
© 2010 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195638715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Modular Autonomous Robotics Platform for
Educational Use

James LUMSDEN and Cesar ORTEGA-SANCHEZ
Electrical and Computer Engineering, Curtin University

Perth, Western Australia
c.ortega@curtin.edu.au

Abstract—Robotics is a field that continues to grow as robots
become common in environments as varied as households and the
battlefield. This paper presents a low cost robotics development
platform using commercial off-the-shelf parts for educational and
academic use. It is a direct response to the high cost and limited
functionality of existing platforms. A navigation and obstacle-
avoidance Fuzzy Controller is provided to accelerate the typical
development process for a mobile robot. The fundamental aim is
to facilitate future robotics projects by producing an inexpensive,
modular and highly accessible platform that improves upon
existing commercial offerings.

Keywords- Educational robotics platform, autonomous
navigation

I. INTRODUCTION
Robots have become more and more important in modern

society as they can be found in environments as varied as
households and the battlefield. This places an emphasis on
research and development in the field of robotics. However,
there is a serious lack of inexpensive yet highly flexible
platforms for the development of mobile robots. This is a high
barrier of entry to the robotics industry and makes it difficult to
perform research without a large budget. Current platforms are
not only too expensive but also limited in flexibility. Typically
they are indoors-only and have little available physical space
for expansion. It is also difficult to change hardware as they are
not designed to be modified or expanded. This leads to a
“reinvention of the wheel” whenever common functionality
such as navigation or obstacle avoidance is required.

This paper proposes a low-cost, highly-flexible robotics
platform for the development of small, autonomous ground
vehicles. The platform uses commercial off-the-shelf parts that
are readily available and inexpensive. The same principle was
applied to software, with the focus on open source operating
systems, libraries and development tools.

Section II provides an overview of modern robotics and
discusses relevant background issues and existing platforms.
Sections III and IV cover the hardware and software aspects of
the platform, respectively. Section V presents the navigation
and obstacle-avoidance fuzzy control system, while the
verification and performance evaluation of the platform is
presented in Section VI. Section VII contains conclusions and
avenues for future work.

II. BACKGROUND

A. Development Platforms for Autonomous Robotics
Autonomous robots have to satisfy a number of, sometimes

conflicting, requirements. Expected performance varies from
one application to the next. To solve the problems of
autonomous navigation and obstacle-avoidance not only the
algorithms need to be understood, but also the premises behind
their implementation. Consideration must be given to both the
available resources and the goals of the robot itself. For most
applications, a low-cost robot operating in a relatively simple
environment will not gain any significant benefits from an
overly complex control scheme. However, autonomous
navigation and obstacle avoidance should be standard features
additional to the robot’s intended tasks.

Presently, prices for a single robot range from $400 for a
LEGO™ Mindstorms NXT kit [1] up to $26 million for the
latest unmanned aerial vehicle [2].

There are formal platforms to develop autonomous ground
vehicles. For example, the Surveyor SRV 1 robot developed by
Inertia Labs and Surveyor Corp which was designed for
research, education and exploration [3]. However most of these
platforms do not allow further expansion [4].

B. Control Systems
Conventional control systems are largely based on the

development and analysis of mathematical models for physical
systems [5], and then a closed-loop controller is designed using
the model. Control is achieved using conventional approaches
such as proportional-integral-derivative (PID), lead-lag and
state feedback control [6]. The advantage of these systems is
that they are well understood and widely used.

Non-conventional control systems can be classified into
three types: Reactive, Deliberative and Hybrid. A reactive
architecture is based on the implementation of actions
commonly found in nature. A reactive system uses a direct
mapping between stimuli and actions. These responses should
co-operate to achieve or maintain a goal. However, these
actions and conditions are already defined and cannot be
considered a goal-based intelligent agent. In contrast,
deliberative architectures involve constructing a plan and
acting on it, while hybrid systems are a mixture of the two [8].
Examples of non-conventional, reactive control strategies are:
Neural networks [9] and fuzzy systems [10].

978-1-4244-6890-4/10/$26.00 ©2010 IEEE TENCON 2010

 1577

III. HARDWARE FOR THE ROBOTICS PLATFORM

A. Selection Criteria
The selection criteria for the components used in a robot

heavily depend on the requirements. The following
specifications were drafted based on the desired attributes:

• The chassis must be at least 20cm x 20cm to provide
enough room for multiple electronic boards.

• The robot must be capable of outside operation and is
expected to operate on uneven terrain but does not need to
be weather-proof.

• The steering system should be capable of turning in-place
and is expected to use differential steering or similar.

• A standard 5V rail will be provided with at least 1A of
available current for additional devices.

• A single set of batteries should provide power for all
electronics and motors.

• A real-time operating system will be used to allow for a
task-based modular design. It is expected that at least half
of the processor time and code size should be available
for additional development.

• Sensors are required for positioning and obstacle
detection and should be capable of panning for further
information.

• The microcontroller must support a number of
communication protocols in order to maximize peripheral
capability. This should include SPI, I2C, ADC and UART
capability with hardware support preferred over software.

• Total parts cost for the robot should not exceed $1,000
USD

B. Chassis
Several companies produce a variety of chassis that could

be used in the platform. After evaluating half a dozen, the
chassis chosen was the Lynxmotion’s A4WD1 [16]. It provides
the largest amount of space and mounting options of all
evaluated kits. It is built with aluminum brackets and laser cut
panels to make it lightweight and easy to drill and modify,
while providing high impact strength and weatherability [17].
In addition, the A4WD1 has the highest ground clearance
which made it the most suitable for outdoor operation.

The A4WD1 is flexible enough to receive variety of motors
and wheels. The current prototype uses four Lynxmotion’s
GHM-02 motors. Each motor can run up to 120 rpm with an
integrated 50:1 reduction gear. Motors can provide a torque of
8.9 kg-cm, consuming 1.5 A @ 12V.

The selection of wheels available is fairly limited and
primarily consists of rubber and foam varieties. While a
number of sizes are produced the focus for this platform is on
the larger variants. Coupled with the higher torque but slower
GHM-02 motor, the larger wheels provide reasonable speed,
torque and ground clearance. Figure 1 shows the A4WD1 with
the selected wheels.

Figure 1. Lynxmotion’s A4WD1chassis

C. Microcontroller (uC)
There are a multitude of microcontroller-based boards

specifically designed for robotics applications available in the
market - [17], [18] and [19]. The Pololu Orangutan X2 was
selected for its performance, flexibility, expandability, and
integrated peripherals. It uses Atmel’s ATmega644
microcontroller @ 20 MHz and has 4 KB of SRAM and 64 KB
of flash memory available [19]. This board was specifically
designed for robotics; hence it provides a number of additional
features such as an independent motor controller daughter
board and a parallel LCD display connector. It also has 16
available user I/O pins, each accompanied by ground and
power pins to simplify the connection of sensors and other
devices and reduce the overall wiring complexity. The included
VNH2SP30 motor driver is capable of delivering up to 14A
continuous and 30A peak current. See Figure 2.

Figure 2. Top down view of the Pololu Orangutan X2 robot controller [19].

D. Distance and Obstacle-Detection Sensors
Sharp infrared rangers were selected to measure distance

and detect obstacles. All Sharp infrared rangers utilize an
infrared LED and a small linear charge-coupled device (CCD)
array [20]. The CCD is able to determine the angle of incidence
for a reflected beam and triangulate the distance to the object,
making it particularly resilient to changes in ambient light

 1578

compared to other infrared sensors which rely on the amount of
reflected light, rather than the angle. Figure 3 shows a
photograph of the sharp IR rangers selected.

Figure 3. Sharp IR sensor variants and physical size [20].

E. Position Sensors
In this project the aim was for a low-cost, low-power device

with minimal physical size. A GPS module with an update rate
of 1Hz and a ceramic antenna was selected: The EM-406A
GPS module from USGlobalSat [21]. It is a 20-channel GPS
that uses the SiRFstarIII chipset for high sensitivity and indoor
tracking [22]. Operating voltage is 5V with 44mA current
draw. The entire module is 30x30x10mm in size and includes a
ceramic antenna, which makes it ideal for maximizing the
available physical space on the platform. At the time of writing,
it is described as the smallest complete module available. It is
shown in Figure 4 [23].

Figure 4. EM-406A GPS module from USGlobalSat [21]

F. Heading Sensors
A source of heading information that allows for an accurate

heading to be obtained even while remaining stationary was
required. An electronic compass was the logical choice.

Electronic compass modules utilize 2-axis magnetometers
and a microprocessor to produce a heading based on the
orientation of the earth’s magnetic field [25]. The compass
module selected was the Devantech CMPS03 module. It has
been specifically designed for robotics applications and
provides both an I2C and PWM interface [26]. It is one of the
lowest cost modules available and runs at the same 5V as the
other components in the system. Figure 5 shows the layout of
the device and labels for pins.

Figure 5. Devantech CMPS03 compass module [26]

G. Batteries
Several kinds of batteries are suitable for robotics

applications. Each battery technology varies significantly in
terms of energy density and cost. A comparison of relevant
technologies can be found in [27], [28].

While NiCd batteries are inexpensive and have a relatively
high cycle life, the memory effect is particularly severe. That
is, when the battery is recharged after a partial discharge its
capacity will be reduced. This also occurs with NiMH batteries
but to a much lesser degree. Energy density of modern NiMH
batteries can be as high as 80 Wh/Kg which makes them ideal
for robotics. Hence, two 6V, 3000 mAh NiMH batteries
connected in series were selected for the robotics platform.

Figure 6 shows a block diagram of the electronics in the
robotics platform.

Figure 6. Block diagram of robotics development platform

In Figure 6, the SPI connection to the auxiliary
microcontroller allows for the motors, EEPROM and a buzzer
to be controlled without requiring any external connections.
The Sharp IR sensors are connected to five of the eight analog
to digital converter channels on PORTA. As the I2C interface
is driven by software, the compass is able to use any of the
available pins. The GPS and servo controller share a single
UART. Data is received from the GPS on the RX pin, while the
servomotors are moved by sending commands out of the TX
pin. This enables both devices to be used with only a single
serial connection and cuts down on cabling complexity.

 1579

IV. SOFTWARE FOR THE ROBOTICS PLATFORM

A. Development Tools
The software for the project was developed using AVR

Studio, an Integrated Development Environment (IDE)
provided by Atmel, the manufacturers of the AVR series of
microcontrollers. AVR Studio is a free windows application
described as a “project management tool, source file editor and
chip simulator” [31]. However, AVR Studio does not include a
compiler. An open source suite of development tools known as
WinAVR is available and integrates with the IDE. This
includes a GNU GCC compiler for C and C++ along with a
programmer and debugger [32]. In addition, all of the internal
registers and I/O devices can be viewed and modified for
debugging and learning purposes.

B. Operating System
To simplify the implementation of control algorithms,

FreeRTOS was mounted on the hardware platform. FreeRTOS
is a portable, open source, royalty free, mini real time kernel
[33]. More importantly, there are 23 official architecture ports
and the operating system is well documented and supported
with a free online reference manual and a number of
inexpensive books available for purchase. One the available
ports for the AVR ATMega323 was modified to run in the
robotics platform. The only changes required for the
ATMega644 involved modifying the timer setup for the kernel
tick. This was demonstrated by Dalheimer using a slightly
different platform [34]. In terms of functionality, the kernel
provides pre-emptive, cooperative and hybrid scheduling
options, as well as full support for a number of synchronization
primitives such as semaphores. In FreeRTOS any task can
delay its execution by fixed or dynamic intervals which allows
for periodic execution of code with minimal effort [33].

The strength of real-time operating systems lies in their
ability to split complex software into independent parts.
FreeRTOS enables software to be divided into tasks based on
responsibilities, frequency and priority. In the robotics
platform, these tasks will be monitoring the various sensors,
processing data and controlling actuators. As each task is
scheduled separately and different sensors require processing at
different times it is logical to create a task for each sensor type.
This results in tasks which are naturally independent of one
another and loosely coupled. Loose coupling is considered to
be an indicator of good software design [35].

The distance sensors have an update rate of 20 Hz,
therefore a task running every 50 ms was selected. The GPS
update rate is only 1 Hz and it is constantly outputting data that
must be either processed or buffered. A 1 Hz task would
require a large buffer in order to store all the data for that
period. In order to minimize the buffer requirements a
frequency of 10 Hz was selected. The same frequency is also
selected for the compass due to its 10 Hz internal update rate.
Finally, the LCD is given a one second period as it is difficult
to read quickly changing data and it does not perform a critical
role in the system. As such it is also assigned the lowest
priority. The highest priority is given to the distance sensors
because obstacle avoidance is a strong requirement. Ordering
of the GPS and compass tasks is not particularly critical;

however as the GPS deals with streams and data buffers it
should take priority because if a character is missed or the
buffer overflows, then the GPS data will be lost and not
repeated for another second.

V. FUZZY CONTROL SYSTEM
This section describes the implementation of a fuzzy logic

control system to solve navigation and obstacle-avoidance in
the development platform. The control system combines data
from both the navigation and obstacle avoidance subsystems in
order to produce a steering direction for the motors. While it is
not particularly difficult to create individual control systems for
each subsystem, the problem lies with combining the results in
a meaningful way. A simple method is to only enable
navigation when no nearby obstacles are detected but this is a
rudimentary approach. If a central obstacle is detected the
movement vector should be biased towards the destination
heading. This is not possible for a control system which
switches between navigation and obstacle avoidance modes.
What is required is a system that allows for various rules to be
defined which govern behavior depending on infrared sensor
distances and the heading offset. Fuzzy logic is well suited to
this application as it allows for the rules to be defined using if-
then constructs and linguistic variables. A good introduction to
Fuzzy Systems can be found in [6].

In the design of the fuzzy controller membership functions
were created for sensor angles, sensor distance, heading offset
and steering angle. Rules were then constructed based on a
common-sense approach. Closer objects result in a greater
change to steering angle as an immediate response is required
to prevent collision. Objects that are in front also require a
greater response than those to the side. Steering will also adjust
to the heading offset if that direction is free from obstacles.
Table 1 shows the rules used to achieve this behavior.

The MATLAB fuzzy logic toolbox was used to test the
membership functions and rule sets before they were used on
the physical platform. This allowed for the response to be
visualized and also enabled testing of different inference
methods. Three-dimensional graphs were used to quickly
analyze changes; however it is important to recognize the
system is actually seven dimensional as it has six inputs and
one output, and these graphs did not show the interaction of all
variables. The interaction between all the rules is governed by
the fuzzy logic inference method. The typical approach is to
use max-min inference as this is the simplest to implement.
However, it does ignore the effect of multiple rules with a
similar outcome, as the maximum is always taken. This is not a
desirable outcome as the expectation is that the end result
should trend towards the majority. If sum-min inference is used
then the outputs will be added and all of the rules will
contribute independently.

The inference method was implemented in a C program and
tested and verified using MATLAB. To avoid using floats,
truth values were represented as integers between 0 and 100.
While this introduced some rounding errors these did not
exceed one percent.

 1580

TABLE I. FUZZY LOGIC RULES FOR OBSTACLE-AVOIDANCE AND
NAVIGATION

Fuzzy Logic Rules

IF Far Left Distance is Close THEN Steering is Soft
Right

IF Far Right Distance is Close THEN Steering is Soft
Left

IF Left Distance is Close THEN Steering is Hard
Right

IF Right Distance is Close THEN Steering is Hard
Left

IF Left Distance is Near THEN Steering is Soft
Right

IF Right Distance is Near THEN Steering is Soft
Left

IF Heading is Far Left AND Far Left Distance
is Far

THEN Steering is Hard
Left

IF Heading is Left AND Left Distance is Far THEN Steering is Soft
Left

IF Heading is Centre AND Centre Distance is
Far

THEN Steering is Centre

IF Heading is Right AND Right Distance is Far THEN Steering is Soft
Right

IF Heading is Far Right AND Far Right
Distance is Far

THEN Steering is Hard
Right

IF Heading is Far Left AND Far Left Distance
is Near

THEN Steering is Soft
Left

IF Heading is Left AND Left Distance is Near THEN Steering is Soft
Left

IF Heading is Right AND Right Distance is
Near

THEN Steering is Soft
Right

IF Heading is Far Right AND Far Right
Distance is Near

THEN Steering is Soft
Right

IF Centre Distance is Close AND Right
Distance is Close AND Left Distance is NOT
Close

THEN Steering is Hard
Left

IF Centre Distance is Close AND Left Distance
is Close AND Right Distance is NOT Close

THEN Steering is Hard
Right

IF Centre Distance is Near AND Right Distance
is Close AND Left Distance is NOT Close

THEN Steering is Soft
Left

IF Centre Distance is Near AND Left Distance
is Close AND Right Distance is NOT Close

THEN Steering is Soft
Right

IF Centre Distance is Close AND Left Distance
is Close AND Right Distance is Close AND Far
Left Distance is Close AND Far Right Distance
is NOT Close

THEN Steering is Hard
Right

IF Centre Distance is Close AND Left Distance
is Close AND Right Distance is Close AND Far
Right Distance is Close

THEN Steering is Hard
Left

The bisector method was used for defuzzification. This is
faster than finding the centroid as it can be done in linear time
using only addition operations and produces similar results
[36]. The bisector method involves calculating the point where
the area is bisected. This was achieved by using two pointers at
the start and end of the output range with associated area
values. The pointer with the smallest area is moved towards the
other side and the area is incremented by the current value.
This is repeated until the pointers overlap and that position is
used as the bisector.

VI. RESULTS

A. MATLAB Simulation
As the fuzzy logic control system was originally developed

and tested in MATLAB, this tool was used as simulator for the
whole system. A rudimentary script was created for this
purpose. The script used MATLAB’s built-in fuzzy logic
functionality, and modeled the infrared sensors using ray
tracing. The sensors were assumed to have a one unit-wide
beam for simplicity. Black and white images were imported
and used as maps. White was used to represent open space and
black was interpreted as an obstacle. Figure 7 shows the
simulated path for one of the testing scenarios.

Figure 7. Navigation and obstacle-avoidance simulation results

Although the simulator does not use an accurate model of
the physical robot; it provided a good visualization for the fine-
tuning of the control system. A number of test maps were used
to evaluate performance in particular scenarios such as U-
shaped obstacles, corridors and dead-ends.

B. Real-World Performance
A backyard, local school and parking lot were used as test

environments for the platform. During the tests the small
vehicle successfully navigated from one set of GPS co-
ordinates to another, negotiating different types of terrains and
obstacles. Figure 8 shows one of the runs when the robot had to
find its way from an indoors environment to a destination
across the street. The straight line represents the direct path
between origin and destination points, while the curved line
represents the actual path followed by the robot. With no map
or prior information the destination was reached without any
collisions. The same result was obtained in every test.

Figure 8. Demonstration of autonomous navigation

 1581

VII. CONCLUSIONS AND FUTURE WORK
The development and test of an autonomous robotics

platform for educational purposes has been presented. All
requirements and specifications were satisfied. At $755 USD,
the platform is affordable for use in undergraduate projects. All
source code, parts-list and developments tools are freely
available on request. This is a strong incentive for academic
adoption as licensing costs are non-existent. It is also the only
platform to provide proven built-in obstacle avoidance and
navigation. The platform may significantly accelerate the
development of mobile robots as a significant portion of
common and underlying functionality is already implemented
and tested. However it is important to note that at this stage the
platform is still a prototype.

There are two major avenues available for future work. One
is to extend the existing functionality with more hardware and
software modules. Cliff detection sensors could be placed on
the front barrier to prevent the platform from going over a steep
edge. Wireless telemetry could also be incorporated, allowing
for position and sensor data to be reported and waypoints to be
set remotely. It is expected that all these tasks can be achieved
within the $1,000 USD limit.

The other avenue involves improving the platform from an
educational point of view. Currently, the use of a relatively low
level programming language restricts its use to academics and
university students. In order to open up the platform to a wider
audience, user-friendly development tools need to be created.
The whole system could be modeled as a diagram of
interconnected blocks which can be visualized and also
simulated. In addition, a wireless link to the physical platform
could provide real-time feedback and control for debugging
and learning purposes.

Even in its current form, Curtin’s robotics development
platform is a highly capable tool that is expected to be used as
the base for several robots in the future.

REFERENCES
[1] The LEGO Group. (2009) LEGO Mindstorms NXT. [Online].

http://mindstorms.lego.com/Products/Default.aspx.
[2] P. Lewis. (2007) Frequently Asked Questions about UAVs. [Online].

http://www.uavforum.com/library/librarian.htm.
[3] Surveyor Corporation. (2008) Surveyor Robotics Journal. [Online].

http://www.surveyor.com/cgi-bin/robot_journal.cgi/2008/08/.
[4] M. Hennerich. (2006, Apr.) uClinux on the Blackfin DSP Architecture:

Part 3. [Online]. http://www.eetimes.com/esc/showArticle.jhtml?
articleID=185302712.

[5] University of Notre Dame . (2008, Dec.) From Conventional to
Intelligent Control. [Online]. http://www.nd.edu/~isis/history.html.

[6] K. Passino and S. Yurkovich, Fuzzy Control. California: Addison
Wesley Longman, 1998.

[7] P. Norvig and S. J. Russell, Artificial Intelligence: A Modern Approach,
2nd ed. Alexandria, VA: Prentice Hall, 2002.

[8] M. Veloso and A. Costa. MAPPEL - Multi-Agent Collaborative and
Adversarial Perception, Planning, Execution, and Learning. [Online].
http://www.lti.pcs.usp.br/mappel/nsf/nsf.html.

[9] M. Singh and D. Parhi, "Intelligent Neuro-Controller for Navigation of
Mobile Robot," in International Conference on Advances in Computing,
Comm. and Control (ICAC3’09), 2009, pp. 123-128.

[10] K. Passino and S. Yurkovich, Fuzzy Control. California: Addison
Wesley Longman, 1998.

[11] O. Henlich. (1997, May) An Overview of Local/Personal Robot
Navigation. [Online]. http://www.doc.ic.ac.uk/~nd/surprise_97/journal/
vol1/oh/.

[12] N. Bowditch, The American Practical Navigator. Bethesda, Maryland:
National Imagery and Mapping Agency, 1995.

[13] Y. Fuke and E. Krotkov, "Dead Reckoning for a Lunar Rover om
Uneven Terrain," in Procs of the 1996 IEEE International Conference on
Robotics and Automation , Minneapolis, 1996, pp. 411-416.

[14] H. Weinberg and C. Lemaire. (1997) Using the ADXL202
Accelerometer as a Multifunction Sensor in Car Alarms. [Online].
http://www.analog.com/static/imported-files/application_notes/
50324364571097434954321528495730car_app.pdf.

[15] M. Amundson. (2006) Dead Reckoning for Consumer Electronics.
[Online]. http://www.ssec.honeywell.com/magnetic/datasheets/
Dead_Reckoning_Consumer_Electronics.pdf.

[16] Lynxmotion Inc. (2009) Lynxmotion Robot Kits. [Online].
http://www.lynxmotion.com/.

[17] Imagecraft . (2009, Jan.) Parallax Propeller C development tools.
[Online]. http://www.imagecraft.com/devtools_Propeller.html.

[18] Arduino. (2009) Arduino Diecimila. [Online].
http://arduino.cc/en/Main/ArduinoBoardDiecimila.

[19] Pololu Corporation. (2009) Orangutan X2. [Online].
http://www.pololu.com/catalog/product/718.

[20] Acroname Robotics. (2008, Jan.) Sharp IR Rangers. [Online].
http://www.acroname.com/robotics/info/articles/sharp/sharp.html.

[21] USGlobalSat. (2009) EM-406A (SiRF III). [Online].
http://www.usglobalsat.com/p-46-em-406a-sirf-iii.aspx

[22] SiRF. (2004, Nov.) SiRFstarIII™ GPS Single Chip - A High
Performance GPS in a Small Form Factor. [Online].
http://uk.ts.fujitsu.com/rl/servicesupport/techsupport/pda/General/
SiRFstarIIIGSCf.pdf

[23] Sparkfun Electronics. (2009, Mar.) GPS Buying Guide. [Online].
http://www.sparkfun.com/commerce/tutorial_info.php?tutorials_id=127

[24] Oxford Technical Solutions. (2009) Glossary of Terms. [Online].
http://www.oxts.com/default.asp?pageRef=40

[25] Honeywell. (2006, Jan.) Digital Compass Solution HMC6352. [Online].
http://www.sparkfun.com/datasheets/Components/HMC6352.pdf

[26] Robot Electronics. (2007, Mar.) CMPS03 - Compass Module. [Online].
http://www.robot-electronics.co.uk/htm/cmps3tech.htm

[27] I. Buchmann. (2005) What's the best battery?. [Online].
http://www.batteryuniversity.com/partone-3.htm

[28] M. Thompson. (2001) Generic battery technology comparison. [Online].
http://www.madkatz.com/ev/batteryTechnologyComparison.html

[29] SmartGauge Electronics. (2008) An in depth analysis of the maths
behind Peukert's Equation. [Online].
http://www.smartgauge.co.uk/peukert_depth.html

[30] R. Cringely. (2006) Safety Last. [Online].
http://www.nytimes.com/2006/09/01/opinion/01cringely.html?_r=1

[31] Atmel. (2002, Sep.) AVR Studio - Software Development Environment.
[Online].
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725

[32] WinAVR. (2009) WinAVR: AVR-GCC for Windows. [Online].
http://winavr.sourceforge.net/

[33] Real Time Engineers. (2009) The FreeRTOS Project. [Online].
http://www.freertos.org/

[34] M. Dalheimer. (2008) FreeRTOS for ATMega644. [Online].
http://gonium.net/md/2008/08/10/freertos_for_atmega644/

[35] L. Barello. (2007) Interfacing with GP2D02 sensors. [Online].
http://www.barello.net/Papers/GP2D02/
J. Rajewski. (2008) GP2Y0A2YK0F Sharp Distance Sensor. [Online].
http://www.societyofrobots.com/robotforum/index.php?topic=2712.30

 1582

