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Abstract—This paper considers the problem of deriving a link 

schedule for Time Division Multiple Access (TDMA)-based 

concurrent transmit/receive Wireless Mesh Networks (WMNs) 

that results in low end-to-end delays as well as high network 

capacity. We first propose a MAX-CUT heuristic approach, 

called Algo-2, that maximizes link activations in each slot of a 

super-frame. Algo-2 is shown to produce better network capacity 

as compared to existing heuristic approaches and significantly 

improves the super-frame length of an existing MAX-CUT 

approach that enforces 2-phase transmit-receive restriction – a 

node that transmits (receives) in slot � � � is to become a receiver 

(transmitter) in slot � � �. Then, we propose a heuristic solution, 

called BDA, as a complement to existing schedulers to reduce 

transmission delays. Since BDA only reorders slots in the super-

frame, it maintains each original schedule’s super-frame length, 

and hence capacity, while reducing delays by up to 70% in 6-

node random topology networks.  

Keywords: Wireless Mesh Networks; Transmission Delay; 

Multiple Transmit/Receive; Scheduler; Weighted Links; 

I.  INTRODUCTION 

Wireless mesh networks (WMNs) are an important 

advancement in communication technologies [1]. Among 

others, they have been used as a communication backbone in 

rural areas and during natural disasters [2].  A key issue in 

WMNs is network capacity [1] [3]. Recently, researchers have 

equipped routers with multiple smart or directional antennas 

that allows each node to communicate with multiple 

neighboring routers simultaneously, i.e., realizing a multi-

transmit-receive (MTR) network. These MTR routers, 

however, must adhere to the following constraint: a node can 

either transmit (Tx) or receive (Rx) on a subset of its links, but 

not Tx and Rx simultaneously. For example, schedules A and 

B for the WMN in Figure 1 adhere to the constraint (link 

weights correspond to traffic demands). Note that deriving a 

schedule is NP-hard, since determining the set of links to be 

activated in each slot is equivalent to the well-known MAX-

CUT problem [1]. 

Chin et al. [4] have recently proposed an efficient 

algorithm, called Algo-1, that derives a schedule for the said 

WMNs to increase the number of link activations per timeslot.  

Their greedy heuristic algorithm iteratively generates a MAX-

CUT [1] to maximize the total number of link activations 

(capacity) in each slot, and hence, minimizing the super-frame 

length. The algorithm considers a 2-phase transmit-receive 

restriction imposed by the 2P protocol of [5] that enforces each 

node that transmits in slot � to become a receiver in slot � � 1. 

For example, Algo-1 generates a MAX-CUT (�� 	 
1,3
, �� 	

2,4
) for the WMN in Fig. 1 to activate links 
���, ���, ���
 in 

Slot 1 and links 
���, ���, ���
 in Slot 2. Thus, the number of 

slots must always be even, as every second slot is a mirror of 

the previous. This rule, however, generates super-frames that 

are longer than non-2P based methods such as [3].   In 

particular, Dai et al. [3] considered the scheduling problem 

without the 2P restriction. Their heuristic algorithms first 

generate a conflict graph. They then generate the Maximum 

Independent Set (MIS) of the graph to obtain links that can be 

activated at each time slot.   Additionally, they showed that 

relaxing the 2P restriction allows a significant improvement in 

WMN capacity.  

  

Thus far, neither [3] or [4] has considered the issue of end-

to-end transmission delay in WMNs [6] [7].  Referring to Fig. 

1, assume node 1 is required to make a transmission to node 4; 

assuming shortest path routing, the demand is routed through 

links ��� and ���. In Schedule A, link ��� is activated in slot 3 

and ���  in slot 1 on the next iteration of the schedule. In 

Schedule B, however, ��� and ��� are activated in slot 2 and 3 

in the same iteration. This means the transmission will require 

four timeslots using Schedule A, but only three in Schedule B.  

Henceforth, this paper makes the following contributions. 

First, we propose a novel MAX-CUT based heuristic algorithm 

for scheduling links in MTR WMN that improves upon Dai et 

al. [3]’s heuristics.  A key feature of our algorithm is that it 

does not require the generation of a conflict graph – a key 

advantage, as the size of the conflict graph increases rapidly 

 

Schedule A 

Slot	1:	���	���	���	
Slot	2:	���	���	���		
Slot	3:	���	���	���	 

Schedule B 

Slot	1:	���	���	���	
Slot	2:	���	���	���		
Slot	3:	���	���	��� 

Fig. 1.  A single channel MTR WMN. Schedule-A and B are possible outputs 
from the scheduler presented in [3]. 



with network size. Note that a node in a conflict graph 

represents a link in regular WMN topology, and therefore the 

conflict graph of a |�| nodes in a fully connected WMN will 

have �(|�|�) nodes and �(|�|�) links. Second, we propose a 

novel heuristic algorithm, called Bucket Draining Algorithm 

(BDA), to minimize the average end-to-end delay of an MTR 

WMN.  Advantageously, BDA can be used to complement any 

TDMA link scheduler developed for an MTR WMN, e.g., 

those in [3] and [4], in order to retroactively minimize their 

transmission delay without affecting super-frame length and 

capacity.  

The rest of the paper is organized as follows. In Section II, 

we formally define the end-to-end delay problem model and 

domain. In Section III, we propose a two-step solution to 

produce a TDMA schedule from a weighted MTR WMN with 

good capacity and end-to-end delay. We evaluate the efficacy 

of our solution via simulation where we compare it against 

existing schedulers in Section IV.  We conclude the paper in 

Section V. 

II. THE PROBLEM 

We model an MTR WMN with weighted links as a 

multigraph �(�,  ), where �  and   correspond to the set of 

nodes/routers and directed links respectively. The number of 

edges connecting node �  and !  is denoted by its weight "#$ . 

Specifically,   is a multi-set where "#$ � 1 corresponds to "#$  
copies of directed edge �#$ in  . We assume static nodes and 

links – no new nodes or links are added or removed at any 

stage, and all link weights remain the same. A solution to the 

MTR WMN link scheduling problem is to produce a super-

frame % 	 (%�, %�, … , %'), where each slot %# ∈ % contains a set 

of directed, transmitting links.  A key constraint is that all edge 

�#$ 	must be activated at least "#$ � 1 times  [3] [4]. Note, we 

say “at least” because opportunistic links (i.e., those that were 

scheduled in prior slots) may be added into a slot subject to the 

constraint outlined in Section I.  

Let )*+  be a demand from node ,	 to - , and �*+  is the 

shortest path to route demand	)*+  for each node pair ,, - ∈ �. 

Thus, �*+  is a sequence of nodes starting from node ,  and 

ending at node -, where each pair of consecutive nodes form a 

link in  , and the length of the path is |�*+| − 1. We define /*+ 

as the time delay to transmit a packet for demand )*+through 

�*+  w.r.t. % . Formally, given �*+  for a demand )*+ , and a 

super-frame %, the transmission delay of )*+  through �*+  is 

 

/*+ 	 ∑ 1#(,, -)#∈234           (1) 

where 1#(,, -) is the waiting time for a node � to transmit after 

the transmission of its predecessor node � − 1, for each pair of  

sequenced nodes in �*+ . Note that 1*(,, -) is the waiting time 

required for node , to transmit w.r.t. % and 1+(,, -) 	 0, as 

node - is at the end of the path and does not need to transmit 

any further. For example, for )�� in Fig. 1 with Schedule A, 

��� 	 
1,3,4
, and  /�� 	 1� �1� �1� 	 3 � 1 � 0 	 4.  

The average transmission delay /*67 in �(�,  )  w.r.t. a 

super-frame is calculated by taking the average of /*+ over all 

demands )*+ . In this paper, we consider all possible (,, -) 
pairs, for ,, - ∈ �, and thus,  

 

/*67 	
∑ 8343,4∈9;3;4

|<|(|<|=�)
         (2) 

Our end-to-end delay problem is to find a schedule % for 

�(�,  )  such that the average end-to-end delay in /*67  is 

minimal while also maximizing its network capacity as defined 

in  [3] and  [4]. For example, a solution to the problem in Fig. 1 

is % 	 (
���, ���, ���
, 
���, ���, ���
, 
���, ���, ���
)  where  

/�� 	 1, /�� 	 2, /�� 	 3, /�� 		 2, /�� 	 3, /�� 	 1, /�� 	
3, /�� 	 4, /�� 	 2, /�� 	 3, /�� 	 1, /�� 	 3, and so /*67 ≅
2.33.  

III. A SOLUTION  

We propose to solve the problem in two steps. First, we use 

Algo-2, an extension of Algo-1 [4], to heuristically generate 

super-frame S with maximum capacity. Second, we reorder the 

slots in S to produce a super-frame R that minimizes /*67. For 

the second step, one may use a brute force approach to generate 

all possible permutations of slots in S and select one that 

produces minimal /*67 . However, this is computationally 

infeasible for large |%| and |�|. Thus, in this paper we propose 

a heuristic algorithm called Bucket Draining Algorithm (BDA) 

to re-order slots.  It is important to note that since R contains 

the same slots as S, the schedule has the same capacity and 

super-frame length as compared to S but with lower  end-to-

end delay between node pairs. 

A. Algo-2 – A Maxcut-based Algorithm  

Algo-2 iteratively finds the MAX-CUT [8] of the network, 

i.e., partition the network into a bipartite graph such that the 

weighted links between the two partitions are maximized. 

Algo-2 uses the MAX-CUT to maximize the number of link 

activations per timeslot, as each MAX-CUT directly translates 

to a single timeslot in the generated super-frame [4]. However, 

since the problem to generate MAX-CUT is NP-Complete, this 

paper uses the greedy heuristic proposed in [4].  For each 

generated MAX-CUT, and thus link activations in a new slot, 

Algo-2 updates link weights, and generates another MAX-

CUT, which in turn is used to obtain the link activation in the 

next slot.  More specifically, Algo-2 runs the following steps: 

1. Set �� 	 �, �� 	 @, and super-frame % 	 @. 

2. For each node n in ��, calculate its ΔB � 0 as 

 ΔC 	 ∑ "BD − ∑ "DBD∈2ED∈2F,DGB   

3. Find node H  in ��  with the maximum ΔB , If ΔB > 0 ,  

move H to ��. If  ΔB 	 0, move H to �� if  |��| < |��|. 

4. Repeat steps 2 and 3 until all calculated Δ values become 

negative. The links connecting nodes in �� to nodes in �� 

form an approximate MAX-CUT. 

5. Add the timeslot K�#$L� ∈ ��	and	! ∈ ��P  to %  and 

decrement the weights K"#$L� ∈ ��	and	! ∈ ��P  by 1. If 

any "#$ 	 0, delete �#$ from  . 



6. Reset �� 	 � and �� 	 @, then repeat steps 2 to 5 until 

there are no more links in  ,  meaning the weight 

requirements have been satisfied by the schedule. 

7. Return %. 

After the initialization in Step 1, Steps 2 to 4 greedily 

generate a MAX-CUT.  In Step 2, the first term is the total 

number of outgoing link from node n to all nodes in ��, while 

the second term is the incoming link from nodes in �� to node 

H. The algorithm aims to get node H that has the maximum 

difference between the values of the two terms, i.e., maximum 

ΔB, for each node in �� and put it in �� so that it maximizes the 

number of links connecting nodes in ��  to every node in �� , 

i.e., a MAX-CUT. Note that when each ΔB is negative, moving 

a node from �� to �� does not increase the size of the MAX-

CUT, and thus Step 5 returns the MAX-CUT. Step 6 creates a 

new time slot in % that contains all links connecting nodes in �� 

to �� , and reduces all the links’ weight by one; a link with 

"#$ 	 0  has been activated as many times as required, and 

therefore is deleted from the network. Step 6 reinitializes �� 

and �� and repeat Steps 2 to 5 to generate the next MAX-CUT, 

and hence link activations in the next time slot in %. Step 7 

returns the super-frame %  after all links in   have been 

activated at least as many times as required by their weights. 

Note that the only difference between Algo-1 [4] and Algo-2 is 

in Step 5.  Since Algo-1 assumes 2P protocol, for each MAX-

CUT, it generates 2 consecutive slots, the first contains all links 

from nodes in �� to all nodes in ��, and the second contains all 

links from nodes in �� to all nodes in ��. Therefore, the time 

complexity of Algo-2 can be calculated similar to that for 

Algo-1, i.e. �(|�|�). 

To illustrate Algo-2, we show how it generates Schedule A 

for the graph in Figure 1; initially, �� 	 
1,2,3,4
, �� 	 @, and 

% 	 @.  

1. To generate the first timeslot, Algo-2 calculates the Δ 

values 
Δ�, Δ�, Δ�, Δ�
 	 
2,2,4,1
  in Step 2, and since 

Δ� > 0 is the maximum, Step 3 moves node 3 from �� to 

��, and thus �� 	 
1,2,4
 and �� 	 
3
. Repeating Steps 

2 and 3, Algo-2 calculates 
Δ�, Δ�, Δ�
 	 
0,0, −2
 where 

the maximum is either Δ� 	 0  or Δ� 	 0 . Since |��| <
|��|, Step 3 randomly chooses Δ�  and moves node 2 to 

get �� 	 
1,4
 and �� 	 
2,3
 . Calculating the Δ  values 

again, it gets 
Δ�, Δ�
 	 
−2,−2
 , thus the algorithm 

obtains a MAX-CUT �� 	 
1,4
, �� 	 
2,3
, and Step 5 

adds links 
���, ���, ���
  to the first timeslot Q�  in 

Schedule A and decrements the weights 
"��, "��, "��
 
by one.   

2. To find the second timeslot, Algo-2 simply repeats this 

procedure with the updated weights. First, it calculates 

Δ�, Δ�, Δ�, Δ�
 	 
2,1,2,1
. Node 3 has the maximum Δ 

so Algo-2 moves node 3 and gets �� 	 
1,2,4
 and �� 	

3
 . Then, it calculates 
Δ�, Δ�, Δ�
 	 
1, −1,−1
	 , 

moves node 1, and obtains �� 	 
2,4
  and �� 	 
1,3
 . 

Finally, it calculates 
Δ�, Δ�
 	 
−2,−1
 , sets Q� 	


���, ���, ���
 , and decrements the corresponding weights 

"��, "��, "��
 by one. 

3. To find the third timeslot, Algo-2 calculates 

Δ�, Δ�, Δ�, Δ�
 	 
1,1,0,1
  and moves node 4. Then it 

calculates 
Δ�, Δ�, Δ�
 	 
1,1, −1
  and move node 2. 

Finally, it calculates 
Δ�, Δ�
 	 
1, −2
 , move node 1, 

then stops after obtaining a MAX-CUT �� 	 
3
,  �� 	

1,2,4
 , and so Step 5 sets Q� 	 
���, ���, ���
  and 

decrements the links’ corresponding weights.  

4. At this point, all links have been deleted from  , i.e. all 

links have weight = 0, and thus Step 6 stops and Step 7 

returns the super-frame A as shown in Fig. 1.  

B. Bucket Draining Algorithm  

Our proposed BDA reorders the slots in S to produce a 

super-frame R that minimizes /*67 . BDA is based on the 

reasoning that each link should be activated ‘fairly’ and 

proportional to its weight, with its activation spread evenly 

across the super-frame. Fair and even activation of all links in a 

network will avoid some links being neglected (‘starved’) for a 

disproportionate amount of time due to other links being 

inadvertently prioritized. It is possible for a link to be 

temporarily starved within a series of slots in the super-frame. 

If there is a large contiguous series of slots in the super-frame 

in which a particular link is not activated, it may increase the 

delay for any demand routed through that link since the 

demand transmission will most likely have to wait longer than 

is necessary for that particular link to be activated. On the other 

hand, if a link is only activated within a consecutive slots, e.g., 

slots at the beginning of the super-frame, it may increase delay 

for demands routed through that links that require its activation 

on the other parts of the super-frame, e.g., at the end. Fair and 

even activation of links will thus allow more demand routes to 

be consecutively activated to completion within a reasonable 

time. 

To fairly activate links, BDA creates a bucket -*+ 	
("*+ , flag*+) for each link �*+ .  Here, flag*+ 	 true signifies 

that the bucket has been drained, i.e., the link in the bucket has 

been activated once within a round. The flag ensures that no 

bucket, hence link, is activated more than once while links in 

other buckets, i.e., those with flags set to false, have yet to be 

activated within this round.  More specifically, in order to 

generate timeslots in R given a super-frame S, BDA runs the 

following steps:  

1. Create a bucket -*+ 	 ("*+ , flag*+) for each link �*+ ∈
 . 

2. Find the heaviest non-empty bucket -TU  with flagTU 	 

false, and find %V ∈ % such that �TU ∈ %V. If there are two 

or more buckets with the heaviest weight, arbitrarily pick 

any one of them. 

3. For each �*+ ∈ %V , drain -*+  by decrementing "*+  by 1 

and set flag*+ 	  true. Append %V  to the new schedule 

sequence	W, and remove it from %.  



4. If %  contains only one slot, append this slot to W , and 

terminate BDA with  W as its output.  

5. If the buckets are all empty, append all of the remaining 

slots in % to W, and terminate BDA with W as its output.  

6. If flag*+ 	 true for all edge �*+ , reset all flag*+ 	 false. 

7. Repeat from Step 2. 

After initialization in Step 1, BDA finds a bucket with the 

heaviest weight in Step 2 and find a slot %V that contains the 

bucket’s corresponding edge. The step selects a link with the 

heaviest weight so that the link’s activation can be more spread 

throughout the super-frame. Step 3 drains the buckets whose 

edges are in slot %V, and Step 4 moves the slot from % to W in 

order. BDA terminates and returns W in either Step 5 or Step 6. 

When %  contains only one slot, BDA directly knows the 

position of the slot in W , and therefore it returns after 

appending the slot to W . An empty bucket means that its 

corresponding edge �#$  has been activated "#$  times as 

required, and thus Step 6 terminates when all buckets are 

empty. For this case, the step appends all remaining slots in % 

to W. Step 7 resets all flags to false to start a new round of link 

activations once each of the links has been activated one time. 

It can be shown that the running time of these steps is at most 

�(| |. |%|�) where | | is the number of edges in the WMN and 
|%| is the number of slots in the given super-frame. 

We now show how BDA re-arranges Schedule A of Fig. 1 

with % 	 (%�, %�, %�) . Step 1 constructs eight buckets, 

corresponding to the eight links of the WMN: 

-��, -��, -��, -��, -��, -��, -��, -��
.   Their corresponding 

weights are 
1, 1, 1, 1, 1, 1, 2, 1
 and flag#$ 	 false for all edge 

�#$ . Step 2 chooses bucket -��  because it has the highest 

weight. Since ��� ∈ %� 	 
���, ���, ���
, Step 3 drains -��, -�� 

and -��  and sets flag�� , flag��  and flag��  to true. Step 4 

removes %�  from %  and adds it to W , i.e., W 	 (%�).  At this 

stage, the bucket weights are {0, 1, 1, 1, 1, 0, 1, 1} and % 	
(%�, %�), and thus Step 5 and Step 6 are skipped. Step 7 is also 

skipped since not all flags are set to true and BDA repeats from 

Step 2. Since all non-empty buckets have equal weight, it 

chooses any of them, except -�� whose flag is true since it was 

recently drained. Assume it selects -�� , and since %� 	

���, ���, ���
 , Step 3 drains the corresponding buckets and 

flags them. Step 4 removes %�  from %  and sets W 	 (%�, %�).  

Since there is only one remaining slot in S, Step 5 assigned this 

last slot to W  and terminates BDA that returns the newly 

sequenced schedule W 	 (%�, %�, %�) with /*67 ≅ 2.33 , which 

is lower than the /*67 ≅ 2.75 of Schedule A. 

IV. EVALUATION 

In order to produce a fair comparison, our simulations 

conform to that of [3] and [4]. We generate random networks, 

where each network has six nodes with density (i.e., number of 

links divided by max number of links) varying from 0.1 to 1.0. 

Note that a fully connected network has a density of 1.0. We 

generate 50 random networks for each density value. All link 

weights have values in the range [1,10].  

To evaluate the performance of Algo-2, we have compared 

derived schedules against those produced by HWF and MDF  

[3] in terms of their average super-frame length and link 

activations/capacity. Further, we benchmarked Algo-2, HWF 

and MDF against the Linear Programming (LP) approach 

presented in  [3]. Note, the LP approach generates schedule S 

with optimal super-frame length but is computationally feasible 

only for networks with |�| ≤ 6.     

Table 1 shows the super-frame length produced by each 

scheduler.  Algo-2 consistently outperforms the MIS-based 

heuristics of  [3]. Further, the super-frame length generated by 

Algo-2 is only 1.06% worse than the optimal one generated by 

the exponential time LP approach in  [3]. Table 1 also shows 

that the 2P restriction, used in Algo-1, significantly increases 

the super-frame length when compared to the non-2P 

approaches.  

TABLE I 

SUPER-FRAME LENGTH OF SCHEDULES BY NETWORK DENSITY 

 

Network 

Density 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Algo-1 16.60 20.72 25.20 29.20 30.72 33.80 34.88 37.20 40.00 41.68 

Algo-2 12.66 15.30 17.84 20.26 21.58 23.02 23.52 24.66 26.10 27.24 

HWF 12.80 15.40 18.56 20.94 22.16 23.76 24.22 25.24 26.76 28.06 

MDF 12.76 15.34 18.24 20.96 22.40 23.94 24.60 26.02 28.06 29.42 

LP 12.64 15.26 17.84 20.18 21.52 22.92 23.32 24.32 25.52 26.44 
 

Table 2 shows the performance among the five evaluated 

approaches in terms of capacity, calculated as 

 Capacity 	 abcde	fghijk	bl	mnCo	pqcnrdcnbCs

tgujklkdhj	mjCvcw
 (3) 

As shown in the table, Algo-2 outperforms HWF and MDF.  

Surprisingly, Algo-2 also outperforms LP by an average of 

1.97% for networks with density above 0.6. Note that Algo-2 

uses MAX-CUT to generate maximum link activations for each 

slot, while LP utilizes the MIS approach. Our results show that 

MAX-CUT is more effective than MIS at producing super-

frames with good capacity. This observation is further 

supported by the capacity produced by Algo-1, another MAX-

CUT based algorithm for 2P. Algo-1 and Algo-2 produce 

similar capacity.  

TABLE II 

NETWORK CAPACITY OF SCHEDULES BY NETWORK DENSITY 

 

Network Density 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Algo-1 1.84 2.68 3.72 4.65 5.38 6.19 6.62 7.56 8.24 8.92 

Algo-2 1.79 2.70 3.72 4.67 5.40 6.29 6.69 7.60 8.31 8.90 

HWF 1.75 2.52 3.40 4.24 4.94 5.74 6.16 7.08 7.69 8.37 

MDF 1.75 2.53 3.47 4.25 4.94 5.73 6.06 6.90 7.44 8.05 

LP 1.97 3.00 4.09 4.90 5.56 6.35 6.64 7.52 8.03 8.70 
 

Figure 2 shows the end-to-end delay, calculated using /*67; 

the solid lines show the delay without BDA, while the dashed 

lines show the benefits of BDA.  Although Table 1 shows that 

the LP based approach optimally minimizes super-frame 

lengths, the schedules generated resulted in the highest end-to-

end delays. In contrast, Algo-2 produces the lowest delay. Note 



that, by nature, LP, HWF, MDF and Algo-1 may schedule the 

same set of link activations repeatedly consecutively  [3] [4], 

which may starve other links. On the other hand, Algo-2 avoids 

this by scheduling each slot independently and thus fairly 

distributes link activations, which, as expected, lowers the end-

to-end delay.  The figure shows that, using our delay model, as 

defined by (2), a shorter super-frame length or higher capacity 

is not a necessary condition to produce shorter end-to-end 

delays; e.g., LP versus Algo-1 or LP versus MDF, respectively.   

 

Figure 2 shows that BDA is effective in reducing the 

average end-to-end delay of schedules generated by the five 

scheduling algorithms. Since BDA only reorders the slots in 

each schedule, it does not compromise on super-frame length 

and capacity. Our results show that BDA reduces the average 

delay of the schedules generated by Algo-1, Algo-2, HWF, 

MDF, LP, by 52%, 31%, 53%, 50%, and 70% respectively. 

Thus, BDA is a good complement to any MTR WMN TDMA-

based link scheduler. As shown, in terms of delay, all 

algorithms complemented by BDA produce schedules with 

comparable average end-to-end delay. Thus, when using our 

delay model in (2), the order of slots in a super-frame is the 

main factor that affects the end-to-end delay. 

Since the average delay, /*67 , considers all possible 

demands and does not prioritize individual demands, a minimal 

/*67  is not optimal for specific end-to-end throughput for a 

single demand or subset of demands. Thus, to further evaluate 

the effect of our BDA on delay performance, we ran 

simulations to compute change in delay for each (x, y) demand 

before and after using BDA on 500 fully-connected 6 node 

networks with weights in the range [1, 10]. A total of 14965 

individual demands’ delay changes were considered.  

 

The CDF in Figure 3 further illustrates the effect that BDA 

has on the delay of demands. Approximately 40% of demands 

suffer a delay sacrifice of 1 to 8 time units after running BDA, 

with 25% of demands having a delay sacrifice of no more than 

two time units. On the other hand, approximately 40% of 

demands show an improvement in delay of 1 to 8 time units 

after BDA, while another 20% of demands show extreme delay 

improvement of 8 to 26 time units. Hence, it is evident that the 

delay improvements outweigh the delay sacrifices by a 

significant margin, which results in a reduction in /*67 . 

Our analysis shows that there is possible room for 

improvement in BDA, despite the fact that it achieves our goals 

as outlined in Section II. Ideally, we would want to improve the 

delay of all demands without sacrificing any. On the other 

hand, we can justify these sacrifices as long as the delay 

improvement on the other demands are sufficient, e.g., a delay 

sacrifice of 4 time units is reasonable if we also achieve a delay 

improvement of 25 time units on one or more other demands. 

As a future work, we would like to develop a variant of the 

algorithm which achieves similar overall delay improvement 

without having to sacrifice the delay of any demands. This 

restriction would theoretically limit the achievable amount of 

delay improvement; however we would then be able to 

guarantee that no demand’s delay is worsened. 

V. CONCLUSION 

This paper has formally defined the end-to-end delay 

problem, and has presented a two-step solution using two new 

heuristic algorithms, Algo-2 and BDA, to optimize the delay 

and capacity of TDMA-based MTR WMN schedules. Algo-2, 

a MAX-CUT based approach, produces better capacity than 

two state-of-the-art MIS-based approaches. Simulations show 

that BDA is very effective at reducing average delay of the 

schedules generated by the existing MTR schedulers without 

compromising their super-frame length as well as capacity. 
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