end-

to-end transmission delay in WMNs [6] [7]. Referring to Fig.

1, assume node 1 is required to make a transmission to node 4;

assuming shortest path routing, the demand is routed through

links ��� and ���. In Schedule A, link ��� is activated in slot 3

and ��� in slot 1 on the next iteration of the schedule. In

Schedule B, however, ��� and ��� are activated in slot 2 and 3

in the same iteration. This means the transmission will require

four timeslots using Schedule A, but only three in Schedule B.

Henceforth, this paper makes the following contributions.

First, we propose a novel MAX-CUT based heuristic algorithm

for scheduling links in MTR WMN that improves upon Dai et

al. [3]’s heuristics. A key feature of our algorithm is that it

does not require the generation of a conflict graph – a key

advantage, as the size of the conflict graph increases rapidly

Schedule A

Slot	1:	���	���	���	
Slot	2:	���	���	���		
Slot	3:	���	���	���	

Schedule B

Slot	1:	���	���	���	
Slot	2:	���	���	���		
Slot	3:	���	���	���

Fig. 1. A single channel MTR WMN. Schedule-A and B are possible outputs
from the scheduler presented in [3].

with network size. Note that a node in a conflict graph

represents a link in regular WMN topology, and therefore the

conflict graph of a |�| nodes in a fully connected WMN will

have �(|�|�) nodes and �(|�|�) links. Second, we propose a

novel heuristic algorithm, called Bucket Draining Algorithm

(BDA), to minimize the average end-to-end delay of an MTR

WMN. Advantageously, BDA can be used to complement any

TDMA link scheduler developed for an MTR WMN, e.g.,

those in [3] and [4], in order to retroactively minimize their

transmission delay without affecting super-frame length and

capacity.

The rest of the paper is organized as follows. In Section II,

we formally define the end-to-end delay problem model and

domain. In Section III, we propose a two-step solution to

produce a TDMA schedule from a weighted MTR WMN with

good capacity and end-to-end delay. We evaluate the efficacy

of our solution via simulation where we compare it against

existing schedulers in Section IV. We conclude the paper in

Section V.

II. THE PROBLEM

We model an MTR WMN with weighted links as a

multigraph �(�,), where � and correspond to the set of

nodes/routers and directed links respectively. The number of

edges connecting node � and ! is denoted by its weight "#$.

Specifically, is a multi-set where "#$ � 1 corresponds to "#$
copies of directed edge �#$ in . We assume static nodes and

links – no new nodes or links are added or removed at any

stage, and all link weights remain the same. A solution to the

MTR WMN link scheduling problem is to produce a super-

frame % 	 (%�, %�, … , %'), where each slot %# ∈ % contains a set

of directed, transmitting links. A key constraint is that all edge

�#$ 	must be activated at least "#$ � 1 times [3] [4]. Note, we

say “at least” because opportunistic links (i.e., those that were

scheduled in prior slots) may be added into a slot subject to the

constraint outlined in Section I.

Let)*+ be a demand from node ,	 to - , and �*+ is the

shortest path to route demand)*+ for each node pair ,, - ∈ �.

Thus, �*+ is a sequence of nodes starting from node , and

ending at node -, where each pair of consecutive nodes form a

link in , and the length of the path is |�*+| − 1. We define /*+

as the time delay to transmit a packet for demand)*+through

�*+ w.r.t. % . Formally, given �*+ for a demand)*+ , and a

super-frame %, the transmission delay of)*+ through �*+ is

/*+ 	 ∑ 1#(,, -)#∈234 (1)

where 1#(,, -) is the waiting time for a node � to transmit after

the transmission of its predecessor node � − 1, for each pair of

sequenced nodes in �*+ . Note that 1*(,, -) is the waiting time

required for node , to transmit w.r.t. % and 1+(,, -) 	 0, as

node - is at the end of the path and does not need to transmit

any further. For example, for)�� in Fig. 1 with Schedule A,

��� 	
1,3,4
, and /�� 	 1� �1� �1� 	 3 � 1 � 0 	 4.

The average transmission delay /*67 in �(�,) w.r.t. a

super-frame is calculated by taking the average of /*+ over all

demands)*+ . In this paper, we consider all possible (,, -)
pairs, for ,, - ∈ �, and thus,

/*67 	
∑ 8343,4∈9;3;4

|<|(|<|=�)
 (2)

Our end-to-end delay problem is to find a schedule % for

�(�,) such that the average end-to-end delay in /*67 is

minimal while also maximizing its network capacity as defined

in [3] and [4]. For example, a solution to the problem in Fig. 1

is % 	 (
���, ���, ���
,
���, ���, ���
,
���, ���, ���
) where

/�� 	 1, /�� 	 2, /�� 	 3, /�� 		 2, /�� 	 3, /�� 	 1, /�� 	
3, /�� 	 4, /�� 	 2, /�� 	 3, /�� 	 1, /�� 	 3, and so /*67 ≅
2.33.

III. A SOLUTION

We propose to solve the problem in two steps. First, we use

Algo-2, an extension of Algo-1 [4], to heuristically generate

super-frame S with maximum capacity. Second, we reorder the

slots in S to produce a super-frame R that minimizes /*67. For

the second step, one may use a brute force approach to generate

all possible permutations of slots in S and select one that

produces minimal /*67 . However, this is computationally

infeasible for large |%| and |�|. Thus, in this paper we propose

a heuristic algorithm called Bucket Draining Algorithm (BDA)

to re-order slots. It is important to note that since R contains

the same slots as S, the schedule has the same capacity and

super-frame length as compared to S but with lower end-to-

end delay between node pairs.

A. Algo-2 – A Maxcut-based Algorithm

Algo-2 iteratively finds the MAX-CUT [8] of the network,

i.e., partition the network into a bipartite graph such that the

weighted links between the two partitions are maximized.

Algo-2 uses the MAX-CUT to maximize the number of link

activations per timeslot, as each MAX-CUT directly translates

to a single timeslot in the generated super-frame [4]. However,

since the problem to generate MAX-CUT is NP-Complete, this

paper uses the greedy heuristic proposed in [4]. For each

generated MAX-CUT, and thus link activations in a new slot,

Algo-2 updates link weights, and generates another MAX-

CUT, which in turn is used to obtain the link activation in the

next slot. More specifically, Algo-2 runs the following steps:

1. Set �� 	 �, �� 	 @, and super-frame % 	 @.

2. For each node n in ��, calculate its ΔB � 0 as

 ΔC 	 ∑ "BD − ∑ "DBD∈2ED∈2F,DGB

3. Find node H in �� with the maximum ΔB , If ΔB > 0 ,

move H to ��. If ΔB 	 0, move H to �� if |��| < |��|.

4. Repeat steps 2 and 3 until all calculated Δ values become

negative. The links connecting nodes in �� to nodes in ��

form an approximate MAX-CUT.

5. Add the timeslot K�#$L� ∈ ��	and	! ∈ ��P to % and

decrement the weights K"#$L� ∈ ��	and	! ∈ ��P by 1. If

any "#$ 	 0, delete �#$ from .

6. Reset �� 	 � and �� 	 @, then repeat steps 2 to 5 until

there are no more links in , meaning the weight

requirements have been satisfied by the schedule.

7. Return %.

After the initialization in Step 1, Steps 2 to 4 greedily

generate a MAX-CUT. In Step 2, the first term is the total

number of outgoing link from node n to all nodes in ��, while

the second term is the incoming link from nodes in �� to node

H. The algorithm aims to get node H that has the maximum

difference between the values of the two terms, i.e., maximum

ΔB, for each node in �� and put it in �� so that it maximizes the

number of links connecting nodes in �� to every node in �� ,

i.e., a MAX-CUT. Note that when each ΔB is negative, moving

a node from �� to �� does not increase the size of the MAX-

CUT, and thus Step 5 returns the MAX-CUT. Step 6 creates a

new time slot in % that contains all links connecting nodes in ��

to �� , and reduces all the links’ weight by one; a link with

"#$ 	 0 has been activated as many times as required, and

therefore is deleted from the network. Step 6 reinitializes ��

and �� and repeat Steps 2 to 5 to generate the next MAX-CUT,

and hence link activations in the next time slot in %. Step 7

returns the super-frame % after all links in have been

activated at least as many times as required by their weights.

Note that the only difference between Algo-1 [4] and Algo-2 is

in Step 5. Since Algo-1 assumes 2P protocol, for each MAX-

CUT, it generates 2 consecutive slots, the first contains all links

from nodes in �� to all nodes in ��, and the second contains all

links from nodes in �� to all nodes in ��. Therefore, the time

complexity of Algo-2 can be calculated similar to that for

Algo-1, i.e. �(|�|�).

To illustrate Algo-2, we show how it generates Schedule A

for the graph in Figure 1; initially, �� 	
1,2,3,4
, �� 	 @, and

% 	 @.

1. To generate the first timeslot, Algo-2 calculates the Δ

values
Δ�, Δ�, Δ�, Δ�
 	
2,2,4,1
 in Step 2, and since

Δ� > 0 is the maximum, Step 3 moves node 3 from �� to

��, and thus �� 	
1,2,4
 and �� 	
3
. Repeating Steps

2 and 3, Algo-2 calculates
Δ�, Δ�, Δ�
 	
0,0, −2
 where

the maximum is either Δ� 	 0 or Δ� 	 0 . Since |��| <
|��|, Step 3 randomly chooses Δ� and moves node 2 to

get �� 	
1,4
 and �� 	
2,3
 . Calculating the Δ values

again, it gets
Δ�, Δ�
 	
−2,−2
 , thus the algorithm

obtains a MAX-CUT �� 	
1,4
, �� 	
2,3
, and Step 5

adds links
���, ���, ���
 to the first timeslot Q� in

Schedule A and decrements the weights
"��, "��, "��

by one.

2. To find the second timeslot, Algo-2 simply repeats this

procedure with the updated weights. First, it calculates

Δ�, Δ�, Δ�, Δ�
 	
2,1,2,1
. Node 3 has the maximum Δ

so Algo-2 moves node 3 and gets �� 	
1,2,4
 and �� 	

3
 . Then, it calculates
Δ�, Δ�, Δ�
 	
1, −1,−1
	 ,

moves node 1, and obtains �� 	
2,4
 and �� 	
1,3
 .

Finally, it calculates
Δ�, Δ�
 	
−2,−1
 , sets Q� 	

���, ���, ���
 , and decrements the corresponding weights

"��, "��, "��
 by one.

3. To find the third timeslot, Algo-2 calculates

Δ�, Δ�, Δ�, Δ�
 	
1,1,0,1
 and moves node 4. Then it

calculates
Δ�, Δ�, Δ�
 	
1,1, −1
 and move node 2.

Finally, it calculates
Δ�, Δ�
 	
1, −2
 , move node 1,

then stops after obtaining a MAX-CUT �� 	
3
, �� 	

1,2,4
 , and so Step 5 sets Q� 	
���, ���, ���
 and

decrements the links’ corresponding weights.

4. At this point, all links have been deleted from , i.e. all

links have weight = 0, and thus Step 6 stops and Step 7

returns the super-frame A as shown in Fig. 1.

B. Bucket Draining Algorithm

Our proposed BDA reorders the slots in S to produce a

super-frame R that minimizes /*67 . BDA is based on the

reasoning that each link should be activated ‘fairly’ and

proportional to its weight, with its activation spread evenly

across the super-frame. Fair and even activation of all links in a

network will avoid some links being neglected (‘starved’) for a

disproportionate amount of time due to other links being

inadvertently prioritized. It is possible for a link to be

temporarily starved within a series of slots in the super-frame.

If there is a large contiguous series of slots in the super-frame

in which a particular link is not activated, it may increase the

delay for any demand routed through that link since the

demand transmission will most likely have to wait longer than

is necessary for that particular link to be activated. On the other

hand, if a link is only activated within a consecutive slots, e.g.,

slots at the beginning of the super-frame, it may increase delay

for demands routed through that links that require its activation

on the other parts of the super-frame, e.g., at the end. Fair and

even activation of links will thus allow more demand routes to

be consecutively activated to completion within a reasonable

time.

To fairly activate links, BDA creates a bucket -*+ 	
("*+ , flag*+) for each link �*+ . Here, flag*+ 	 true signifies

that the bucket has been drained, i.e., the link in the bucket has

been activated once within a round. The flag ensures that no

bucket, hence link, is activated more than once while links in

other buckets, i.e., those with flags set to false, have yet to be

activated within this round. More specifically, in order to

generate timeslots in R given a super-frame S, BDA runs the

following steps:

1. Create a bucket -*+ 	 ("*+ , flag*+) for each link �*+ ∈
 .

2. Find the heaviest non-empty bucket -TU with flagTU 	

false, and find %V ∈ % such that �TU ∈ %V. If there are two

or more buckets with the heaviest weight, arbitrarily pick

any one of them.

3. For each �*+ ∈ %V , drain -*+ by decrementing "*+ by 1

and set flag*+ 	 true. Append %V to the new schedule

sequence	W, and remove it from %.

4. If % contains only one slot, append this slot to W , and

terminate BDA with W as its output.

5. If the buckets are all empty, append all of the remaining

slots in % to W, and terminate BDA with W as its output.

6. If flag*+ 	 true for all edge �*+ , reset all flag*+ 	 false.

7. Repeat from Step 2.

After initialization in Step 1, BDA finds a bucket with the

heaviest weight in Step 2 and find a slot %V that contains the

bucket’s corresponding edge. The step selects a link with the

heaviest weight so that the link’s activation can be more spread

throughout the super-frame. Step 3 drains the buckets whose

edges are in slot %V, and Step 4 moves the slot from % to W in

order. BDA terminates and returns W in either Step 5 or Step 6.

When % contains only one slot, BDA directly knows the

position of the slot in W , and therefore it returns after

appending the slot to W . An empty bucket means that its

corresponding edge �#$ has been activated "#$ times as

required, and thus Step 6 terminates when all buckets are

empty. For this case, the step appends all remaining slots in %

to W. Step 7 resets all flags to false to start a new round of link

activations once each of the links has been activated one time.

It can be shown that the running time of these steps is at most

�(| |. |%|�) where | | is the number of edges in the WMN and
|%| is the number of slots in the given super-frame.

We now show how BDA re-arranges Schedule A of Fig. 1

with % 	 (%�, %�, %�) . Step 1 constructs eight buckets,

corresponding to the eight links of the WMN:

-��, -��, -��, -��, -��, -��, -��, -��
. Their corresponding

weights are
1, 1, 1, 1, 1, 1, 2, 1
 and flag#$ 	 false for all edge

�#$. Step 2 chooses bucket -�� because it has the highest

weight. Since ��� ∈ %� 	
���, ���, ���
, Step 3 drains -��, -��

and -�� and sets flag�� , flag�� and flag�� to true. Step 4

removes %� from % and adds it to W , i.e., W 	 (%�). At this

stage, the bucket weights are {0, 1, 1, 1, 1, 0, 1, 1} and % 	
(%�, %�), and thus Step 5 and Step 6 are skipped. Step 7 is also

skipped since not all flags are set to true and BDA repeats from

Step 2. Since all non-empty buckets have equal weight, it

chooses any of them, except -�� whose flag is true since it was

recently drained. Assume it selects -�� , and since %� 	

���, ���, ���
 , Step 3 drains the corresponding buckets and

flags them. Step 4 removes %� from % and sets W 	 (%�, %�).

Since there is only one remaining slot in S, Step 5 assigned this

last slot to W and terminates BDA that returns the newly

sequenced schedule W 	 (%�, %�, %�) with /*67 ≅ 2.33 , which

is lower than the /*67 ≅ 2.75 of Schedule A.

IV. EVALUATION

In order to produce a fair comparison, our simulations

conform to that of [3] and [4]. We generate random networks,

where each network has six nodes with density (i.e., number of

links divided by max number of links) varying from 0.1 to 1.0.

Note that a fully connected network has a density of 1.0. We

generate 50 random networks for each density value. All link

weights have values in the range [1,10].

To evaluate the performance of Algo-2, we have compared

derived schedules against those produced by HWF and MDF

[3] in terms of their average super-frame length and link

activations/capacity. Further, we benchmarked Algo-2, HWF

and MDF against the Linear Programming (LP) approach

presented in [3]. Note, the LP approach generates schedule S

with optimal super-frame length but is computationally feasible

only for networks with |�| ≤ 6.

Table 1 shows the super-frame length produced by each

scheduler. Algo-2 consistently outperforms the MIS-based

heuristics of [3]. Further, the super-frame length generated by

Algo-2 is only 1.06% worse than the optimal one generated by

the exponential time LP approach in [3]. Table 1 also shows

that the 2P restriction, used in Algo-1, significantly increases

the super-frame length when compared to the non-2P

approaches.

TABLE I

SUPER-FRAME LENGTH OF SCHEDULES BY NETWORK DENSITY

Network

Density
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Algo-1 16.60 20.72 25.20 29.20 30.72 33.80 34.88 37.20 40.00 41.68

Algo-2 12.66 15.30 17.84 20.26 21.58 23.02 23.52 24.66 26.10 27.24

HWF 12.80 15.40 18.56 20.94 22.16 23.76 24.22 25.24 26.76 28.06

MDF 12.76 15.34 18.24 20.96 22.40 23.94 24.60 26.02 28.06 29.42

LP 12.64 15.26 17.84 20.18 21.52 22.92 23.32 24.32 25.52 26.44

Table 2 shows the performance among the five evaluated

approaches in terms of capacity, calculated as

 Capacity 	 abcde	fghijk	bl	mnCo	pqcnrdcnbCs

tgujklkdhj	mjCvcw
 (3)

As shown in the table, Algo-2 outperforms HWF and MDF.

Surprisingly, Algo-2 also outperforms LP by an average of

1.97% for networks with density above 0.6. Note that Algo-2

uses MAX-CUT to generate maximum link activations for each

slot, while LP utilizes the MIS approach. Our results show that

MAX-CUT is more effective than MIS at producing super-

frames with good capacity. This observation is further

supported by the capacity produced by Algo-1, another MAX-

CUT based algorithm for 2P. Algo-1 and Algo-2 produce

similar capacity.

TABLE II

NETWORK CAPACITY OF SCHEDULES BY NETWORK DENSITY

Network Density 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Algo-1 1.84 2.68 3.72 4.65 5.38 6.19 6.62 7.56 8.24 8.92

Algo-2 1.79 2.70 3.72 4.67 5.40 6.29 6.69 7.60 8.31 8.90

HWF 1.75 2.52 3.40 4.24 4.94 5.74 6.16 7.08 7.69 8.37

MDF 1.75 2.53 3.47 4.25 4.94 5.73 6.06 6.90 7.44 8.05

LP 1.97 3.00 4.09 4.90 5.56 6.35 6.64 7.52 8.03 8.70

Figure 2 shows the end-to-end delay, calculated using /*67;

the solid lines show the delay without BDA, while the dashed

lines show the benefits of BDA. Although Table 1 shows that

the LP based approach optimally minimizes super-frame

lengths, the schedules generated resulted in the highest end-to-

end delays. In contrast, Algo-2 produces the lowest delay. Note

that, by nature, LP, HWF, MDF and Algo-1 may schedule the

same set of link activations repeatedly consecutively [3] [4],

which may starve other links. On the other hand, Algo-2 avoids

this by scheduling each slot independently and thus fairly

distributes link activations, which, as expected, lowers the end-

to-end delay. The figure shows that, using our delay model, as

defined by (2), a shorter super-frame length or higher capacity

is not a necessary condition to produce shorter end-to-end

delays; e.g., LP versus Algo-1 or LP versus MDF, respectively.

Figure 2 shows that BDA is effective in reducing the

average end-to-end delay of schedules generated by the five

scheduling algorithms. Since BDA only reorders the slots in

each schedule, it does not compromise on super-frame length

and capacity. Our results show that BDA reduces the average

delay of the schedules generated by Algo-1, Algo-2, HWF,

MDF, LP, by 52%, 31%, 53%, 50%, and 70% respectively.

Thus, BDA is a good complement to any MTR WMN TDMA-

based link scheduler. As shown, in terms of delay, all

algorithms complemented by BDA produce schedules with

comparable average end-to-end delay. Thus, when using our

delay model in (2), the order of slots in a super-frame is the

main factor that affects the end-to-end delay.

Since the average delay, /*67 , considers all possible

demands and does not prioritize individual demands, a minimal

/*67 is not optimal for specific end-to-end throughput for a

single demand or subset of demands. Thus, to further evaluate

the effect of our BDA on delay performance, we ran

simulations to compute change in delay for each (x, y) demand

before and after using BDA on 500 fully-connected 6 node

networks with weights in the range [1, 10]. A total of 14965

individual demands’ delay changes were considered.

The CDF in Figure 3 further illustrates the effect that BDA

has on the delay of demands. Approximately 40% of demands

suffer a delay sacrifice of 1 to 8 time units after running BDA,

with 25% of demands having a delay sacrifice of no more than

two time units. On the other hand, approximately 40% of

demands show an improvement in delay of 1 to 8 time units

after BDA, while another 20% of demands show extreme delay

improvement of 8 to 26 time units. Hence, it is evident that the

delay improvements outweigh the delay sacrifices by a

significant margin, which results in a reduction in /*67 .

Our analysis shows that there is possible room for

improvement in BDA, despite the fact that it achieves our goals

as outlined in Section II. Ideally, we would want to improve the

delay of all demands without sacrificing any. On the other

hand, we can justify these sacrifices as long as the delay

improvement on the other demands are sufficient, e.g., a delay

sacrifice of 4 time units is reasonable if we also achieve a delay

improvement of 25 time units on one or more other demands.

As a future work, we would like to develop a variant of the

algorithm which achieves similar overall delay improvement

without having to sacrifice the delay of any demands. This

restriction would theoretically limit the achievable amount of

delay improvement; however we would then be able to

guarantee that no demand’s delay is worsened.

V. CONCLUSION

This paper has formally defined the end-to-end delay

problem, and has presented a two-step solution using two new

heuristic algorithms, Algo-2 and BDA, to optimize the delay

and capacity of TDMA-based MTR WMN schedules. Algo-2,

a MAX-CUT based approach, produces better capacity than

two state-of-the-art MIS-based approaches. Simulations show

that BDA is very effective at reducing average delay of the

schedules generated by the existing MTR schedulers without

compromising their super-frame length as well as capacity.

VI. REFERENCES

[1] K. Chin, S. Soh, and C. Meng, "Novel scheduling algorithms for

concurrent transmit/receive wireless mesh networks," Computer

Networks, vol. 56, no. 4, pp. 1200-1214, Mar 2012.

Fig. 2. End-to-end delay of the schedulers from [3] and [4] before (solid lines)
and after (dashed lines) applying BDA.

Fig. 3. CDF showing number of demands (as a percentage of the total number
of demands) by their change in delay. Change in delay is measured in TDMA
slots; i.e., the difference between two /*+ values, before and after BDA, as
shown in (1) in Section II. A positive change in delay means a delay
improvement, and a negative change in delay means a delay sacrifice.

[2] S. Rahman, A. Yarali, and B. Ahsant, "Wireless Mesh Networking: A

Key Solution for Emergency & Rural Applications," in Advances in Mesh

Networks, 2009, pp. 143-149.

[3] H. Dai, S. C. Liew, and L. Fu, "Link Scheduling in Multi-Transmit-

Receive Wireless Networks," in IEEE Local Computer Networks, Oct

2011, pp. 199-202.

[4] K. Chin, S. Soh, and C. Meng, "A Novel Scheduler for Concurrent Tx/Rx

Wireless Mesh Networks with Weighted Links," IEEE Communications

Letters, vol. 16, no. 2, pp. 246-248, Feb 2012.

[5] B. Raman and K. Chebrolu, "Design and evaluation of a new MAC

protocol for long-distance 802.11 mesh networks," in ACM MOBICOM,

New York, 2005, pp. 156-169.

[6] P. Djukic and S. Valaee, "Delay aware link scheduling for multi-hop

TDMA wireless networks," IEEE/ACM Transactions on Networking, vol.

17, no. 3, pp. 870-883, June 2009.

[7] V. Gabale, A. Chiplunkar, B. Raman, and P. Dutta, "Delay Contained:

Scheduling Voice Over Multi-hop Multi-channel Wireless Mesh

Networks," in COMSNETS, Bangalore, 2011, pp. 1-10.

[8] M. Goemans and D. Williamson, "Improved approximation algorithms

for maximum cut and satisfiability problems using semidefinite

programming," Journal of the ACM, vol. 42, no. 6, pp. 1115-1145,

November 1995.

