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Abstract 

 

Members of the genus Rhytidoponera and, to a lesser extent, certain Melophorus spp. are 

keystone mutualists for the dispersal of seeds in the southwest of Western Australia, with 

important ramifications for the ecology and speciation of plants in this biodiversity 

hotspot. For this reason, it is important to understand the autecology of the relevant ant 

species and the way in which they interact with plant seeds. This paper addresses key 

aspects of the ecology of three such ant species, Rhytidoponera violacea (Forel), R. 

inornata Crawley and Melophorus turneri perthensis Wheeler. Data are presented on 

their geographic distribution, seasonality of foraging, diurnal activity, response to fire, 

nest site preference, nest structure, colony size, feeding habits, foraging response to seed 

availability, and seedling emergence from nests. The role of all three species as seed 

dispersers is confirmed, and all three species have ecologies that are well-suited for 

dispersal and survival of native plant seeds. Preservation of this interaction is important 

for the conservation of plants, and it is fortuitous that all three species are able to survive 

disturbance and return to rehabilitated areas. However, the smaller R. inornata, and to a 

lesser extent, the larger R. violacea, are vulnerable to invasive ant (Pheidole 

megacephala (Fabricius) incursions. M. turneri perthensis is able to coexist with the 

invasive ant unless this is at high densities, probably as a result of its ability to forage 

during high temperatures when the invasive species is inactive. 
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Although the advent of insect pollination of flowers is known to have been a driver of 

angiosperm diversification, seed dispersal by organisms such as ants has also been 

implicated, but not proven. Seed dispersal by ants (myrmecochory) may drive 

diversification by reducing extinction, hence providing selective advantages to plants, 

and by increasing speciation as a result of geographical isolation associated with 

extremely limited dispersal distances (Dunn et al., 2008). Lengyel et al. (2009a, b) tested 

the hypothesis that myrmecochory leads to higher diversification rates in angiosperm 

plants by comparing richness of plants in sister groups that were ant-dispersed or 

dispersed by other means. They found that ant-dispersed lineages contained on average 

more than twice as many species as did their non-myrmecochorous sister groups, 

suggesting that myrmecochory is a key evolutionary innovation and a globally important 

driver of plant diversity. 

The Australasian ant genus Rhytidoponera is recognised as a keystone mutualist 

for dispersal of myrmecochorous plant species in Australia (Gove et al., 2007). Members 

of a second genus, Melophorus, are also important in this regard (Briese and Macauley, 

1981; Majer, 1982). Rhytidoponera are common throughout Australia, occurring in all 

habitats. They are generalised foragers and tend to forage at night or during cooler parts 

of the day (Ward, 1981; Nielsen, 1997). The genus Melophorus is also found throughout 

Australia, and is most abundant and diverse in arid regions (Andersen, 2007). Members 

of the genus are capable of foraging at very high temperatures (Christian and Morton, 

1992; Hoffmann, 1998). 

In view of their pivotal role in seed dynamics, and the fact that the southwest of 

Australia is a plant biodiversity hotspot (Myers et al., 2000; Hopper and Gioia, 2004), we 

revisit a dataset and compare the autecology and role in seed-taking of two southwest 

Australian species of Rhytidoponera with one species of Melophorus. The species 

concerned are Rhytidoponera violacea (Forel), R. inornata Crawley and Melophorus 

turneri perthensis Wheeler, which are the most prominent species involved in 

myrmecochorous relationships in southwestern Australia (Majer, 1982; Gove et al., 

2007). M. turneri perthensis has been referred to as Melophorus sp. 1 (ANIC) in earlier 

papers. 

We examine how Rhytidoponera and Melophorus behave in terms of their 

phenology, response to fire and interactions with myrmecochorous seed. Within this 

context, we examine nest structure, nest location, diurnal and seasonal variation in 

activity, the effect of fire and the species’ associations with seed-fall and seed-collection. 

We also consider this in the context of habitat disturbance and subsequent restoration, 

and also in terms of invasive ant incursions. In doing this, we hope to obtain greater 

insight into the relationship between these three important seed takers, the seeds with 

which they interact, and how this important interaction might be impacted by human 

disturbance.  

 

Methods 

 

 

Geographic range of species 

 



The distribution records of R. violacea, R inornata and M. turneri perthensis, obtained by 

searching records of the CSIRO Entomology Biolink® database, are shown in Figures 1 

a, b, and c, respectively. These records are only for collections where specimens have 

been retained in the Curtin University or CSIRO - ANIC collections. As such, they are 

suggestive rather than complete representations of the complete range of these three 

species. Rhytidoponera inornata occupies coastal areas of the southwest region of the 

State, and is also distributed along the south coast, at least as far as Esperance. By 

contrast, R. violacea is widely distributed throughout most of the State, being present in 

most regions except for the northern part of the Kimberley. M. turneri perthensis is 

common in the southwest of WA and extends through the central Goldfields into the 

northern Pilbara region. It does not seem to extend into the arid interior of the State. The 

taxonomy of Melophorus is currently under review, so this distribution may ultimately 

represent more than one species. 

 

Sites and general sampling techniques 

 

Ant sampling was conducted between February 1976 and April 1979 at seven sites in the 

southwest of Western Australia (Table 1, Figure 2.). The Dwellingup, Karragullen and 

Manjimup sites are on the Darling Plateau, with laterite soils, while the Perth and 

Yalgorup sites are on the Swan Coastal Plain, which has sandy soil. Ant seasonality was 

assessed at six of the sites (not at Yalgorup) using a procedure described in detail in Koch 

and Majer (1980). At five of the sites a 6 x 6 grid of 18 mm internal diameter pitfall traps, 

3 m apart, was left open for one week; while at Karragullen a 5 x 4 grid of 54 mm 

internal diameter traps, 5 m apart, was used. Further details of the sites are given in Koch 

and Majer (1980) and Majer (1984). The six locations were repeatedly sampled on no 

less than a monthly basis for a year or more (see Table 1 for period details). Additionally, 

a range of measurements and observations were performed on colonies and nests at the 

Karragullen and Dwellingup sites, and also at Yalgorup National Park. 

 

 

Seasonality of foraging 

 

We tested for a temporal correlation of Rhytidoponera and Melophorus activity in each of 

the six pitfall trap locations using Spearman’s rank correlation. We then asked whether 

ant activity for each species varied seasonally. In order to create replicated samples, we 

matched up each month of sampling from the six locations (no matter in which year this 

month occurred). We then performed an ANOVA to determine whether ant activity 

varied significantly amongst months. We performed the tests separately for the three ant 

species. 

 

Diurnal activity 

 

At the Karragullen site, nest entrances were observed for 3 minutes, every hour for 24 

hours and the number of individuals leaving the nest was quantified. This was done for 

all three species in three seasons: Summer - 22 Feb 1978;  Winter - 25 May 1978; Spring 



- 31 Aug 1978. The response of these species to daily environmental variation was 

compared. 

 

Response to fire 

 

Four of the six sites were subjected to controlled burns (See Table 1). In each case a 

matched control (unburnt) plot of pitfall traps was sampled during the same period as the 

burnt plot, before and after the burn. 

Analysis was performed separately for each species. We used a Before-After 

Control Impact (BACI) design, with each of the four sites representing a replicate. Within 

each site we calculated a mean value of ant abundance across sample periods for the 

Before-After x Control-impact combination. After-fire activity was based on 12 months 

of post-fire data. We did not treat each sample period within each combination as a 

replicate, as in one case we only had one sample period prior to the burn. We tested for 

an effect of the burn on ant abundance by examining the interaction term. 

 

Nesting preference  

 

Nest densities were quantified for M. turneri perthensis and R. inornata in 1 m grid cells 

of a 0.04 ha plot at Dwellingup; nests of R. violacea were not found in this plot. These 

densities were then compared to the frequency of ground-cover and overstorey shade 

categories at the site. Nest location preference for each species was tested separately 

using a Chi square test. 

 

Nest structure and depth 

 

The structure and depth of nests was assessed by lead casting. Lead was liquefied in a 

crucible and poured into nest entrances, then allowed to cool and solidify. The resulting 

caste was dug up, cleaned in water, photographed and measured, thus enabling structure 

and depth to be obtained. Five nests each of R. inornata, R. violacea and M. turneri 

perthensis were assessed from laterite at Karragullen or Dwellingup and a further five 

nests of M. turneri perthensis were assessed from sands at Yalgorup.  

 

Colony size 

 

During the peak summer activity period, five nests each of R. inornata and R. violacea 

were excavated from the Karragullen site and the soil was passed through a stack of 

sieves of progressively decreasing mesh size. Ants were separated from the soil by 

floatation, and counted. We lacked comparable data for M. turneri perthensis, so five 

nests of this species were sampled from the sand plain in Perth during the summer of 

2009.  

 

Feeding habits 

 



At Karragullen, five nests of each species were observed for 30-minute periods monthly 

between April 1978 and April 1979. All ants observed carrying food items were collected 

and the food was removed and identified to the best level possible. 

Diet composition was further measured at Karragullen by scraping the soil 

middens from around nest entrances of the three species and separating the organic 

material from the soil by floatation in saturated magnesium sulphate. The seeds and 

arthropod fragments from this organic material were identified and counted. 

  

Foraging response to seed availability 

 

During the period Feb 1978 – April 1979, plant flowering phenology was monitored 

monthly at the Karragullen site. In each month, the species of flowering plants were 

recorded over a 1.2 ha area (see Majer, 1980a for further details). We divided the plant 

species into myrmecochores and non-myrmecochores and tested for correlations between 

ant activity and species richness of flowering myrmecochores in each month. As we were 

particularly interested in the correlation between ant activity and myrmecochore seed-

rain, we tested for a correlation between the two with various lag periods (1, 2, 3 and 4 

months). We tested for the correlation using data for the three ant species separately. We 

also tested for variation in flowering phenology of myrmecochore and non-

myrmecochore plant species using the statistical technique described by Estabrook et al. 

(1982; see also Guitián and Garrido, 2006). 

 

Seedling emergence from nests 

 

Since many local plant species require fire to stimulate germination, the effects of fire 

were simulated over 10 R. inornata and 15 M. turneri perthensis nests near Dwellingup, 

during winter, 1979. Fire was simulated by inverting a Pyrox Schwank® infra-red gas 

heater over the nest and heating the soil to 100
o
C at 2 cm depth for 30 min. An equivalent 

area of bare soil 1 m from the nest was also heated and a further set of unheated nests and 

nearby soil were also marked out. Seedling emergence was recorded in the marked out 

areas over the next 2 months. 

 

Results 

 

Seasonality of foraging  

 

Across the periods sampled, Rhytidoponera spp. and Melophorus monthly activity was 

positively correlated in only two of the six locations, Karragullen and Reabold Hill (P = 

0.025, P <0.001, Rho = 0.576 & 0.868 respectively).  

Melophorus turneri perthensis showed significant seasonal variation in activity 

(F11,70 = 4.462, P<0.001, Figure 3c). Both Rhytidoponera spp. followed a similar seasonal 

pattern in activity (Figures 3 a & b), but this was not significant for R. violacea (F11,59 = 

1.306, P=0.244) or R. inornata (F11,59 = 0.846, P = 0.596,). Melophorus turneri perthensis 

exhibited a more pronounced increase in activity during the spring-summer months 

(November to February). Rhytidoponera also demonstrated a peak in activity during 

January to February, but not to the same extent. Melophorus turneri perthensis exhibited 



a complete lack of activity during winter months, while both Rhytidoponera spp. 

maintained low-level activity during this period. 

On average, across all locations and all sampling periods, Rhytidoponera spp. was 

1.4 times more active than Melophorus .  

 

Diurnal activity 

 

All ant species were most active in the summer months (Figures 4a, b & c). While 

Rhytidoponera spp. activity peaked in the morning (Figures 4a & b), approximately after 

sunrise, Melophorus activity peaked during early afternoon (Figure 4c) – generally the 

warmest part of the day. No Melophorus activity outside of nests was recorded during the 

winter and spring observation periods. During winter, Rhytidoponera (inornata 

especially) activity peaked during the early afternoon, again in the warmest part of the 

day. 

 

Response to fire 

 

Rhytidoponera violacea and R. inornata demonstrated no clear response to fire. 

Rhytidoponera violacea maintained activity after the burns (Figure 5a, F1,12 = 0.399, P = 

0.54). Rhytidoponera inornata may have declined in activity after the burns, but so did 

activity in the unburnt plot (Figure 5b, F1,12= 0.117, P = 0.738). The effect of burning on 

Rhytidoponera spp. activity was therefore inconsequential. 

In the control plots there were as many M. turneri perthensis individuals active 

after the burns as there were before the burns (Figure 5c). In the burnt plots, however, 

activity decreased, with 1.7 times as many individuals active before the burns as 

compared to after the burn. This direction of change was only apparent in three of four 

sites (in the fourth site, activity increased by > 100 % after the burn) and there was not a 

significant treatment x time effect (F1,12 = 0.518, P = 0.485). Therefore, although fire may 

decrease Melophorus activity, this pattern is not uniform. 

 

Nesting preference  

 

We located 27 nests each of R. inornata and M. turneri perthensis, representing nest 

densities of 675 per ha for each species. We were unable to locate sufficient nests of R. 

violacea to examine densities or nest-habitat relationships, although unpublished 

observations elsewhere suggest that similar nest densities to R. inornata can be achieved. 

Rhytidoponera inornata did not demonstrate a significant nest site preference (ground 

cover, χ
2
 = 0.73, Figure 6a; top cover, χ

2
 = 3.67, Figure 6b). In contrast, M. turneri 

perthensis had a significant nest site preference for sites with a low ground cover (χ
2
 = 

10.13, P<0.01, Figure 6c) and low overstorey shade (χ
2
 = 7.35, P<0.05, Figure 6d). 

 

Nest structure and depth 

 

Rhytidoponera violacea nests were, on average, 22.2 cm deep (Table 2) and were often 

associated with buried woody material. Structurally, nests tended to comprise a broad 

vertical channel, which often spiralled around a live or dead woody taproot (Figure 7a). 



R. inornata nests were of a similar depth (mean = 25.2 cm) but the channels of the nest 

were much finer than those of the other Rhytidoponera sp., and led off into smaller side 

branches (Figure 7b). Melophorus turneri perthensis nests were of a rather different 

structure, comprising a vertical channel with a series of side galleries at reasonably 

regular intervals (Figure 7c). Seeds were frequently observed embedded in the lead from 

these galleries. Melophorus turneri perthensis nests from the laterite were significantly 

more shallow (mean = 12.7 cm) than nests in the sandy soil at Yalgorup (mean = 21.7 

cm) (F3,34 = 5.37 P=0.004) (Table 2). 

 

Colony size 

 

The number of workers per nest of R. violacea and R. inornata was small and fairly 

similar (mean = 173.2 and 197.6 workers respectively), and sizeable numbers of alates 

were found to be present (Table 3). Numbers of workers in the M. turneri perthensis nest 

were also fairly small (mean = 230.4) and no alates were found. 

 

Feeding habits 

 

Rhytidoponera inornata workers were not observed carrying food frequently enough to 

make any generalisations about food preferences. Rhytidoponera violacea was observed 

carrying invertebrate prey or carrion throughout the year and seeds were present in their 

forage during March and April, comprising 6.3% of dietary observations from the entire 

observation period (Table 4). M. turneri perthensis ceased foraging during the cooler 

months, but was observed carrying seed from November through to May, with this 

component comprising 29.1% of forage. The rest comprised miscellaneous plant 

fragments (25.3%) and invertebrates (54.6%) (Table 4). Taking account of the full 

observation period, M. turneri perthensis carried 4.6 times as many seeds as R. violacea. 

We were able to obtain data from middens for all three species and all exhibited 

an omnivorous diet of arthropods and seeds, although we cannot discount the possibility 

that they might also feed on nectar. The latter is most unlikely, as none of these species 

ascend trees or shrubs. Based on nest middens, M. turneri perthensis was the most reliant 

on seeds (49.3%), followed by R. violacea (37.6%), and R. inornata (8.0%) (see Table 5 

for details). 

 

Foraging response to seed availability 

 

Flowering phenologies of myrmecochorous and non-myrmecochorous plant species were 

very similar (Dobserved =0.216, Dp=0.05=0.309), with peaks in Sept-Oct. The best regression 

models relating ant activity to myrmecochore flowering were found after a four month 

lag for both M. turneri perthensis (R
2 

= 0.572; Figure 8c) and R. violacea (R
2
 = 0.692; 

Figure 8a). In none of the lag periods was the activity of R. inornata positively correlated 

with myrmecochore flowering, and the best correlation was found after a one month lag 

(R
2
 = 0.232; Figure 8c). 

 

Seedling emergence from nests 

 



Some seedlings emerged from the directly heated rectangle surrounding the nest opening 

of both R. inornata and M. turneri perthensis. However, many seedlings emerged from a 

3 cm boundary outside of the rectangle, presumably because the lateral conduction of 

heat provided conditions that were optimal for these plant species (Figure 9). For both ant 

species, the number of seedlings emerging was much higher around ant nests, it being 

almost non-existent elsewhere. Furthermore, the number of seedlings emerging was much 

higher around the heated nests than the unheated counterparts (Figures 10a and b). 

Melophorus turneri perthensis demonstrated a significant species x treatment interaction, 

with Trymalium ledifolium emerging in higher densities from heated nests than other 

treatments (F3,112 = 3.9, P = 0.011). Acacia pulchella was not affected by treatments. A 

similar pattern was evident in R. inornata nests (F3,72 = 2.3, P = 0.082). 

 

Discussion 

 

The findings presented here, along with those from an earlier paper which examined the 

fate of seeds taken by these three ant species (Majer, 1982), indicate a close association 

between the biology of these ant species and their potential to disperse angiosperm seeds. 

All three species are distributed throughout the Southwest Botanical Province of Western 

Australia, albeit with R. inornata being more confined to the extreme south of this region. 

They are thus well situated to disperse seeds of many families found within this 

exceptionally biodiverse (Hopper and Gioia, 2004) region. It should be stressed that there 

are other species from both ant genera which are involved in myrmecochorous 

relationships, and members of other ant genera as well. 

 All three species exhibit a diurnal and seasonal activity that coincides with 

periods of seed production, which ranges from around 1 - 4 months after the main 

September – October flowering period (Majer, 1980a), with seeds tending to fall during 

daytime, when hot conditions cause certain fruits to desiccate and shed seeds (B. Lamont, 

personal communication). Nevertheless, as flowering of myrmecochore and non-

myrmecochore plant species were closely correlated, it does not appear that phenologies 

have evolved to take advantage of, for instance, the increase activity level of ants in the 

spring-summer months. It therefore appears that ant activity levels fortuitously correlate 

with seed production (i.e., a lag of approximately 3 - 4 months after flowering). By 

contrast, Guitián and Garrido, (2006), working in Spain, have found that myrmecochores 

flower approximately 4 weeks before non-myrmecochores, possibly as an adaptation to 

produce seed at a time of maximal ant activity. 

On the whole, Rhytidoponera activity is less seasonal and coincides less with 

seedfall than does Melophorus activity. Inspection of the food carrying data for R. 

violacea and M. turneri perthensis, and also the midden analysis of all three species, 

indicates that Melophorus appears to be more dependent on seeds than Rhytidoponera. 

This suggests that throughout the year, Rhytidoponera probably switches to other food 

sources, such as winter-active invertebrates. We suspect that Rhytidoponera does not 

store seeds for long periods of time, as evidenced by nest diggings reported in Majer 

(1982) and the fact that seeds taken to the nest are often returned to the surface in less 

than 12 hours (A. Gove, personal observation). Therefore Rhytidoponera is likely to be 

relying upon other food sources throughout much of the year, rather than storing seed for 

long periods. 



All three species have relatively shallow nests, although at least for Melophorus, 

nests tend to be deeper in the sandplain than in the lateritic soils. Colony sizes are 

relatively low and, in the case of Melophorus, are much lower than for the larger nests of 

Melophorus bagoti Lubbock from more arid parts of Australia (Conway, 1992). The 

dependence upon seeds, rather than carbohydrates in nectar form, may account for the 

small nests, unlike the situation with high nest abundance species that are dependent upon 

liquid carbohydrates (Davidson et al. (2004). Despite this, nest densities were relatively 

high, averaging 675 nests per ha for both R. inornata and M. turneri perthensis, and 

probably similarly high for R. violacea in areas where it is present. Combining the data 

on density of nests with the quantity of seeds found in forage and on middens indicates 

the high importance of these species in the dynamics of seed dispersal. 

The structure of the nests also has a bearing on the survival of seeds and 

germination of the resulting seedlings. Many of the plant species dispersed by these ants 

are obligate seeders (Bell, 2001) which often rely on fire to germinate the seeds. Nest 

sievings reported in Majer (1982) indicate that seed tends to be buried in nests or under 

middens at a depth which is likely to be protected from the extreme effects of fire, but 

heated sufficiently for seed to germinate (Portlock et al., 1990). The nest heating 

experiment demonstrates this effect quite clearly. The preference of M. turneri perthensis 

for open conditions might have positive feedback effects on the plant community, with 

seedlings being encouraged to germinate in open areas where plants have died and 

opened up the canopy. 

All three ant species have been found to survive fire, although, surprisingly for a 

thermophilic species (Hoffmann, 1998), Melophorus may be more impacted than 

Rhytidoponera. At this stage, we are unsure about the reason for this difference, although 

its greater dependence on seeds in its diet when compared with Rhytidoponera might 

leave it less equipped to switch to other food sources when fire depletes the supply of 

plants which produce seeds. Some of the colonies used for assessment of food collection 

were subject to a cool autumn burn during the course of the study (see Majer, 1984 for 

details), and foraging continued after the burn, with seed in the diet often being replaced 

with burnt plant fragments (J. Majer, unpublished data). 

In our study of the importance of Rhytidoponera, seed removal rate was closely 

related to the presence of Rhytidoponera (Gove et al., 2007). However, in examining this 

data set further, seed removal rate was not associated with Melophorus presence 

(F1,16=0.996, P=0.335). Why, if in our retrospective study Melophorus was seen carrying 

far more seed than Rhytidoponera; didn’t the Gove et al. study register a more significant 

role of Melophorus? Trials in Gove et al. began at approximately 0800 hrs and, although 

they often continued during times when temperatures were in the high 30’s, they were 

biased towards the cooler part of the day when Rhytidoponera was more active than 

Melophorus. Had the trials been focussed on the hotter part of the day, the undoubtledly 

important role of Melophorus would probably have become more clear.  

The pivotal role that these ant species play in the dispersal, survival and therefore 

conservation of native plants, many of which are highly endemic and possibly threatened 

(Hopper and Gioia, 2004), highlights the need to understand and preserve this important 

plant-insect interaction. How well do these three species cope with habitat disturbance 

then? The extensive studies which J. Majer has undertaken in the southwest of Western 

Australia indicate that all three species can tolerate a high degree of habitat disturbance. 



Furthermore, when totally disturbed areas such as minesites are rehabilitated, all three 

species are early colonizers of the area (Majer and Nichols, 1998). Seed removal trials in 

the maturing vegetation indicate that the myrmecochorous relationship is also rapidly 

restored (Majer, 1980b). The situation is less optimistic when invasive ants are involved. 

Callan and Majer (2009) quantified the impact of progressively increasing densities of the 

invasive ant, Pheidole megacephala (Fabricius) intruding into Perth native woodland on 

the Swan Coastal Plain. The smaller R. inornata and, to a lesser extent, the larger R. 

violacea, were vulnerable to incursions of this ant, with the former being eliminated 

when Pheidole was present at the lowest density, and the latter disappearing when 

Pheidole densities reached 100 per pitfall trap. By contrast, close relatives of M. turneri 

perthensis were able to coexist with all but very high densities of the invasive ant (>1000 

ants per pitfall trap), probably as a result of the ability to forage during high temperatures 

when the invasive species is inactive. The impact of these changes in composition of 

myrmecochorous ants was not investigated, but it is assumed that this will result in 

changes in the dynamics of the relationship. 

To summarise, this paper confirms the important role that these three ants have in 

the dispersal and survival of seeds in the southwest of Western Australia. All three 

species have foraging and feeding strategies which maximise the collecting and dispersal 

of seeds and placing them in positions which are ideally suited for subsequent 

germination and survival. This aspect of the relationship is explored further in the case of 

R. violacea in a forthcoming paper (Lubertazzi et al., in press) and in an, as yet 

unpublished, MSc thesis (McCoy, 2008). 
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Table 1 Summary of site and sampling or observation details 

 

Site Latitude Longitude Sample period Burn & 

control? 

Rhytidoponera spp. Melophorus sp. Burn date 

Perth   Reabold 

Hill 

 31° 56' 21"  115° 46' 34" March 1976 - 

Feb 1978 

No R. inornata, R. violacea M. turneri perthensis -- 

Yalgorup   32° 50' 7"  115° 40' 8" Various 

observations 

No -- -- -- 

Karragullen   32° 7' 8"  116° 7' 14" Feb 1978 - April 

1979 

Yes R. inornata, R. violacea M. turneri perthensis 29-Mar-78 

Dwellingup Plavins  32° 45' 0"  116° 9' 0" March 1975 - 
April 1976 

Yes R. inornata  M. turneri perthensis 11-Apr-75 

Dwellingup Curara  28° 35' 0"  115° 34' 0" Feb 1976 - April 

1977 

Yes R. inornata, R. violacea 

(burnt plot only) 

M. turneri perthensis 10-Apr-76 

Dwellingup Pindalup  32° 47' 0"  116° 15' 0" Feb 1976 - Jan 

1978 

Yes R. inornata, R. violacea M. turneri perthensis 25-Nov-76 

Manjimup   34° 20' 0"  116° 0' 0" March 1976 - 

Feb 1978 

No R. inornata --  



Table 2 Depth of nests of R. inornata, R. violacea and M. turneri perthensis on laterite soils at Dwellingup and of M. turneri 

perthensis on sandy soils at Yalgorup National Park  

 
 Rhytidoponera violacea        

 1 2 3 4 5 Mean      

Depth (cm) 16 19 26 25 25 22.2      

            

 Rhytidoponera inornata        

 1 2 3 4 5 Mean      

Depth (cm) 43 19 20 25 19 25.2      

            

 Melophorus turneri perthensis (laterite)     

b 1 2 3 4 5 6 7 8 9 10 Mean 

Depth (cm) 14 14 19 6 13 12 17 9 10 13 12.7 

            

 Melophorus turneri perthensis (sand)      

 1 2 3 4 5 6 7 8 9 10 Mean 

Depth (cm) 28 37 17 15 19 18 20 30 19 14 21.7 



Table 3 Numbers of worker and alate ants in five R. violacea and five R. inornata nests measured at Karragullen and five M. turneri 

perthensis nests measured at Perth. All nest were collected during the peak summer foraging period. 

 

 
 Rhytidoponera violacea Rhytidoponera inornata Melophorus turneri perthensis 

 1 2 3 4 5 Mean 1   2 3 4 5 Mean 1 2 3 4 5 Mean 

Workers 46 359 176 150 135 173.2 37   194 403 290 64 197.6 257 241 256 247 151 230.4 

Alate males 8 0 101 295 75 95.8 147   1 27 6 46 45.4 0 0 0 0 0 0 

Alate females 0 0 0 0 0 0 0   57 0 91 0 29.6 0 0 0 0 0 0 

 



Table 4 Quantities of food items carried to R. violacea (n=5) and  M. turneri perthensis (n=10) nests at Karragullen. Measurements 

made in most months between March 1978 and April 1979 for 30-minute periods per nest 

 
  Mar May Jun Jul Aug Sep Oct Nov Dec Mar Apr % 

R. violacea Seeds 3 2 0 0 0 0 0 0 0 0 0 6.3 

 Plant fragments 1 0 0 0 1 0 0 0 0 0 0 2.5 

 Invertebrates 7 13 3 7 6 6 6 6 3 8 8 91.2 

              

M. turneri perthensis Seeds 4 *n.f. n.f. n.f. n.f. n.f. n.f. 3 9 2 5 29.1 

 Plant fragments 2 n.f. n.f. n.f. n.f. n.f. n.f. 8 2 3 5 25.3 

  Invertebrates 11 n.f. n.f. n.f. n.f. n.f. n.f. 4 5 8 8 45.6 

* n.f. indicates not foraging              



Table 5 Analysis of nest middens of R. inornata R. violacea and M. turneri perthensis collected at Karragullen  

 

 Rhytidponera inornata Rhytidoponera violacea Melophorus turneri perthensis 

 1 2 3 Mean 1 2 3 4 5 Mean 1 2 3 4 5 6 7 8 9 10 Mean 

Arthropods 268 636 541 481.7 72 241 24 78 461 175.2 15 1 4 67 10 33 5 1 28 0 18. 2 

Seeds                      

  Acacia pulchella 0 0 0 0 0 2 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 

  Acacia sp. indet. 1 2 3 2 1 1 27 0 0 5.8 0 0 0 0 0 0 0 0 0 0 0 

  Acacia browniana 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0. 2 

  Allocasuarina sp.indet. 1 2 0 1 0 0 1 3 0 0.8 0 0 0 0 0 0 0 0 0 0 0 

  Corymbia calophylla 0 0 0 0 3 0 0 18 0 4.2 0 0 0 0 0 0 0 0 0 0 0 

  Eucalyptus marginata 9 59 12 26.7 263 3 5 78 27 75.2 0 0 1 6 4 0 0 0 2 0 1. 4 

  Hibbertia sp. 0 1 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  Gompholobium tomentosum 0 0 0 0 1 3 2 0 0 1.2 0 0 0 0 0 0 0 0 0 0 0 

  Phyllanthus calycinus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0. 4 

  Trymalium ledifolium 0 0 0 0 0 0 0 0 0 0 60 0 0 0 0 2 0 0 0 0 6. 9 

  Miscellaneous species 6 7 21 11.3 4 37 42 7 0 18 13 0 0 6 5 33 13 5 3 0 8.7 

Total seeds 17 71 36 41.3 272 46 77 106 27 105.6 73 0 1 12 10 36 13 5 9 0 17.7 

% Seeds    8.0      37.6           49.3 

 

 



 

Fig. 1 Map of southwest Western Australia, showing sites where detailed observations or 

samples were taken for R. violacea, R. inornata and M. turneri perthensis. The solid 

black line shows the position of the Darling Scarp, which separates sandy soil to the west, 

from lateritic soil to the east 

 

Fig. 2 Distribution maps of (a) R. violacea (b) R. inornata and (c) M. turneri perthensis 

(data provided from Biolink, CSIRO) 

 

Fig. 3 Seasonal variation in activity of (a) R. violacea (b) R. inornata and (c) M. turneri 

perthensis at six sites. Error bars represent 1 standard error; vertical axes scales differ in 

the three graphs 

 

Fig. 4 Diurnal activity of (a) R. violacea (b) R. inornata and (c) M. turneri perthensis 

over three seasons. Activity was quantified as the number of individuals leaving a nest 

over a three minute period, recorded each hour; vertical axes scales differ in the three 

graphs; key: (•) summer, (▲) winter, (◊) spring 

 

Fig. 5 Effects of burning on activity of (a) R. violacea (b) R. inornata and (c) M. turneri 

perthensis in four sites. Key: (□) control plots.(o) burnt plots. Error bars represent 1 

standard error; vertical axes scales differ in the three graphs 

 

Fig. 6 Nest densities of R. inornata in terms of (a) ground cover and (b) overstorey shade 

and M. turneri perthensis in terms of (c) ground cover and (d) overstorey shade. Vertical 

axes scales differ in the three graphs 

Fig. 7 Nest castings of (a) R. violacea, (b) R. inornata and (c) M. turneri perthensis. The 

two Rhytidoponera spp. were from laterite soil, and the nest of M. turneri perthensis was 

from sandy soil 

 

Fig. 8 Relationships between activity of (a) R. violacea, (b) R. inornata and (c) M. turneri 

perthensis and the species density of flowering myrmecochores at Karragullen, WA. 

Vertical axes scales differ in the three graphs 

 

Fig. 9 Photos of seedling emergence from heated nests of R. inornata. The inner 

rectangles show the heated area and the outer rectangles delimit areas affected by lateral 

conduction of heat  

 

Fig. 10 Seedling emergence from nests and also heated and unheated un-nested soil 1 m 

away from nests for (a) R. inornata and (b) M. turneri perthensis. Vertical axes scales 

differ in the two graphs; square symbols are Acacia pulchella, circles are Trymalium 

ledifolium. 
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