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Allpass VFD Filter Design

Hai Huyen Dam and Kok Lay Teo

Abstract—This correspondence proposes a general design for allpass
variable fractional delay (VFD) digital filters with minimum weighted
integral squared error subject to constraints on maximum error deviation
from the desired response. The resulting optimization problem is nonlinear
and nonconvex with a nonlinear continuous inequality constraint. Stability
of the designed filters are discussed. An effective procedure is proposed
for solving the optimization problem. Firstly, a constraint transcription
method and a smoothing technique are employed to transform the con-
tinuous inequality constraint into one equality constraint. Then, by using
the concept of a penalty function, the transformed constraint is incorpo-
rated into the cost function to form a new cost function. The nonlinear
optimization problem subject to continuous inequality constraints is then
approximated by a sequence of unconstraint optimization problems.
Finally, a global optimization method using a filled function is employed to
solve the unconstraint optimization problem. Design example shows that
a trade-off can be achieved between the integral squared error and the
maximum error deviation for the design of allpass VFD filters.

Index Terms—Allpass filter design, filled function, optimization, variable
digital filter design.

I. INTRODUCTION

Digital filters with tunable fractional phase-delay or fractional group
delay, referred to as variable fractional-delay (VFD) filters, are useful in
various signal processing applications [1]-[3], including timing offset
recovery in digital receivers, comb filter design, sampling rate conver-
sion, speech coding and synthesis, time delay estimation, one-dimen-
sional digital signal interpolation and image interpolation. For finite
impulse response (FIR) based VFD filters, it is relatively easy to formu-
late and solve as an appropriate optimization problem so as to achieve
the desired characteristics [1], [4], [5]. The design of allpass VFD fil-
ters is somewhat more difficult and has been investigated in [3], [6]-[9].
The advantage of the allpass VDF filters is that they can achieve higher
design accuracy than FIR filters in terms of frequency response errors
for applications that require unity gain.

In [3], [7], the design of an allpass VFD filter with minimum inte-
gral squared error has been investigated. However, the designs obtained
often have high maximum error variation from the desired response. In
this correspondence, we formulate a design for allpass VFED filters with
minimum weighted integral square error subject to constraint on max-
imum error deviations from the desired response. Stability of the de-
signed filters are also discussed. The formulated optimization problem
is nonlinear and nonconvex with a nonlinear continuous inequality con-
straint. The optimization procedure for solving this problem is as fol-
lows. Initially, a constraint transcription method is employed to reduce
the continuous inequality constraint into an equality constraint. As the
equality constraint is non smooth, a local smoothing technique is used
to smoothen it. Then, the transformed constraint is appended to the cost
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function, forming a new cost function. In this way, the optimization
problem with continuous inequality constraint is approximated by a
sequence of unconstrained optimization problems [10]. A local search
method is first used to solve these unconstrained optimization prob-
lems. Then, a global optimization method employing a filled function
is used to escape from the local minimum obtained by the local search
method to a lower basin in the search space [11]. This process is re-
peated until no lower basin can be found.

The design example that will be presented shows that a trade-off
can be achieved between the integral squared error and the maximum
error deviation. In addition, from the weighted least square solution,
the maximum error deviation can be reduced while still maintaining
approximately the same integral squared error.

The rest of the correspondence is organized as follows. The problem
formulation is given in Section II. The approximation of the optimiza-
tion problem with continuous inequality constraint by a sequence of
unconstrained optimization problems is developed in Section III. The
unconstrained optimization problem is solved by using an optimiza-
tion procedure combining a local search method and a filled function in
Section IV. Design examples are reported in Section V and concluding
remarks are given in Section VI.

II. PROBLEM FORMULATION

In this section, we formulate a general design of an allpass VFD
filter. The transfer function of the allpass filter is given by

N inw .
H (jw,p) = eIV L4 Dz n(p)! = c_'j’\r“w
c 1+ 25:1 an (p)e—ine A(jw,p)
(1

where @, (p), 1 < n < N, are allpass filter coefficients depending on
the tuning parameter p, and
N
AGw.p) =1+ Z an(p)e 2", ®)

n=1

The frequency w € Q = [0,an] with 0 < « < 1 and the tuning
parameter p is varied in the range

P =[-0.5,0.5].

Each coefficient a,, (p) is expressed in terms of an M th order poly-
nomial in terms of the parameter p [3], i.e.,

M
Ay (p) = Z hn,rn]]nl (3)

m=0

where h,, ,. are constant real coefficients. Similar to [3], we consider
the case with h,, 0 = Oforalll < n < N.

Leth = [hy1,....h10ss-e s vy hvar]” be the MN x
1 vector of the allpass VFD filter coefficients. The desired frequency
response of the allpass VFD filter is given by

Ha(jw.p) = e I0alwp) _ —ita(p)w

where 04(w, p) and 74(p) denote, respectively, the desired phase and
the positive desired group delay, depending on the tuning parameter
p. Here, 74(p) = I + p where I is a constant. We design the allpass
VED filter with minimum integral squared error, defined as the inte-
gration of the weighted squared error deviation between H (jw, p) and
Hy(jw,p), ie.,

E(h) = /P / W(w.p) |H(jworp) — Haljoop) P dodp (4
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where W (w, p) is a positive weighting function, depending on the fre-
quency w and p. The filter is designed subject to a constraint on the
peak error deviation between H (w,p) and Hy(w,p), i.e.,

|H(W,]7)—Hd(w,p)|SC(&),]’)),VWES),]’)EP (5)

where e(w,p) > 0 represents the allowed tolerance. Thus, the design
of the allpass filter can be formulated as the following optimization
problem:
min
heR M N x1
subject to

|H(w.p) — Ha(w,p)| < e(w,p).Vw € Q,p € P. ©)

E(h)

Here, we concentrate mainly on the investigation of the trade-off
between the integral squared error and the maximum error deviation
from the desired response.

Denote by 8(w, p) the phase response of the allpass filter H(z, p).
For a stable allpass filter, the phase 6(w,p) has the following three
properties [8]: 1) 8(0,p) = 0 for p € [—0.5,0.5];ii) 6(7,p) = —N=
for p € [—0.5,0.5]; and iii) §(w, p) decreases monotonically with re-
spect to the frequency w for p € [—0.5,0.5]. Since 4(0,p) = 0,
Ba(m,p) = —n(I+p) and 84(w, p) is a decreasing function, we choose
N = T so that properties i) and ii) are satisfied. Although the phase
of the allpass filter follows closely a monotonically decreasing func-
tion, it does not imply that the phase itself is monotonic. The designed
allpass filter is stable if it has a phase approximation error less than
matw = w for p € [—0.5,0.5] [8]. It has been noted in [7] that if
a > 0.85 then A(w,p) = — N for all p. Thus, the phase error at
w = wis f(m,p) — 84(w,p) = pmw which is less than 7 at w = .
Hence, the designed allpass filters are stable and hence stability con-
straints are not required to be included in this case. For other cases, e.g.,
other ranges of p, additional stability constraints such as the sufficient
stability condition given in [12] should be included in the optimiza-
tion problem. Similar approach as the one proposed here can be used
for solving the resulting optimization problem with two continuous in-
equality constraints.

III. APPROXIMATE UNCONSTRAINED OPTIMIZATION PROBLEMS

The optimization problem (6) is nonlinear and nonconvex, subject to
continuous inequality constraints. Let the continuous inequality con-
straint in (6) be expressed as

g(h,w,p) <0O,Vw € Q,peP @)
where
g(h,w.p) = |H(jw.p) — Ha(jw.p)|> — *(w.p).

The continuous inequality constraint in (6) is equivalent to the fol-
lowing equality constraint:

Gh)=0 ®)
where

G(h) = / /max {g9(h,w,p),0} dwdp. ©)
Jr Ja

The function max{g(h, w, p), 0} in (9) is highly nonlinear. It is con-
tinuous with respect to h for every w and p. Moreover, it is not differ-
entiable and hence nonsmooth in terms of h. Thus, standard gradient
based optimization routines would have difficulties with this type of
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equality constraint. To overcome this problem, a smoothing technique
[10] is employed to replace max{g(h,w, p),0} with a smooth func-
tion g.(h,w, p) where

0 if g(h,w,p) < —€
(oen)£9% if —¢ < g(h,w,p) < ¢
g(h,w,p) if g(h,w,p) > €

ge(h,w,p) = (10)

and ¢ is a small positive number. The function in (9) is now approxi-
mated by the continuously differentiable functions G (h) given by
G.(h) = / / ge(h, w, p)dwdp. (11
P Ja
The approach proposed in [10] will be used. More specifically, we
use the concept of the penalty function to append the smoothen function

(11) to the cost function in (6), forming a sequence of approximate
optimization problems stated as follows:

min
heRrR MN X1

fe(h) 12)

where

fer(h) = E(h) + vG.(h) (13)
and + is a penalty parameter. For each v and e, let the problem be
referred to as Problem P. ..

Remark I11.1: We have the following properties [13]: For every € >
0, there exists a v(e) > 0 such that for any v > ~(€), a solution
of Problem P. . will satisfy the continuous inequality constraints of
Problem (6). In addition, suppose that h™ and h{ . are, respectively,
the global optimal solutions of Problems (6) and Problem P, , with
v > ~y(e). Then, the cost function f. ,(h{ ) approaches to E(h*) as
e — 0.

In practice, we only consider a finite sequence of €. The solution
to the optimization problem (6) is obtained by solving a sequence of
unconstrained optimization problems P - with v chosen iteratively so
that the continuous inequality constraint in (6) is satisfied. A procedure
to search for a minimizer of the problem is presented as follows.

Procedure I11.1: Check for a feasible solution to the problem (6).

* Solve the minmax optimization problem

min e

subject to

1
|H(w~p) - H,;[(W,])>| S F,.,Vu) € S),]) eP
e(w,p)

by using the semi-infinite linear programming approach or semi-
definite programming (see, e.g., [14]). If the above problem ha a
feasible solution with € < 1, then this optimization problem has a
feasible solution. This solution can be used as the initial solution
to the Procedure III.1. Otherwise, the problem does not have a
feasible solution and the problem needs to be reformulated.

Procedure 111.2: Optimize Problem (6).

» Step 1: Initialize € and ~.

* Step 2: Obtain the solution h{ . of Problem P. .

 Step 3: If h ., satisfies the continuous inequality constraints in
(6), then go to Step 4. Otherwise, increase v and return to Step 2.

* Step 4: Decrease the value of e. If the difference in £(h) between
the two consecutive iterations is small then stop the procedure.
Otherwise, the current optimal solution will be used as the initial
to the next iteration and return to Step 2.

Remark I11.2: The process of increasing + is finite by virtue of Re-

mark IIT.1.
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As Problem P , is nonlinear and nonconvex, it may have many local
minima. In the following section, a global optimization method incor-
porating a filled function is employed for solving Problem P. - in Step
2 of Procedure I11.2.

IV. OPTIMIZATION METHOD USING THE FILLED FUNCTION

As in [13], from a local minimizer h? ., of Problem P ,, a filled
function is constructed so that when minimizing this filled function, a
point with a lower cost value than f. ,(h .) is obtained. However, a
more refined filled function will be used. More specifically, as the cost
function f. ,(h{ ) is positive and relatively small for our filter design

problem, we modify the quasi-filled function in [11] as follows:

F(h,hl_ ., q,r.c)

- (_ |~ h?,ﬁ,||2> . <f (h) — f&,.,,(hjﬂ,))

q fer(RES)
i (o) Jea(h5)) "
B feq(hEs)
where ¢, r and ¢ are the filled function parameters
c t>0
grclt) = {—2—9 — Bt —r<t<0 as)
0 otherwise
and
2¢ t>1+r
L o524 Lty
) (6c—3)(2+2r) 1 4c—24(6c—3)r <t < -
heet)=4 0 T SIS EET g
0<t<1
A T e —r<t<0
t+r t< —r.

The proposed optimization method utilizes the following steps.
Procedure IV.1: Use for Step 2 of Procedure III.2. Search for the

optimum h _ of Problem P. .
o Step 1: Initialize h® € RYV*": ¢, ¢ and their upper limits;
and its lower limit. Denote by I/ a set of unit directions, I/ =
{u,---,ur}, where K > MN.

* Step 2: Obtain a local minimizer h? ., of Problem P. ., from the
initial h® by using a gradient based method.

* Step 3: Choose a unit direction in /. From the point h? ., search
along the unit direction for a point hgﬂ, that satisfies

fer(B) < fon(h? )
or

fer (M) < fer(hl ) < fory(hI,)+ 1.

Construct the filled function F'(h, h? ., ¢, r, ¢) and minimize this
function using a local search method starting from the initial point
hg..,,. If a point with a lower minimum is obtained then set h° as
this point and return to Step 2. Otherwise, increase either ¢, ¢ or
reduces r and re-optimize the filled function. Stop the procedure
when the values of ¢, r and ¢ reach their allowable limits and
all the unit directions have been chosen. Set h _ as the global
minimizer of the optimization problem.

Note that if all the unit directions in { have been used and no better
point is found, we may increase the number of search directions and
continue with the process using the new directions. We will regard
the solution obtained as a global optimal solution if the process does
not give rise to a point in a lower basin after all the directions have
been utilized. Clearly, we may miss finding the global optimizer un-
less the number of searched directions is very large, but this becomes

fed
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Fig. 1. Tradeoff plot between maximum error deviation and integral squared
error for VFD allpass filter.

Error deviation from the desired response [dB]

o/t

Fig. 2. Noniterative LS design solution for the VFD allpass filter with p =
{0.5,0.375,0.25}. The VFD allpass filter has maximum error deviation of
—26.4050 dB and integral squared error of —47.8047 dB.

impractical even for problems of moderate size. Our extensive simu-
lation studies suggest that good quality optimal solutions can often be
obtained without having to take the number of directions to be exces-
sively large.

V. DESIGN EXAMPLE

Consider the design of an allpass VFD filter with N = 15, M = 4
and & = 0.9 dB. The weighting function W (w, p) is one for all w
and p.

For Procedure II1.2, the initial values for €, v are chosen, respec-
tively, as 0.01 and 100. Also, for Procedure IV.1, the upper limit for ¢
and c is 10° while the lower limit for r is 10™%. The initial values of
¢, r and ¢ are chosen as ¢ = # = 10% and ¢ = 1072, The number of
discretized points for w is 256 while the number of discretized points
for 6 is 128.

Fig. 1 plots the integral square error 20 log,, E(h) [dB] for different
maximum error deviation from the desired response. The point “*” in
the plot shows the least square (LS) solution; see, e.g., [3]. Denote by
er.s the maximum error deviation for this solution. The plot shows the
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Fig.3. VFD allpass filter with p = {0.5,0.375,0.25}. The VFD allpass filter
has maximum error deviation of —28.0013 dB and integral squared error of

—47.7643 dB.
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Fig. 4. VFD allpass filter with low maximum error deviation and
p = {0.5,0.375,0.25}. The VFD allpass filter has maximum error de-
viation of —30.0145 dB and integral squared error of —47.2325 dB.

trade-off between the integral squared error and the maximum error
deviation. In addition, from the LS solution, the maximum error devia-
tion can be reduced while maintaining approximately the same integral
squared error. Thus, this formulation allows a flexible design to control
the maximum error deviation for the allpass VFD filter.

Fig. 2 plots the frequency response error deviation from the desired
response, expressed as

20log o [H(h,w,p) — Ha(w.p)|

for the noniterative LS solution (for example, the one obtained in [3])
for a few values of the tuning parameter p, including the extreme value
0.5. The VFD allpass filter has a maximum error deviation of —26.40
dB and an integral squared error of —47.80 dB.

Fig. 3 plots the frequency response error deviation from the desired
responses of an allpass VFD filter. The maximum error deviation of
the filter is approximately 1.6 dB lower than that of the LS filter, while
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Fig. 5. Phase response for different VDF allpass filters. The VFD filter has
maximum error deviation of maximum error deviation of —28.0013 dB and
integral squared error of —47.7643 dB.
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Fig. 6. Poles for different VDF allpass filters. The VFD filter has maximum
error deviation of maximum error deviation of —28.0013 dB and integral
squared error of —47.7643 dB.

maintaining approximately the same integral squared error. More
specifically, the VFD allpass filter has maximum error deviation of
—28.0013 dB and integral squared error of —47.7643 dB. The plot is
shown for p = {0.5,0.375,0.25}.

Fig. 4 plots the frequency response error deviation from the desired
response for the allpass filter with a low maximum error deviation. The
VED allpass filter has a maximum error deviation of —30.0145 dB and
an integral squared error of —47.2325 dB. The maximum error devia-
tion is lower than those reported in the previous two cases, depicted in
Figs. 2-3. There is only a small increased in the integral squared error.

For completeness, Figs. 5 and 6 show, respectively, an example of
the phase response and the pole positions of the allpass VFD filters
with maximum error deviation of —28.0013 dB and integral squared
error of —47.7643 dB. As noted earlier, the phase responses of all the
allpass filters at 7 are 8(w,p) = —157 for all p € [—0.5,0.5]. Thus,
the allpass filters are stable which can also be seen in Fig. 6 with all the
poles well inside the unit circle.
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VI. CONCLUSION

In this correspondence, a general design for allpass variable frac-
tional delay (VFD) digital filters with minimum weighted integral
squared error subject to a constraint on maximum error deviation
from the desired response was formulated. Design examples show
that a trade-off can be achieved between the integral squared error
and the maximum error deviation for the allpass VFD filters. From
the WLS solution, the maximum error deviation can be reduced while
maintaining approximately the same integral squared error.

ACKNOWLEDGMENT

The authors would like to thank Prof. A. Cantoni for useful discus-
sions about allpass VFD filter structure.

REFERENCES

[1] C. W.Farrow, “A continuously variable digital delay element,” in Proc.
IEEE Int. Symp. Circuits Syst., Jun. 1988, vol. 3, pp. 2641-2645.

[2] S. C. Pei and C. C. Tseng, “A comb filter design using fractional-
sample delay,” IEEE Trans. Circuits Syst. I, vol. 45, no. 6, pp. 649-653,
Jun. 1998.

[3] T. B. Deng, “Noniterative WLS design of allpass variable fractional-
delay digital filters,” IEEE Trans. Circuits Syst., vol. 53, no. 2, pp.
358-371, Feb. 2006.

[4] H.H.Dam, A. Cantoni, K. L. Teo, and S. Nordholm, “FIR variable dig-
ital filter with signed power-of-two coefficients,” I[EEE Trans. Circuits
Syst. I, vol. 54, no. 6, pp. 1348-1357, Jun. 2007.

[5] H. H. Dam, A. Cantoni, K. L. Teo, and S. Nordholm, “Vatiable digital
filter with least square criterion and peak gain constraints,” IEEE Trans.
Circuits Syst. 11, vol. 54, no. 1, pp. 24-28, Jan. 2007.

[6] M. Makundi, T. I. Laakso, and V. Valimaki, “Efficient tunable IIR and
allpass structures,” Electron. Lett., vol. 37, pp. 344-345, Mar. 2001.

[7] C.C. Tseng, “Design of 1-D and 2-D variable fractional delay allpass
filters using weighted least square methods,” IEEE Trans. Circuits Syst.
1, vol. 49, no. 10, pp. 1413-1422, Oct. 2002.

[8] Z. Jing, “A new method for digital all-pass filter design,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 35, pp. 1557-1564, Nov. 1987.

[9] J. Y. Kaakinen and T. Saramaki, “An algorithm for the optimization
of adjustable fractional delay all-pass filters,” in Proc. IEEE ISCAS,
Vancouver, QC, Canada, May 23-26, 2006, vol. III, pp. 153-156.

[10] K. L. Teo, V. Rehbock, and L. S. Jennings, “A new computational al-
gorithm for functional inequality constrained optimization problems,”
Automatica, vol. 29, no. 3, pp. 780-792, 1993.

[11] Z. Y. Wu, H. W. ]. Lee, L. S. Zhang, and X. M. Yang, “A novel filled
function method and quasi-filled function method for global optimiza-
tion,” Comput. Optim. Appl., vol. 34, pp. 249-272, 2005.

[12] A.T. Chotterra and G. A. Jullien, “A linear programming approach to
recursive digital filter design with linear phase,” IEEE Trans. Circuits
Syst., vol. CAS-29, no. 3, pp. 139-149, Mar. 1982.

[13] C.Z. Wu, K. L. Teo, V. Rehbock, and H. H. Dam, “Global optimum
design of uniform FIR filter bank with magnitude constraints,” IEEE
Trans. Signal Process., vol. 56, no. 11, pp. 5478-5486, Nov. 2008.

[14] C.K.S.Pun and S. C. Chan, “Minmax design of digital all-pass filters
with prescribed pole radius constraint using semidenite programming,”
in Proc. Int. Conf. Acoustics, Speech, Signal Processing (ICASSP),
2003, pp. 413-416.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 8, AUGUST 2010

Two-Channel Linear Phase FIR QMF Bank Minimax
Design via Global Nonconvex Optimization Programming

Charlotte Yuk-Fan Ho, Bingo Wing-Kuen Ling, Lamia Benmesbah,
Ted Chi-Wah Kok, Wan-Chi Siu, and Kok-Lay Teo

Abstract—In this correspondence, a two-channel linear phase finite-im-
pulse-response (FIR) quadrature mirror filter (QMF) bank minimax
design problem is formulated as a nonconvex optimization problem so that
a weighted sum of the maximum amplitude distortion of the filter bank, the
maximum passband ripple magnitude and the maximum stopband ripple
magnitude of the prototype filter is minimized subject to specifications
on these performances. A modified filled function method is proposed
for finding the global minimum of the nonconvex optimization problem.
Computer numerical simulations show that our proposed design method
is efficient and effective.

Index Terms—TFilled function, global optimization, nonconvex optimiza-
tion problem, two-channel linear phase FIR QMF bank minimax design.

[. INTRODUCTION

Since transition bandwidths of the filters in two-channel filter banks
are usually larger than those in multichannel filter banks, lengths of
the filters in two-channel filter banks are usually shorter than those in
multichannel filter banks. Moreover, as only a single prototype filter is
required for the design of a quadrature mirror filter (QMF) bank and
all other filters are derived from the prototype filter, the total number
of filter coefficients required for the design of a QMF bank is usually
smaller than those in general filter banks. Furthermore, as the linear
phase property of the filters guarantees no phase distortion of the filter
bank and the FIR property of the filters guarantees the bounded input
bounded output stability of the filter bank, two-channel linear phase
FIR QMF banks find many applications in image and video signal pro-
cessing [1].

Unlike a multichannel QMF bank [2], [3], a two-channel QMF bank
could not achieve the exact perfect reconstruction with the prototype
filter having very good frequency selectivity [4]. Hence, it is useful to
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