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Abstract: This paper deals with higher-order optimality conditions of set-valued op-

timization problems. By virtue of the higher-order derivatives introduced in Ref. 1,

higher-order necessary and sufficient optimality conditions are obtained for a set-valued

optimization problem whose constraint condition is determined by a fixed set. Higher-

order Fritz John type necessary and sufficient optimality conditions are also obtained for a

set-valued optimization problem whose constraint condition is determined by a set-valued

map.

Keywords: The mth-order adjacent set, the mth-order adjacent derivative, set-valued

map, the mth-order optimality condition.
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1 Introduction

The study of vector optimization problems is very important since many optimization

problems encountered in economics, engineering and other fields involve vector-valued

maps (or set-valued maps) as constraints and objectives (see Refs. 2-3). First-order Fritz-

John type necessary and sufficient optimality conditions of vector optimization problems

with vector-valued maps have been extensively studied in the literature. See, for example,

Refs. 4-7.

There has been a growing interest in second-order optimality conditions of vector

optimization problems with vector-valued maps. In Ref. 8, Aghezzaf and Hachimi inves-

tigated second-order necessary and sufficient optimality conditions for vector optimization

problems by virtue of second-order tangent sets. In Ref. 9, Jiménez and Novo obtained

second-order Lagrange-Fritz John type optimality conditions by means of the generalized

Motzkin alternative theorem. In Ref. 10, Jiménez and Novo studied second-order nec-

essary and sufficient optimality conditions for a point to be an efficient element of a set

with respect to a cone in a normed space by using common second-order tangent sets and

asymptotic second-order cones. They also discussed second-order Lagrange-Fritz John

type necessary conditions by virtue of the directional metric regularity condition and a

second-order constraint qualification condition.

Recently, there are many optimality conditions to be obtained for vector optimization

problems of set-valued maps (i.e., set-valued optimization problems). In Ref. 11, Luc
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studied necessary and sufficient conditions for both unconstrained and constrained vec-

tor optimization problems with objectives being set-valued maps in terms of contingent

derivatives. In Ref. 12, Corley investigated first-order Fritz John necessary and sufficient

conditions for general set-valued optimization problems by virtue of tangent derivative

and contingent derivative. In Ref. 13, Li et al discussed necessary and sufficient opti-

mality conditions for a general nonconvex set-valued optimization problem with the aid

of the Gerstewitz’s nonconvex separation functional. In Ref. 14, Jahn and Khan inves-

tigated the Fritz John type necessary optimality conditions of local proper minimizers,

local weak minimizers and local strong minimizers for general set-valued optimization

problems by using the generalized contingent epiderivative. They also obtained sufficient

optimality conditions of local weak minimizers and local minimizers for quasi-convex set-

valued optimization problems. In Refs. 15-16, Crespi et al. and Khan et al. obtained

some optimization conditions to a set-valued optimization by using lower and upper Dini

derivatives of set-valued maps, respectively. In Ref. 17, Jahn et al. investigated second-

order necessary optimality conditions and sufficient optimality conditions in set-valued

optimization by using two kinds of second-order epiderivatives for set-valued maps.

In Ref. 1, Aubin and Frankowska defined mth-order tangent sets and then introduced

mth-order derivatives, where m is a positive integer. Since higher-order tangent sets,

in general, are not cones and convex sets, there are some difficulties in studying higher-

order optimality conditions for general set-valued optimization problems by virtue of the

higher-order derivatives introduced by the higher-order tangent sets. Until now, there are
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no study yet for higher-order optimality conditions for set-valued optimization problems

in terms of the higher-order derivatives. Motivated by the work reported in Refs. 1,

12 and 17, we investigate higher-order optimality conditions for general set-valued opti-

mization problems. We discuss some properties of higher-order derivatives for S-concave

set-valued maps. Then, we obtain the higher-order Fritz John type necessary and suffi-

cient optimality conditions of set-valued optimization problems whose objective map and

constraint map are S-concave.

The rest of the paper is organized as follows. In Section 2, we introduce two kinds of

set-valued optimization models. In Section 3, we recall the mth-order contingent set and

the mth-order adjacent set. Then, we discuss their properties and equivalent relations.

In Section 4, we recall the mth-order contingent derivative and the mth-order adjacent

derivative of a set-valued map introduced in Ref. 1. Then, we discuss their properties

when the set-valued map is S-concave. In Section 5, we investigate a mth-order necessary

and sufficient optimality condition for a set-valued optimization problem whose constraint

condition is determined by a fixed set. In Section 6, we obtain a mth-order Fritz John

type necessary and sufficient optimality conditions of a set-valued optimization problem

whose constraint condition is determined by a set-valued map.
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2 Set-Valued Optimization Problems and Preliminar-

ies

Throughout this paper, let X,Y and Z be three real normed spaces, let S ⊆ Y and D ⊆ Z

be pointed and convex cones with intS 6= ∅ and intD 6= ∅, and let A and E be subsets in

X, F : X → 2Y and G : X → 2Z . The domain of F : X → 2Y is given by

Dom(F ) = {x ∈ X | F (x) 6= ∅}.

Denote

F (A) =
⋃

x∈A

F (x) and G−(U) = {x | G(x)
⋂

U 6= ∅}.

Definition 2.1. Let F : X → 2Y be a set-valued map. F (·) is said to be S-concave

on X if, for any x1, x2 ∈ X and λ ∈ (0, 1),

λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2)− S.

Definition 2.2. Let F : X → 2Y be a set-valued map. F (·) is said to be locally

Lipschitz at x0 ∈ X, if there exist M > 0 and a neighborhood W of x0 such that

F (x1) ⊂ F (x2) + M ||x1 − x2||B, ∀x1, x2 ∈ W,

where B denotes the unit ball of the origin in Y.

Now we introduce the (weak) maximal points of a set in real normed space Y and two

set-valued optimization problems to be studied in this paper.
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Definition 2.3. Let B ⊂ Y .

(i) y0 ∈ B is said to be a maximal point of B if

B
⋂

[y0 + S] = {y0}.

By maxS B we denote the set of all maximal points of B.

(ii) y0 ∈ B is said to be a weak maximal point of B if

B
⋂

[y0 + intS] = {∅}.

By maxintS B we denote the set of all weak maximal points of B.

In this paper, consider the following optimization problem:

max
x∈A

F (x), (1)

i.e., to find all x0 ∈ A for which there exists a y0 ∈ F (x0) such that y0 ∈ maxS F (A) (or

y0 ∈ maxintS F (A) if weak maximal solutions are desired). We also consider a special

case of (1):

max
x∈E

F (x)

s.t. G(x)
⋂

D 6= ∅, (2)

i.e., to find all x0 ∈ E
⋂

G−(D) for which there exists a y0 ∈ F (x0) such that y0 ∈

maxS F (E
⋂

G−(D))(or y0 ∈ maxintS F (E
⋂

G−(D)) if weak maximal solutions are de-

sired).

Any x0 solving (1) or (2) is called a (weak) maximal solution for the problem at y0.
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3 Higher-Order Tangent Sets

In this section, we shall recall the definitions of the mth-order contingent set and the

mth-order adjacent set in Ref. 1. Then, we shall discuss their properties. Let X be a

normed space supplied with a distance d and K be a subset of X. We denote by

d(x,K) = inf
y∈K

d(x, y)

the distance from x to K, where we set d(x, ∅) = +∞.

Definition 3.1. Let x belong to a subset K of a normed space X and v1, · · · , vm−1

be elements of X. We say that the subset

T
(m)
K (x, v1, · · · , vm−1) = lim sup

h→0+

K − x− hv1 − · · · − hm−1vm−1

hm

= {y ∈ X | lim inf
h→0+

d(y,
K − x− hv1 − · · · − hm−1vm−1

hm
) = 0}

is the mth-order contingent set of K at (x, v1, · · · , vm−1).

Definition 3.2. Let x belong to a subset K of a normed space X and v1, · · · , vm−1

be elements of X. We say that the subset

T
[(m)
K (x, v1, · · · , vm−1) = lim inf

h→0+

K − x− hv1 − · · · − hm−1vm−1

hm

= {y ∈ X | lim
h→0+

d(y,
K − x− hv1 − · · · − hm−1vm−1

hm
) = 0}

is the mth-order adjacent set of K at (x, v1, · · · , vm−1).

Proposition 3.1. If K is a convex subset and v1, · · · , vm−1 ∈ K, then

T
[(m)
K (x0, v1 − x0, · · · , vm−1 − x0) = T

(m)
K (x0, v1 − x0, · · · , vm−1 − x0)
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= cl


 ⋃

h>0

K − x0 − h(v1 − x0)− · · · − hm−1(vm−1 − x0)

hm


 .

Proof. We note that

T
[(m)
K (x0, v1 − x0, · · · , vm−1 − x0) ⊆ T

(m)
K (x0, v1 − x0, · · · , vm−1 − x0)

⊆ cl


 ⋃

h>0

K − x0 − h(v1 − x0)− · · · − hm−1(vm−1 − x0)

hm


 .

So we only need to prove that for any u0 ∈ cl
(⋃

h>0
K−x0−h(v1−x0)−···−hm−1(vm−1−x0)

hm

)
,

u0 ∈ T
[(m)
K (x0, v1 − x0, · · · , vm−1 − x0).

Let ε > 0 be fixed. Then, there exist y ∈ K and β > 0 such that

u0 − y − x0 − β(v1 − x0)− · · · − βm−1(vm−1 − x0)

βm
∈ εB,

where B is the unit ball of the origin. Let h ∈ (0, µ), where 0 < µ ≤ β and µ + µ2 + · · ·+

µm−1 + µm/βm ≤ 1. Set

u =
y − x0 − β(v1 − x0)− · · · − βm−1(vm−1 − x0)

βm
.

Then,

x0 + h(v1 − x0) + · · ·+ hm−1(vm−1 − x0) + hmu =

x0 +
hm

βm
(y − x0) + h(1−

(
h

β

)m−1

)(v1 − x0) + · · ·+ hm−1(1− h

β
)(vm−1 − x0). (3)

From h ∈ (0, µ) and the definition of µ, we have

hm

βm
+ h(1−

(
h

β

)m−1

) + · · ·+ hm−1(1− h

β
) ≤ hm/βm + h + · · ·+ hm−1 ≤

µ + µ2 + · · ·+ µm−1 + µm/βm ≤ 1.
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It follows from y, x0, v1, · · · , vm−1 ∈ K, the convexity of K and (3) that

x0 + h(v1 − x0) + · · ·+ hm−1(vm−1 − x0) + hmu ∈ K.

Thus, u0 ∈ T
[(m)
K (x0, v1 − x0, · · · , vm−1 − x0) and the proof is complete. 2

Proposition 3.2. If K is convex, then T
[(m)
K (x0, v1, · · · , vm−1) is convex.

Proof. If T
[(m)
K (x0, v1, · · · , vm−1) = ∅, the result holds naturally. Then, we assume

that there are u1, u2 ∈ T
[(m)
K (x0, v1, · · · , vm−1) and λ ∈ (0, 1). It follows from the definition

of the mth-order adjacent subset that, for any hn → 0+, there exist sequences {w1
n} and

{w2
n} such that

w1
n → u1

w2
n → u2,

and

x0 + hnv1 + · · ·+ hm−1
n vm−1 + hm

n w1
n ∈ K,

x0 + hnv1 + · · ·+ hm−1
n vm−1 + hm

n w2
n ∈ K.

From the convexity of K, we have

x0 + hnv1 + · · ·+ hm−1
n vm−1 + hm

n (λw1
n + (1− λ)w2

n) ∈ K.

Thus, λu1 + (1− λ)u2 ∈ T
[(m)
K (x0, v1, · · · , vm−1) and the proof is complete. 2

By Propositions 3.1 and 3.2, we have that the following corollary holds:

Corollary 3.1. If K is a convex subset and v1, · · · , vm−1 ∈ K, then sets T
(m)
K (x0, v1−

x0, · · · , vm−1 − x0) and cl
(⋃

h>0
K−x0−h(v1−x0)−···−hm−1(vm−1−x0)

hm

)
are convex.
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Now we recall a result of the page 172 in Ref. 1 as follows.

Proposition 3.3. For any λ > 0, we have

T
(m)
K (x, λv1, · · · , λm−1vm−1) = λmT

(m)
K (x, v1, · · · , vm−1),

T
[(m)
K (x, λv1, · · · , λm−1vm−1) = λmT

[(m)
K (x, v1, · · · , vm−1).

4 Higher-Order Derivatives for Set-Valued Maps

In this section, we shall recall the definitions of the mth-order contingent derivative and

the mth-order adjacent derivative for set-valued maps in Ref. 1. Then, we shall investigate

their properties under the condition that the set-valued map is S-concave.

Definition 4.1. Let X,Y be normed spaces and F : X → 2Y be a set-valued

map. The mth-order contingent derivative D(m)F (x, y, u1, v1, · · · , um−1, vm−1) of F at

(x, y) ∈ Graph(F ) for vectors (u1, v1), · · · , (um−1, vm−1) is the set-valued map from X to

Y defined by

Graph(D(m)F (x, y, u1, v1, · · · , um−1, vm−1))

= T
(m)

Graph(F )
(x, y, u1, v1, · · · , um−1, vm−1),

i.e.,

vm ∈ D(m)F (x, y, u1, v1, · · · , um−1, vm−1)(um) ⇔

(um, vm) ∈ T
(m)

Graph(F )
(x, y, u1, v1, · · · , um−1, vm−1),
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where Graph(H) denotes the graph of the set-valued map H, i.e., Graph(H) = {(x, y) |

y ∈ H(x), x ∈ Dom(H)}.

Definition 4.2. Let X,Y be normed spaces and F : X → 2Y be a set-valued map.

The mth-order adjacent derivative D[(m)F (x, y, u1, v1, · · · , um−1, vm−1) of F at (x, y) ∈

Graph(F ) for vectors (u1, v1), · · · , (um−1, vm−1) is the set-valued map from X to Y defined

by

Graph(D[(m)F (x, y, u1, v1, · · · , um−1, vm−1))

= T
[(m)

Graph(F )
(x, y, u1, v1, · · · , um−1, vm−1).

Naturally, T
(m)

Graph(F )
(x, y, u1, v1, · · · , um−1, vm−1) or T

[(m)

Graph(F )
(x, y, u1, v1, · · · , um−1,

vm−1) may be empty. From the necessary conditions that the mth-order contingent and

adjacent sets are not empty (see Section 4.7 in Ref. 1), we have that if the domain of

the mth-order contingent (adjacent) derivative of F at (x, y) ∈ Graph(F ) for vectors

(u1, v1), · · · , (um−1, vm−1) is not empty, then necessaryly,

(u1, v1) ∈ T
(1)

Graph(F )
(x, y), · · · , (um−1, vm−1) ∈ T

(m−1)

Graph(F )
(x, y, u1, v1, · · · , um−2, vm−2)

(
(u1, v1) ∈ T

[(1)

Graph(F )
(x, y), · · · , (um−1, vm−1) ∈ T

[(m−1)

Graph(F )
(x, y, u1, v1, · · · , um−2, vm−2)

)
.

For some basic calculus for the mth-order derivative, see Section 5.6 in Ref. 1.

Remark 4.1. If F is a single-valued map which is 3th-order continuously differentiable

around a point x0 ∈ X, then we have

D[(2)F (x0, F (x0), u1, v1)(u2) =





∅, if v1 6= ∇F (x0)(u1),

∇F (x0)(u2) + 1
2
∇2F (x0)(u1, u1), if v1 = ∇F (x0)(u1),
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and

D[(3)F (x0, F (x0), u1, v1, u2, v2)(u3) =




∅, if v1 6= ∇F (x0)(u1)

or v2 6= ∇F (x0)(u2) + 1
2
∇2F (x0)(u1, u1),

∇F (x0)(u3) +∇2F (x0)(u1, u2)

+ 1
3!
∇3F (x0)(u1, u1, u1), if v1 = ∇F (x0)(u1) and

v2 = ∇F (x0)(u2) + 1
2
∇2F (x0)(u1, u1),

where ∇mF (x0), (m = 1, 2, 3) denotes the mth-order derivative of F at x0.

Remark 4.2. Jahn et al. (Ref. 17) introduced the following second-order contingent

set:

T̃ 2
Graph(F )

(x, y, u1, v1) = {(w, z) ∈ X × Y | ∃{(wn, zn)} ⊂ X × Y with

(wn, zn) → (w, z) and λn > 0,∀n, with λn → 0+ so that

(x, y) + λn(u1, v1) +
λ2

n

2
(wn, zn) ∈ Graph(F )},

and the second-order contingent derivative:

D2
cF (x, y, u1, v1)(w) = {z ∈ Y | (w, z) ∈ T̃ 2

Graph(F )
(x, y, u1, v1)}.

It follows from Proposition 3.3 and the definition of the 2th-order contingent set that

T̃ 2
Graph(F )

(x, y, u1, v1) = T
(2)

Graph(F )
(x, y,

√
2u1,

√
2v1).

Then, we have

D2
cF (x, y, u1, v1)(w) = D(2)F (x, y,

√
2u1,

√
2v1)(w). (4)
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So, the 2th-order contingent derivative introduced in this paper is different from the

second-order contingent derivative introduced in Ref. 17. However, they have that the

equivalent relation (4) holds. Obviously, the 2th-order contingent derivative introduced in

this paper is also different from second-order epiderivative and generalized second-order

epiderivative introduced in Ref. 17.

As Ref. 12, we also define the S-directed mth-order contingent derivative D
(m)
S F (x, y,

u1, v1, · · · , um−1, vm−1) of F at (x, y) for vectors (u1, v1), · · · , (um−1, vm−1) to be the mth-

order contingent derivative of the set-valued map

F (x)− S = {y − s | y ∈ F (x), s ∈ S}

at (x, y) for vectors (u1, v1), · · · , (um−1, vm−1). The S-directed mth-order adjacent deriva-

tive at (x, y) for vectors (u1, v1), · · · , (um−1, vm−1) is analogously defined to be D
[(m)
S F

(x, y, u1, v1, · · · , um−1, vm−1). By Proposition 3.1, we have the following result.

Proposition 4.1. Let F be S-concave on convex set A ⊂ Dom(F ), (x0, y0) ∈

Graph(F ) and let u1, · · · , um−1 ∈ A and v1 ∈ F (u1)− S, · · · , vm−1 ∈ F (um−1)− S. Then

D
(m)
S F (x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)(x)

= D
[(m)
S F (x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)(x), for all x ∈ A.

Theorem 4.1. Let F be S-concave on convex set A ⊂ Dom(F ). Then, for all

x′, x′′ ∈ A and any y′ ∈ F (x′),

F (x′′)− y′ ⊂ D
[(m)
S F (x′, y′, u1 − x′, v1 − y′, · · · , um−1 − x′, vm−1 − y′)(x′′ − x′),
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where u1, · · · , um−1 ∈ A and v1 ∈ F (u1)− S, · · · , vm−1 ∈ F (um−1)− S.

Proof. Let x′′, x′ ∈ A and y′ ∈ F (x′), y′′ ∈ F (x′′). For λm
n ∈ (0, 1) and λm

n → 0,∀m,

we have

x′ +
λm

n

2
(x′′ − x′) = (1− λm

n

2
)x′ +

λm
n

2
x′′ ∈ A,

x′ + λm−1
n (um−1 − x′) = (1− λm−1

n )x′ + λm−1
n um−1 ∈ A,

and

y′ +
λm

n

2
(y′′ − y′) = (1− λm

n

2
)y′ +

λm
n

2
y′′ ∈ F (x′ +

λm
n

2
(x′′ − x′))− S,

y′ + λm−1
n (vm−1 − y′) = (1− λm−1

n )y′ + λm−1
n vm−1 ∈ F (x′ + λm−1

n (um−1 − x′))− S.

Then,

x′ +
λm−1

n

2
(um−1 − x′) +

λm
n

22
(x′′ − x′) ∈ A,

and

y′ +
λm−1

n

2
(vm−1 − y′) +

λm
n

22
(y′′ − y′) ∈ F (x′ +

λm−1
n

2
(um−1 − x′) +

λm
n

22
(x′′ − x′))− S.

So, we have the following result:

xn
def
= x′ +

λn

2
(u1 − x′) + · · ·+ λm−1

n

2m−1
(um−1 − x′) +

λm
n

2m
(x′′ − x′) ∈ A,

and

yn
def
= y′ +

λn

2
(v1 − y′) + · · ·+ λm−1

n

2m−1
(vm−1 − y′) +

λm
n

2m
(y′′ − y′) ∈ F (xn)− S.

Thus,

(xn, yn) ∈ Graph(F − S),
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and

(
(xn, yn)− (x′, y′)− λn

(
u1 − x′

2
,
v1 − y′

2

)
− · · · − λm−1

n

(
um−1 − x′

2m−1
,
vm−1 − y′

2m−1

))/
λm

n

= 1
2m (x′′ − x′, y′′ − y′).

It follows readily that

1

2m
(x′′ − x′, y′′ − y′) ∈ T

[(m)

Graph(F−S)

(
(x′, y′),

1

2
(u1 − x′, v1 − y′), · · · ,

1

2m−1
(um−1 − x′, vm−1 − y′)

)
.

Hence, from Proposition 3.3, we obtain

(x′′ − x′, y′′ − y′) ∈ T
[(m)

Graph(F−S)
((x′, y′), (u1 − x′, v1 − y′), · · · , (um−1 − x′, vm−1 − y′)) ,

and

y′′ − y′ ∈ D
[(m)
S F (x′, y′, u1 − x′, v1 − y′, · · · , um−1 − x′, vm−1 − y′)(x′′ − x′).

The proof of the result is complete. 2

From Proposition 4.1 and Theorem 4.1, we have the following corollary.

Corollary 4.1. Let F be S-concave on convex set A ⊂ Dom(F ). Then, for all

x′, x′′ ∈ A and any y′ ∈ F (x′),

F (x′′)− y′ ⊂ D
(m)
S F (x′, y′, u1 − x′, v1 − y′, · · · , um−1 − x′, vm−1 − y′)(x′′ − x′),

where u1, · · · , um−1 ∈ A and v1 ∈ F (u1)− S, · · · , vm−1 ∈ F (um−1)− S.
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5 Optimality Conditions for Problem (1)

In this section, higher-order necessary and sufficient optimality conditions for problem (1)

are investigated. The notation FA is used to denote the restriction of F to A.

Theorem 5.1. If x0 is a weak maximal solution for (1) at y0, then, for any (ui, vi) ∈

X × S, i = 1, · · · ,m− 1,

D(m)FA(x0, y0, u1, v1, · · · , um−1, vm−1)(x)
⋂

intS = ∅, for all x ∈ A,

and so

D[(m)FA(x0, y0, u1, v1, · · · , um−1, vm−1)(x)
⋂

intS = ∅, for all x ∈ A.

Proof. Naturally, we only need to prove the first conclusion. Assume that the result

does not hold. Then, there exist some x̂ ∈ A and ŷ ∈ D(m)F (x0, y0, u1, v1, · · · , um−1,

vm−1)(x̂) such that

ŷ ∈ intS. (5)

Hence, there exist hn → 0+, (xn, yn) ∈ Graph(F ) and {xn} ⊂ A such that

(xn, yn)− (x0, y0)− hn(u1, v1)− · · · − hm−1
n (um−1, vm−1)

hm
n

→ (x̂, ŷ).

So, it follows from (5) that when n is large enough, we have

yn − y0 − hnv1 − · · · − hm−1
n vm−1

hm
n

∈ intS,

and then

yn − y0 − hnv1 − · · · − hm−1
n vm−1 ∈ intS.
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Since S is a convex cone and v1, · · · , vm−1 ∈ S,

hnv1 + · · ·+ hm−1
n vm−1 ∈ S.

Hence,

yn − y0 ∈ intS,

which contradicts that x0 is a weak maximal solution. 2

Theorem 5.2. Let F be S-concave on the convex set A ⊂ Dom(F ) and let u1, · · · ,

um−1 ∈ A and v1 ∈ F (u1)− S, · · · , vm−1 ∈ F (um−1)− S. If

D
[(m)
S F (x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)(x− x0)

⋂
S = {0},∀x ∈ A,

then x0 is a maximal solution for (1) at y0. If

D
[(m)
S F (x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)(x− x0)

⋂
intS = ∅,

then x0 is a weak maximal solution for (1) at y0.

Proof. It follows from Theorem 4.1 that for all x ∈ A,

[F (x)− y0]
⋂

S

⊂ S
⋂

D
[(m)
S F (x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)(x− x0) = {0} (6)

Thus, x0 is a maximal solution for (1) at y0. Using the cone intS instead of S in (6), we

similarly prove that the other conclusion holds. 2

Now we give an example, which is similar to Example 3 in Ref. 18, to show a minimizer

of the problem (1) which fails to satisfy the first-order assumption in Theorem 5.2, but

satisfies the second-order one.
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Example 5.1. Suppose that X = R2, A = R2
+, Y = R and S = R+. Let F : X → Y

be a real-valued function with

F (x) =





−||x|| if x2 ≥ 0

||x|| if x2 < 0.

Naturally, F (x) is S-concave on the convex set A. Consider the following real optimization

problem.

max
x∈A

F (x)

Assume that x0 = (0, 0) and y0 = F (x0) = 0. Then, x0 is a global maximal solution of F

on A. Choosing x̄ = (1, 0) ∈ A, we have

D[
SF (x0, y0)(x̄− x0) = (−∞, 1].

So,

D[
SF (x0, y0)(x̄− x0)

⋂R+ = [0, 1] 6= {0},

i.e., the first-order assumption in Theorem 5.2 is not satisfied. However, if we take u =

(0, 1) and v = F (u) = −1, then, for any x = (x1, x2) ∈ A, we have

D
[(2)
S F (x0, y0, u, v)(x− x0) = (−∞,−x2].

Since x2 ≥ 0,

D
[(2)
S F (x0, y0, u, v)(x− x0)

⋂
S = ∅ or {0},∀x ∈ A.

Hence, the second-order assumption in Theorem 5.2 is satisfied and, from Theorem 5.2,

x0 is a maximal solution of F on A.
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6 Optimality Conditions for Problem (2)

Let Y ∗ denote the dual space of Y , and let

S+ = {λ ∈ Y ∗ | λ(y) ≥ 0, for all y ∈ S ⊂ Y }

denote the nonnegative dual cone of S. λ ∈ S+ is called to be definite positive if λ(y) > 0,

for all y ∈ intS, and strictly positive if λ(y) > 0, for all y ∈ S\{0}. The notation

(F,G)(x) is used to denote F (x)×G(x). In this section, necessary and sufficient optimality

conditions are established for problem (2).

Theorem 6.1. Let F and G be S-concave and D-concave on the convex set E,

respectively. Let (ui, vi, wi) ∈ X × S ×D, i = 1, · · · ,m− 1. Suppose that x0 is a (weak)

maximal solution for (2) at y0. Then, for any z0 ∈ G(x0)
⋂

D, there exist λ ∈ S+ and

µ ∈ D+, but not both zero functionals, such that

µ(z0) = 0, (7)

λ(y) + µ(z) ≤ 0, (8)

for all

(y, z) ∈ D
[(m)
S×D(FE, GE)(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)(x),

and

x ∈ Dom[D
[(m)
S×D(FE, GE)(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)].

Proof. Let z0 ∈ G(x0)
⋂

D and

Ω = Dom[D
[(m)
S×D(FE, GE)(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)].
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Define

B =
⋃

x∈Ω

D
[(m)
S×D(FE, GE)(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)(x) + (0, z0).

It follows from the convexity of Graph(FE − S, GE −D) and Proposition 3.2 that

T
[(m)

Graph(FE−S,GE−D)
((x0, y0, z0), (u1, v1, w1), · · · , (um−1, vm−1, wm−1))

is a convex set. Therefore, by similar proof method for the convexity of B in Theorem

5.1 in Ref. 12, we have that B is a convex set.

Now we prove that

B
⋂

(intS × intD) = ∅. (9)

Assume that the result does not hold. Then, there exist (x̂, ŷ, ẑ) and x̂ ∈ Ω such that

(ŷ, ẑ) ∈ D
[(m)
S×D(FE, GE)(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)(x̂), (10)

and

(ŷ, ẑ + z0) ∈ intS × intD. (11)

It follows from (10) and the definition of the mth-order adjacent derivative that for any

sequence {hn} with hn → 0+, there exists {(xn, yn, zn)} with

xn ∈ E, yn ∈ F (xn)− S, zn ∈ G(xn)−D

such that

(xn, yn, zn)− (x0, y0, z0)− hn(u1, v1, w1)− · · · − hm−1
n (um−1, vm−1, wm−1)

hm
n

→ (x̂, ŷ, ẑ).

(12)
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From (11) and (12), there exists N > 0 such that hn < 1 and

(yn, zn)− (y0, z0)− hn(v1, w1)− · · · − hm−1
n (vm−1, wm−1)

hm
n

+ (0, z0) ∈ intS × intD,

for n ≥ N. Thus, we have

yn − y0 − hnv1 − · · · − hm−1
n vm−1 ∈ intS, for n ≥ N,

and

zn − z0 − hnw1 − · · · − hm−1
n wm−1 + hm

n z0 ∈ intD, for n ≥ N.

Since z0, w1, · · · , wm−1 ∈ D and v1, · · · , vm−1 ∈ S,

(1− hm
n )z0 + hnw1 + · · ·+ hm−1

n wm−1 ∈ D,

and

hnv1 + · · ·+ hm−1
n vm−1 ∈ S.

Thus, zn ∈ intD and yn − y0 ∈ intS. Since zn ∈ G(xn) − D and yn ∈ F (xn) − S, there

exist z̄n ∈ G(xn), dn ∈ D, ȳn ∈ F (xn) and sn ∈ S such that

zn = z̄n − dn and yn = ȳn − sn, for n ≥ N.

Naturally, z̄n ∈ G(xn)
⋂

D and ȳn − y0 ∈ intS, which contradicts that x0 is a (weak)

maximal point at y0. Thus, (9) holds. It follows from a standard separation theorem

of convex sets and similar proof method of Theorem 5.1 in Ref. 12 that there exist

λ ∈ S+and µ ∈ D+, not both zero functionals, such that

µ(z0) = 0,

λ(y) + µ(z) ≤ 0,
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for all

(y, z) ∈ D
[(m)
S×D(FE, GE)(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)(x),

and

x ∈ Dom[D
[(m)
S×D(FE, GE)(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)].

Thus, the proof is complete. 2

Now we give an example to illustrate the necessary optimality conditions for mth-order

adjacent derivative, where we only take m = 1.2.

Example 6.1. Suppose that X = Y = Z = R, E = [−1, 1] ⊂ X and S = D = R+.

Let F : E → 2Y be a set-valued map with

F (x) = {y ∈ R | −1 ≤ y ≤ −x4},

and G : E → Z be a real-valued function with

G(x) = −2x + 1.

Naturally, F and G are two R+-concave functions on the convex set [−1, 1], respectively.

Consider the following constrained set-valued optimization problem (CSVOP):

max F (x)

s.t. x ∈ E, G(x)
⋂

D 6= ∅.

We have

E
⋂

G−(D) = [−1,
1

2
], and F (E

⋂
G−(D)) = [−1, 0].
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Let (x0, y0) = (0, 0) ∈ Graph(F ). Since (F (E
⋂

G−(D)) − y0)
⋂

intR = ∅, (x0, y0) is

a weak efficient maximal solution of (CSVOP). So, the conditions of Theorem 6.1 are

satisfied at (x0, y0). It follow from the definitions of F and G that

Graph(F − S, G−D) = {(x, (y, z)) ∈ R×R2 | y ≤ −x4, z ≤ −2x + 1,−1 ≤ x ≤ 1}.

Take any z0 ∈ G(x0)
⋂R+. Since G(x0) ≡ 1, we have z0 = 1. Then,

T [
Graph(F−S,G−D)

(x0, y0, z0) = {(x, (y, z)) ∈ R×R2 | y ≤ 0, z ≤ 2x},

and

D[
S×D(F,G)(x0, y0, z0)(x) = {(y, z) ∈ R2 | y ≤ 0, z ≤ 2x}.

Take λ > 0 and µ = 0. Thus, for any (y, z) ∈ D[
S×D(x0, y0, z0)(x) and x ∈ R, we have

λ(y) + µ(z) ≤ 0 and µ(z0) = 0,

which shows that the 1th-order necessary optimality condition of Theorem 6.1 holds.

Take u1 = −1/4, v1 = 0 ∈ S and w1 = 1/2 ∈ D. Then, the conditions of Theorem 6.1

are satisfied at (x0, y0) for vector (u1, v1, w1). Naturally, we have

T
[(2)

Graph(F−S,G−D)
(x0, y0, z0, u1, v1, w1) = {(x, (y, z)) ∈ R×R2 | y ≤ 0, z ≤ 2x},

and

D
[(2)
S×D(F,G)(x0, y0, z0, u1, v1, z1)(x) = D[

S×D(F,G)(x0, y0, z0)(x)

= {(y, z) ∈ R2 | y ≤ 0, z ≤ 2x}.
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Simultaneously, take λ > 0 and µ = 0. We have that the 2th-order necessary optimality

condition of Theorem 6.1 holds.

Remark 6.1. From the properties of higher-order contingent and adjacent sets (see

the page 172 of Ref. 1), we deduce

Dom[D
[(m)
S×D(FE, GE)(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)] 6= ∅

if and only if

(uj, vj, wj) ∈ T
[(j)

Graph(FE−S,GE−D)
((x0, y0, z0), (u1, v1, w1), · · · , (uj−1, vj−1, wj−1)),

for j = 1, · · · ,m − 1. Furthermore, by Proposition 3.1, if Graph(FE − S, GE − D) is a

convex set, then we have

T [
Graph(FE−S,GE−D)

(x0, y0, z0) = cl


 ⋃

h>0

Graph(FE − S, GE −D)− (x0, y0, z0)

h


 .

Thus, if F and G are S-concave and D-concave on X, respectively, then

Dom[D
[(m)
S×D(FE, GE)(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)] 6= ∅

if and only if

(u1, v1, w1) ∈ cl


 ⋃

h>0

Graph(FE − S, GE −D)− (x0, y0, z0)

h


 ,

and

(uj, vj, wj) ∈ T
[(j)

Graph(FE−S,GE−D)
((x0, y0, z0), (u1, v1, w1), · · · , (uj−1, vj−1, wj−1)),

for j = 2, · · · ,m− 1.
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Note that the following equation may not hold:

D
[(m)
S×D(FE, GE)(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)(x)

= D
[(m)
S FE(x0, y0, u1, v1, · · · , um−1, vm−1)(x)

×D
[(m)
D GE(x0, z0, u1, w1, · · · , um−1, wm−1)(x). (13)

Indeed, when F and G are S-concave and D-concave, respectively, (13) may also not hold.

The following example explains the case.

Example 6.2. Suppose E = [0, +∞), S = D = [0, +∞),m = 1, G(x) = 3
√

x, x ∈

(−∞, +∞) and

F (x) =





√
x, x ∈ [0, +∞),

0, x ∈ (−∞, 0].

Then, F and G are R+-concave on E. We have

D[
SFE(0, 0)(0) = R and D[

DGE(0, 0)(0) = R,

namely,

D[
SFE(0, 0)(0)×D[

DGE(0, 0)(0) = R2. (14)

However,

D[
S×D(FE, GE)(0, 0, 0)(0) =





(y, z) ∈ R2

∣∣∣∣∣∣∣∣∣∣

y ∈ (−∞, 0], z ∈ (−∞, +∞) or

y ∈ (−∞, +∞), z ∈ (−∞, 0].





(15)

It follows from (14) and (15)) that

D[
SFE(0, 0)(0)×D[

DGE(0, 0)(0) 6= D[
S×D(FE, GE)(0, 0, 0)(0).
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Now we give the following proposition for explaining that (13) holds when F or G is

locally Lipschitz.

Proposition 6.1. If either F or G is locally Lipschitz at x0, then,

D
[(m)
S×D(FE, GE)(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)(x)

= D
[(m)
S FE(x0, y0, u1, v1, · · · , um−1, vm−1)(x)

×D
[(m)
D GE(x0, z0, u1, w1, · · · , um−1, wm−1)(x). (16)

Proof. Naturally, we only need to prove

D
[(m)
S FE(x0, y0, u1, v1, · · · , um−1, vm−1)(x)

×D
[(m)
D GE(x0, z0, u1, w1, · · · , um−1, wm−1)(x)

⊆ D
[(m)
S×D(FE, GE)(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)(x). (17)

Without loss of generality, suppose that G is locally Lipschitz at x0 and

(y, z) ∈ D
[(m)
S FE(x0, y0, u1, v1, · · · , um−1, vm−1)(x)

×D
[(m)
D GE(x0, z0, u1, w1, · · · , um−1, wm−1)(x).

Then, for any hn → 0+, there exist (xn, yn) → (x, y) and xn ∈ E such that

y0 + hnv1 + · · ·+ hm−1
n vm−1 + hm

n yn ∈ F (x0 + hnu1 + · · ·+ hm−1
n um−1 + hm

n xn)− S. (18)

Similarly, for any hn → 0+, there exist (x̄n, z̄n) → (x, z) and x̄n ∈ E such that

z0 + hnw1 + · · ·+ hm−1
n wm−1 + hm

n z̄n ∈ G(x0 + hnu1 + · · ·+ hm−1
n um−1 + hm

n x̄n)−D. (19)
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It follows from locally Lipschitz continuity of G that there exist a constant M > 0 and a

neighborhood W of x0 such that

G(x1) ⊂ G(x2) + M ||x1 − x2||B, ∀x1, x2 ∈ W. (20)

Naturally, there exists N > 0 satisfying

x0 + hnu1 + · · ·+ hm−1
n um−1 + hm

n xn, x0 + hnu1 + · · ·+ hm−1
n um−1 + hm

n x̄n ∈ W, ∀n ≥ N.

It follows from (20) that

G(x0 + hnu1 + · · ·+ hm−1
n um−1 + hm

n x̄n)

⊂ G(x0 + hnu1 + · · ·+ hm−1
n um−1 + hm

n xn) + hm
n M ||x̄n − xn||B, ∀n ≥ N. (21)

From (19) and (21), there exists zn → z such that for any n ≥ N ,

z0 + hnw1 + · · ·+ hm−1
n wm−1 + hm

n zn ∈ G(x0 + hnu1 + · · ·+ hm−1
n um−1 + hm

n xn)−D. (22)

It follows from (18) and (22) that

(y, z) ∈ D
[(m)
S×D(FE, GE)(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)(x),

and (16) holds. 2

From Theorem 6.1 and Proposition 6.1, we have the following result.

Theorem 6.2. Let F and G be S-concave and D-concave on the convex set E,

respectively and either F or G be locally Lipschtiz at x0. Let (ui, vi, wi) ∈ X×S×D, i =

1, · · · ,m − 1. Suppose that x0 is a (weak) maximal solution for (2) at y0. Then, for any
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z0 ∈ G(x0)
⋂

D, there exist λ ∈ S+ and µ ∈ D+, but not both zero functionals, such that

µ(z0) = 0,

λ(y) + µ(z) ≤ 0,

for all

y ∈ D
[(m)
S FE(x0, y0, u1, v1, · · · , um−1, vm−1)(x),

z ∈ D
[(m)
D GE(x0, z0, u1, w1, · · · , um−1, wm−1)(x)

and x ∈ Dom[D
[(m)
S×D(FE, GE)(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)].

Theorem 6.3. Let F and G be S-concave and D-concave respectively on the con-

vex set E ⊂ Dom(F )
⋂

Dom(G), and let A = E
⋂

G−(D). Suppose that there ex-

ist x0, u1, · · · , um−1 ∈ A, y0 ∈ F (x0), v1 ∈ F (u1) − S, · · · , vm−1 ∈ F (um−1) − S, z0 ∈

G(x0)
⋂

D,w1 ∈ G(u1)
⋂

D, · · · , wm−1 ∈ G(um−1)
⋂

D, strictly (definite) positive λ ∈ S+,

and µ ∈ (T
[(m)
D (z0, w1 − z0, · · · , wm−1 − z0))

+ such that

λ(y) + µ(z) ≤ 0, (23)

for all

(y, z) ∈ D
[(m)
S FA(x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)(x− x0)

×D
[(m)
D GA(x0, z0, u1 − x0, w1 − z0, · · · , um−1 − x0, wm−1 − z0)(x− x0),

and x ∈ A. Then, x0 is a (weak) maximal solution for (2) at y0.

Proof. Suppose that

HA(x) = GA(x)
⋂

D, ∀x.
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Now we prove that HA is a D-concave function on A. In fact, suppose that x1, x2 ∈

Dom(HA), z1 ∈ HA(x1), z2 ∈ HA(x2) and β ∈ (0, 1). It follows readily that z1 ∈

GA(x1), z2 ∈ GA(x2) and z1, z2 ∈ D. From the concavity of GA and the convexity of

D, we have

βz1 + (1− β)z2 ∈ GA(βx1 + (1− β)x2)−D, (24)

and

βz1 + (1− β)z2 ∈ D. (25)

It follows from (24) that there exist z̄ ∈ GA(βx1 + (1− β)x2) and d̄ ∈ D such that

βz1 + (1− β)z2 = z̄ − d̄. (26)

By (25) and (26), we obtain

z̄ ∈ D

Thus, we have

βz1 + (1− β)z2 ∈
(
GA(βx1 + (1− β)x2)

⋂
D

)
−D,

and HA is D-concave. Naturally, Graph(HA − D) ⊂ Graph(GA − D). It follows from

Table 4.7 in Ref. 1 that

D
[(m)
D HA(x0, z0, u1 − x0, w1 − z0, · · · , um−1 − x0, wm−1 − z0)(x− x0)

⊂ D
[(m)
D GA(x0, z0, u1 − x0, w1 − z0, · · · , um−1 − x0, wm−1 − z0)(x− x0), (27)

for all x ∈ A. From the definition of the set-valued map HA, we have

D
[(m)
D HA(x0, z0, u1 − x0, w1 − z0, · · · , um−1 − x0, wm−1 − z0)(x− x0)
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⊂ T
[(m)
D (z0, w1 − z0, · · · , wm−1 − z0).

By Theorem 4.1, we get

D
[(m)
D HA(x0, z0, u1 − x0, w1 − z0, · · · , um−1 − x0, wm−1 − z0)(x− x0) 6= ∅,∀x ∈ A

So,

µ(D
[(m)
D HA(x0, z0, u1 − x0, w1 − z0, · · · , um−1 − x0, wm−1 − z0)(x− x0)) ≥ 0. (28)

It follows from (23), (27) and (28) that

λ(D
[(m)
S FA(x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)(x− x0)) ≤ 0,

for any x ∈ A. Thus, by the definition of λ and Theorem 5.2, we have that x0 is a (weak)

maximal solution for (2) at y0. 2

From the proof of Theorem 6.3, we have that the following corollary holds.

Corollary 6.1. Let F and G be S-concave and D-concave respectively on the con-

vex set E ⊂ Dom(F )
⋂

Dom(G), and let A = E
⋂

G−(D). Suppose that there exist

x0, u1, · · · , um−1 ∈ A, y0 ∈ F (x0), v1 ∈ F (u1), · · · , vm−1 ∈ F (um−1), z0 ∈ G(x0)
⋂

D,w1 ∈

G(u1)
⋂

D, · · · , wm−1 ∈ G(um−1)
⋂

D, strictly (definite) positive λ ∈ S+, and µ ∈ (T
[(m)
D (z0,

w1 − z0, · · · , wm−1 − z0))
+ such that

λ(y) + µ(z) ≤ 0, (29)

for all

(y, z) ∈ D
[(m)
S FA(x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)(x− x0)

×D
[(m)
D HA(x0, z0, u1 − x0, w1 − z0, · · · , um−1 − x0, wm−1 − z0)(x− x0),
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and x ∈ A. Then, x0 is a (weak) maximal solution for (2) at y0, where HA : A → 2D with

HA(x) = GA(x)
⋂

D, ∀x ∈ A.

Remark 6.2. If we use the mth-order contingent derivatives for FA and GA (FA and

HA) instead of their mth-order adjacent derivatives in Theorem 6.3 (Corollary 6.1), then,

the result of Theorem 6.3 (Corollary 6.1) also holds.
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