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Abstract

Background: Murray Valley encephalitis virus (MVEV) is a mosquito-borne Flavivirus (Flaviviridae: Flavivirus) which is
closely related to Japanese encephalitis virus, West Nile virus and St. Louis encephalitis virus. MVEV is enzootic in
northern Australia and Papua New Guinea and epizootic in other parts of Australia. Activity of MVEV in Western
Australia (WA) is monitored by detection of seroconversions in flocks of sentinel chickens at selected sample sites
throughout WA.
Rainfall is a major environmental factor influencing MVEV activity. Utilising data on rainfall and seroconversions,
statistical relationships between MVEV occurrence and rainfall can be determined. These relationships can be used
to predict MVEV activity which, in turn, provides the general public with important information about disease
transmission risk. Since ground measurements of rainfall are sparse and irregularly distributed, especially in north
WA where rainfall is spatially and temporally highly variable, alternative data sources such as remote sensing (RS)
data represent an attractive alternative to ground measurements. However, a number of competing alternatives are
available and careful evaluation is essential to determine the most appropriate product for a given problem.

Results: The Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42
product was chosen from a range of RS rainfall products to develop rainfall-based predictor variables and build
logistic regression models for the prediction of MVEV activity in the Kimberley and Pilbara regions of WA. Two
models employing monthly time-lagged rainfall variables showed the strongest discriminatory ability of 0.74 and
0.80 as measured by the Receiver Operating Characteristics area under the curve (ROC AUC).

Conclusions: TMPA data provide a state-of-the-art data source for the development of rainfall-based predictive
models for Flavivirus activity in tropical WA. Compared to ground measurements these data have the advantage of
being collected spatially regularly, irrespective of remoteness. We found that increases in monthly rainfall and
monthly number of days above average rainfall increased the risk of MVEV activity in the Pilbara at a time-lag of
two months. Increases in monthly rainfall and monthly number of days above average rainfall increased the risk of
MVEV activity in the Kimberley at a lag of three months.

Introduction
Murray Valley encephalitis virus (MVEV; Flaviviridae:
Flavivirus) is a mosquito-borne arbovirus endemic to
northern Australia and Papua New Guinea. MVEV virus
can cause fatal disease in humans. While the fatality
rate lies at 25%, 25-50% of people who develop clinical

symptoms are permanently affected due to neurological
damage [1].
Small outbreaks of MVEV occur every few years

throughout Australia, usually at the end of the wet sea-
son, between February and July [2]. The most recent
Australia-wide outbreak was in 1974 [3]. During the wet
season of 1999-2000, when record rainfall was recorded
in the north of Australia, a very rapid and unusual
spread of MVEV from the north to the south of WA
was observed. Activity of MVEV occurred in epizootic
regions such as the Gascoyne and the Murchison
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(Figure 1) and was detected 315 km north of metropoli-
tan Perth [4] in late April 2000, representing a serious
public health risk.
The MVEV transmission cycle is similar to the trans-

mission cycles of other closely related medically impor-
tant flaviviruses including Japanese encephalitis virus
(JEV), West Nile virus (WNV) and St. Louis encephalitis
virus (SLEV). Culex annulirostris mosquitoes are the
principle vector and various species of migratory water-
birds, particularly of the Order Ciconiiformes are the
major hosts [3]. As with other arboviruses, the spread of
MVEV is linked to the abundance and distribution of
vector and host populations which strongly depend on
the availability and the conditions of suitable habitat.
Habitat is influenced by multiple environmental factors
such as rainfall and surface water, surface and air tem-
perature, as well as vegetation type and distribution
[5-7]. These influences are spatially and temporally
highly variable.
Flavivirus activity in WA is monitored through the

Western Australian Arbovirus Surveillance and Research
Program [8]. The program incorporates flavivirus anti-
body detection in sentinel chicken sera. Serological data
are collected at fortnightly to monthly intervals at
approximately 30 test sites at the main populated cen-
ters throughout WA (Figure 2) using sentinel chickens
[8-10]. One sentinel chicken flock ideally consists of
twelve birds. However, in practice the numbers fluctuate
between zero and twelve. The program has been in
place since the 1980s, and provides information of virus
presence or absence in the sentinel chickens at single
point locations throughout WA. Similar programs moni-
toring other medically important arboviruses such as
WNV and SLEV exist in the United States [11-15].
The data gathered by the program are subject to tem-

poral and particularly spatial limitations, as virus activity
is monitored at a limited number of locations. Due to

the time and cost intensiveness this method of surveil-
lance is not practicable in remote and inaccessible areas.
The work reported here aims to enhance the current
arbovirus surveillance system and to overcome limita-
tions. By employing a combination of the ground based
serological data and RS derived rainfall data, existing
spatio-temporal relationships between arbovirus occur-
rence and rainfall related environmental conditions can
be analysed and used to model MVEV occurrence risks.
In this paper, we are dealing exclusively with rainfall

since it is one of the principal environmental factors
influencing spatio-temporal vector and host dynamics
and hence MVEV occurrence [3,16,17]. A basic prere-
quisite to overcoming some of the spatial limitations of
the current surveillance is the utilisation of spatially
coherent data. Rain gauges in WA are sparse and irregu-
larly distributed, particularly in the northern areas of the
state (Figure 2). Interpolation of rain-surfaces from very
sparse datasets can lead to large errors, especially for
arid regions of WA where rainfall is highly variable
(Stafford Smith and Morton, 1990 [18] cited in Roshier
et al. [19]). Weymouth et al. [20] illustrated a strong
increase in interpolation error with decreasing density of
the precipitation ground measurements in Australia.
Further concerns about weather station data quality and
also quality control as provided by the BoM, are incom-
pleteness and inaccuracy of data records due to instru-
ment failure, irregular calibration or absence of the
observer. In contrast, RS data are collected repeatedly
and automatically [21] and provide spatially regular
information with a complete area-wide coverage, even in
areas that are remote and difficult to access. Further-
more, many RS data products are available free of
charge.
Satellite precipitation data are operationally derived

from cloud properties [22]. The quality of this data
depends on the measurement technique, the environ-
mental conditions at the time of recording, and the
algorithm used to derive geophysical data from the sig-
nal detected by a RS instrument. Furthermore, the per-
formance of different data products is strongly related
to the observed precipitation regime. To understand the
accuracy and limitations of different data products and
to determine those data most suitable for our study,
evaluation and validation of the data are essential.
The International Precipitation Working Group

(IPWG) hosts several projects dealing with the valida-
tion and intercomparison of different satellite precipita-
tion and numerical model forecasts for many regions in
the world including Australia [23], Europe [24] and the
United States [25]. For Australia the BoM daily rain
gauge analysis dataset [20] is utilised for the validation
of 24h-aggregates of satellite rainfall estimates at a 0.25°
grid (BoM Centre for Australian Weather and Climate
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Research (CAWCR) web site [26]). This validation forms
the basis of the evaluation we carried out to identify that
data product being most useful for the modeling of
arbovirus activity in remote tropical areas.
From the great variety of satellite-based precipitation

data sources, the Tropical Rainfall Measuring Mission
(TRMM) 3B42, the Real-Time TRMM 3B42RT [27] and
the Climate Prediction Center (CPC) MORPHed preci-
pitation product (CMORPH) [28] from the National
Oceanic and Atmospheric Administration (NOAA) were
selected as being potentially useful for our study because
of their comparatively high spatial resolution and nearly
global coverage.
The TRMM 3B42 product has been available since

1998. It includes merged high quality passive microwave
(PMW) and infrared precipitation estimates and Root
Mean Square (RMS) precipitation-error estimates
adjusted and combined with rain gauge data at a 0.25°

by 0.25° resolution, which approximates to a 25 km by
25 km resolution for Northern Australia. The Real-Time
TRMM product 3B42RT is computed in near-real time,
and constitutes the most timely source of TMPA esti-
mates. While the processing of the 3B42RT dataset
requires several simplifications, the 3B42 algorithm is
designed to maximise the quality of the estimates [27].
The CMORPH precipitation product incorporates

similar data sources to TRMM 3B42. A detailed descrip-
tion of the algorithm can be found in Joyce et al. [28].
CMORPH has been available since December 2002 with
a temporal resolution of 30 min and a spatial resolution
of approximately 12 km by 15 km. A finer spatial reso-
lution of 8 km by 8 km (at the equator) is obtained via
interpolation.
In the work presented, we show how data should be

chosen carefully from the vast amount of available data
to be most beneficial to a study. We also illustrate how
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RS rainfall data can be applied to develop models for the
prediction of MVEV activity in large and remote areas.

Methods
Preparation of serological data
The sentinel chicken data used in this study was limited
to the period of 2000 onwards due to the availability of
suitable contemporary remotely sensed environmental
data. The sentinel chicken seroconversion data were
organised in a relational database and the R statistical
programming environment [29] was used for further
data manipulation. Gaps in the serological data occurred
when test results for a given location were not available.
To create a dataset appropriate for statistical analysis,
periods during which no testing had taken place at a
sample site were interpolated where both of the follow-
ing criteria were satisfied:

1. no seroconversion was detected in a flock when
testing recommenced after a testing-free period; and
2. no changes occurred to the flock during the
testing-free period.

The remaining gaps (i.e. when seroconversions
occurred after a testing-free period) could not be filled
and the relevant datasets were further processed by
excluding those sample sites with gaps of longer than
three months. Datasets with gaps of three months or
less were adjusted by setting the date of seroconversion
to be at the midpoints of the testing free period. After
processing, 20 sentinel chicken flocks remained: 9 loca-
tions in the Kimberley and 11 locations in the Pilbara
covering the time period from 1 March 2000 until 31
December 2007 (Figure 2).

Evaluation of TRMM3B42, TRMM 3B42RT and CMORPH
To determine the RS precipitation data product most
closely meeting the requirements of this study, evalua-
tion of the TRMM3B42, TRMM 3B42RT and CMORPH
was carried out employing a range of statistical mea-
sures to quantify different aspects of the satellite precipi-
tation product’s performance. Categorical statistics such
as frequency bias, probability of detection (POD) or
false alarm ratio (FAR) were used to assess each algo-
rithm for its rain occurrence detection skills. As detailed
in the Results section below, this led to the selection of
TRMM 3B42 for further investigation.

Processing of TRMM 3B42
Nine years (3288 files) of daily compilations of TRMM
3B42 3-hourly rain estimates for Australia processed
within an intercomparison study [30], were provided in
four byte real format. The data were processed using Arc-
GIS®and the R statistical programming environment [29].

Geographically projected satellite precipitation images on
a daily, monthly and seasonal basis were computed. Arc-
GIS® focal statistics operations were employed to aggre-
gate the data spatially [31]. Rainfall values of monthly and
seasonally accumulated data were extracted at the sentinel
chicken flock locations and pixel-based time series were
created using R.

Development of spatio-temporal variables
Based on the knowledge of the ecology of the virus, the
principle vector and the principle host, a set of rainfall
variables was created and evaluated. These variables
represent the rainfall related environmental conditions
which influence the dynamics of vector and host
populations.

Seasonal rainfall variables
The seasonal accumulations of TRMM 3B42 focus on
the rainfall during different periods of the wet season:
December to February (early wet season: ew), December
to March (early plus high wet season: ehw), December
to May (complete wet season: cw), January to March
(high wet season: hw), and March to May (late wet sea-
son: lw) (Table 1). Taking the variation in region-
dependent annual rainfall patterns into account, these
variables reflect critical epochs of the wet season.
A spatial component was incorporated into the seaso-

nal rainfall variables by using focal mean raster statistics
[31] within a 100, 250 and 500 km circular neighbour-
hood around the sentinel chicken test sites. This was
done to allow for larger rainfall catchment areas since
local flooding can be caused by runoff from distant rain-
fall [19,32] and to account for habitat availability for
migratory water birds [32,33].

Monthly time-series
When employing seasonal rainfall variables, modeling
was restricted to annual MVEV activity. To enable mod-
eling of virus presence probabilities on a monthly basis,
monthly serological data were used together with
monthly accumulated rainfall. To account for the tem-
porally lagged nature of processes influencing virus
transmission and amplification, e.g. establishment of
large vector populations after rainfall events, time-series
of monthly accumulated rainfall (mr) were compiled
from the TRMM data.

Rainfall anomaly variables
We developed variables based on rainfall anomalies to
quantify the magnitude of deviation of the monthly
accumulated rainfall from the average monthly accumu-
lated rainfall associated with each month (January till
December) at each serological sample site over the
study period (md). To take into account anomalies of
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short- and long-term duration, we used the accumulated
number of days below (dba)or above (daa) the mean
daily rainfall associated with each month and the conse-
cutive number of months of positive or negative devia-
tion from the average monthly accumulated rainfall
associated with each month and each test site (mda).

Statistical analysis of spatio-temporal variables
The rainfall variables described above were extracted
from the satellite data at the serological sample sites
covering the period from 1 March 2000 until 31 December
2007 for bivariate variable screening. A two-tailed
Spearman correlation analysis and the Kruskall-Wallis
test were used to assess the strength of association
between the proposed seasonal/monthly satellite
derived rainfall variables and the annual/monthly test
site status (positive or negative to MVEV) (Figure 3).
The seasonal rainfall variables were correlated with an
annual (October to September) status of each test site
(Table 2). Using the period from October to Septem-
ber instead of the calendar year as a temporal refer-
ence had the advantage of not splitting the wet season
during which the main virus activity was expected. Ser-
oconversions of one season can extend into August
and September. Monthly time series were tested for
their association with monthly MVEV test site status
at a series of different time lags.

Logistic regression modelling
Seasonal and monthly logistic regression models were
built for the Kimberley and Pilbara regions. Seasonal
models employed a single seasonal explanatory variable
at a time. Monthly models were developed using multi-
ple rainfall variables using a backwards stepwise variable
selection approach. Odds ratios, adjusted for the effect
of other variables in the model and 95% confidence
intervals (CI) for MVEV sample site status were calcu-
lated. Receiver operating characteristics (ROC) curves
[34] were constructed to provide a measure of each

model’s ability to discriminate between MVEV-positive
and MVEV-negative test results.
The logistic regression models developed for the Kim-

berley and the Pilbara were used to predict MVEV
occurrence risk at the sentinel chicken test sites for
2008 and 2009 employing mrand daa based on the rain-
fall data of the two years which were not included in
the model building process.

Results
Investigation of satellite precipitation data
Figure 4 presents summaries of the monthly validation
statistics for the TRMM 3B42, CMORPH and TRMM
3B42 RT products from January 2003 to August 2008.
All data sets were resampled to a 0.25° by 0.25° (25 km
by 25 km at the equator) grid.
The scores were calculated for the whole of Australia

and therefore do not consider regional variations. How-
ever, information on the performance of the data in dif-
ferent regions, in the form of difference maps displaying
deviations of observed rainfall and satellite estimates,
can be found on the CAWCR web site [26].
The Frequency Bias or Bias Score (BIAS) (Figure 4A)

describes the ability of a satellite precipitation dataset to
correctly detect the frequency of rainfall events. A BIAS
value of < 1 indicates an underestimate, whilst a BIAS
value < 1 shows a tendency of the satellite derived data
to overestimate rainfall events. Both the frequency bias
scores and the difference maps for TRMM and
CMORPH [26] highlight the poorer ability of the
CMORPH algorithm. CMORPH data strongly overesti-
mated heavy rainfall as produced by tropical systems,
the dominant weather systems during the wet season in
north WA, hypothesised to be important drivers of
MVEV dynamics. In contrast, TRMM slightly underesti-
mated these events.
The POD (Figure 4B) measures the fraction of

observed events that were correctly estimated by the
satellite data. The distribution of the POD values for the

Table 1 rainfall variables derived TRMM 3B42 data

Variable Description

ew early wet season (December to February) accumulated rainfall [mm/season/location]

ehw early plus high wet season (December to March) accumulated rainfall [mm/season/location]

cw complete wet season (December to May) accumulated rainfall [mm/season/location]

hw high wet season (January to March) accumulated rainfall [mm/season/location]

lw late wet season (March to May) accumulated rainfall [mm/season/location]

mr the monthly accumulated rainfall [mm/month/location]

md location specific deviation of the monthly accumulated rainfall from the average monthly accumulated rainfall at a location [mm/month/
location]

dba location specific accumulated number of days below daily average rainfall in days

daa location specific accumulated number of days above daily average rainfall in days

mda location specific consecutive number of months of positive or negative deviation from the average monthly accumulated rainfall as +/-
consecutive number of months
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Figure 3 Correlation of rainfall variables with MVEV status. Boxplots of seasonal and monthly rainfall variables as presented in Table 1 and
annual (October to September) MVEV test site status (0 = MVEV negative; 1 = MVEV positive) and significance of their association determined by
Kruskall-Wallis test for significance.

Table 2 Two-tailed Spearman correlation analysis of seasonally and spatially aggregated rainfall variables

Region Spatial aggregation None 100 km 250 km 500 km

Variable r p r p r p r p

Kimberley ew 0.3717 ≤ 0.01 0.3753 ≤ 0.01 0.4261 ≤ 0.01 0.4098 ≤ 0.01

ehw 0.4225 ≤ 0.01 0.4569 ≤ 0.01 0.4896 ≤ 0.01 0.4732 ≤ 0.01

cw 0.4315 ≤ 0.01 0.437 ≤ 0.01 0.4696 ≤ 0.01 0.4551 ≤ 0.01

hw 0.4303 ≤ 0.01 0.4582 ≤ 0.01 0.4979 ≤ 0.01 0.4758 ≤ 0.01

lw 0.3437 ≤ 0.01 0.3142 ≤ 0.01 0.3260 < 0.01 0.3172 ≤ 0.01

Pilbara ew 0.4925 ≤ 0.01 0.5117 ≤ 0.01 0.5368 ≤ 0.01 0.5656 ≤ 0.01

ehw 0.4649 ≤ 0.01 0.4865 ≤ 0.01 0.4829 ≤ 0.01 0.4733 ≤ 0.01

cw 0.4446 ≤ 0.01 0.4709 ≤ 0.01 0.4649 ≤ 0.01 0.4625 ≤ 0.01

hw 0.5538 ≤ 0.01 0.5672 ≤ 0.01 0.5493 ≤ 0.01 0.5466 ≤ 0.01

lw 0.2435 ≤ 0.05 0.2587 ≤ 0.02 0.2139 ≤ 0.05 ≥ 0.05 ≥ 0.05
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TRMM and CMORPH products shows consistency with
their frequency biases. From the threshold dependent
scores (available from the CAWCR web site) it can be
seen that precipitation events of higher magnitude are
more likely to be detected.
The FAR quantifies the fraction of cases of rainfall

estimates in which the event did not occur. Higher

FARs seem to be associated with lighter rainfall as illu-
strated in Figure 4C, where the observed maximum
indicates the monthly observed maxima calculated for
each location.
The correlation coefficients of the observed data and

the satellite precipitation data were similar for the 3B42
and the CMORPH products. Higher correlations were
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Figure 4 TRMM 3B42, 3B42RT and CMORPH evaluation statistics. Statistical comparison of TRMM 3B42, 3B42RT and CMORPH product
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displayed for heavier rainfall (Figure 4D). Both the FAR
value distribution and correlation coefficients underline
the ability of the satellite precipitation estimates to
detect strong rainfall, although the RMS increases with
the observed rainfall volume (Figure 4E). The observed
volume is derived from the daily rain accumulations at
each pixel in the satellite image.
In comparison to the 3B42 and the CMORPH precipi-

tation products, the TMPA real-time data generally
showed lower biases, POD scores, and lower correlation
coefficients. The FAR score and also the RMS tended to
be higher. In summary, the TMPA real-time data did
not perform as well as the other data products, which is
consistent with the accuracy expectations attributed to
these datasets [27]. Based on these results the TRMM
3B42 was determined to be most suitable for this study.

Significance of rainfall variables
The correlation analysis for spatio-temporal variables,
performed separately for the Kimberley and the Pilbara,
showed that all spatially non-aggregated seasonal rainfall
variables were significantly correlated with annual
MVEV status at the test sites in both regions (Table 2).
No significant correlations were found between monthly
MVEV occurrences and mr (Figure 3). The mda variable
was significantly associated with monthly MVEV pre-
sence and absence in the Pilbara (Figure 3) while no sig-
nificant correlations were found between the rainfall
anomaly variables and monthly virus incidence in the
Kimberley (Figure 3). For both regions the strongest
correlations were observed between hw and annual
MVEV status at the sample sites, with the spatially
aggregated variables showing slightly stronger correla-
tions (Table 2).

Seasonal logistic regression models
While a logistic regression model using ehw performed
best for the Kimberley in terms of the model’s discrimi-
natory ability (Tables 3 and 4), ew was an essential pre-
dictor for the presence of the virus in the Pilbara
(Tables 5 and 6). For the Kimberley, the model using
the 250 km aggregated variable (Table 4) was more sig-
nificant with a slightly higher odds ratio and higher

ROC AUC than a model using smaller (e.g. 100 km)
aggregates or non-aggregated data (Table 3).
For the Pilbara, models using both spatially aggregated

and non-aggregate seasonal variables were significant
(Table 5 and Table 6) while 500 km rainfall aggregates
had the strongest associations with annual MVEV detec-
tions at the sample sites (Table 6).

Monthly logistic regression models
Tables 7, 8, 9, 10 and 11 show the results of the logistic
regression models using time lagged monthly rainfall
variables. It was found that mr was significantly asso-
ciated with monthly test site MVEV status in both
regions at a lag of three months (Tables 7 and 8). For
the Pilbara, associations between md and MVEV occur-
rence were found but resulted in models with compara-
tively poor discriminatory ability when used as single
variables (Table 9).
For both regions, a combination of the different vari-

ables including lagged mr and lagged daa, as presented
in Tables 10 and 11, resulted in a model which provided
the best fit to the data. This model showed a good dis-
criminatory ability for predicting the presence or
absence of MVEV at a given site, as measured by the
Akaike Information Criterion (AIC) and ROC AUC
(Tables 7, 8, 10 and 11). Logistic regression models
using multiple variables enable different effects to be
accounted for, the influence of rainfall totals (mr) and

Table 3 Logistic regression employing ehw to predict
annual MVEV test site status in the Kimberley

Variable Coefficient (SE) p Odds ratio (95%)

Intercept -2.3410 (0.9322) < 0.05 a

ehw (× 100 mm) 0.4082 (0.1299) < 0.05 a 1.50 (1.19-1.99) b

AIC: 73.911.

ROC value: 0.7532609.
a Significance.
b Interpretation: 100 mm increases in ehw increased the odds of a site
annually testing positive to MVEV by a factor of 1.50 (95% CI 1.19 - 1.99).

Table 4 Logistic regression employing 250 km
aggregated hw to predict annual MVEV test site status in
the Kimberley

Variable Coefficient (SE) p Odds ratio (95%)

Intercept -3.6989 (1.1756) < 0.01 a

hw 250 km
aggregate
(× 100 mm)

0.7890 (0.2105) < 0.01 a 2.02 (1.53-3.51)b

AIC: 72.006.

ROC: 0.8070652.
a Significance.
bInterpretation: 100 mm increases in 250 km aggregated hw increased the
odds of a site annually testing positive to MVEV by a factor of 2.02 (95% CI
1.53-3.51).

Table 5 Logistic regression employing ew to predict
annual MVEV test site status in the Pilbara

Variable Coefficient (SE) p Odds ratio (95%)

Intercept -1.9873 (0.4741) < 0.01 a

ew (× 100 mm) 0.8231 (0.2036) < 0.01 a 2.28 (1.57-3.52) b

AIC: 84.457.

ROC AUC: 0.79
a Significance.
bInterpretation: 100 mm increases in ew increased the odds of a site annually
testing positive to MVEV by a factor of 2.28 (95% CI 1.57 - 3.52).
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the influence of the duration of rainfall amounts exceed-
ing the average (daa) (Tables 10 and 11).

Monthly prediction of risk MVEV activity
Figures 5 and 6 present the modelled MVEV status ver-
sus the actual test site status. The predicted risk of
MVEV activity was consistent with the actual serocon-
versions for most flock locations (Figure 5). However,
the model overestimated risk for Halls Creek, Derby Site
1 and the Broome sample sites in 2008 (Figure 5). For
the Pilbara, risk at the sample sites was predicted accu-
rately in many cases (Figure 6). For some sites the pre-
diction showed slight temporal offsets to the detection
of seroconverions in the sentinel chickens. Overesti-
mates of risk are visible for 2008. The late seroconver-
sion in the 2009 season at Tom Price was not predicted
by the model. The overall accuracy as measured by the
ROC AUC was 0.93 for the Kimberley and 0.75 for the
Pilbara, respectively.

Discussion
Selection of satellite precipitation data
TRMM 3B42 data provide us with the most accurate and
spatially regular available information for the entire study
area. The verification results, particularly the difference
maps [26], showed that TRMM 3B42 data performed
well for stronger rainfall events which are associated with

the dominant weather systems of the northern parts of
WA during the wet season and which are likely to create
surface water areas that persist for sufficient time to
enable vector breeding, as well as to attract large num-
bers of hosts. CMORPH was rejected for this study as it
showed pronounced overestimates in the Kimberley
region, and data were not available before December
2002. TMPA real-time data, although less accurate than
3B42 data, may be useful for real-time applications, espe-
cially for predictive modeling, since they are available
within 24 hours whereas 3B42 data are published
approximately one month from the date of recording.

The effect of rainfall on MVEV test site status
Logistic regression models employing rainfall based pre-
dictor variables had a greater discriminatory ability to
predict MVEV activity in the Pilbara (ROC AUC: 0.72 -
0.83) (Tables 5, 6, 8, 9 and 11) than the Kimberley
(ROC AUC: 0.70 - 0.79) (Tables 3, 4, 7 and 10), and
also showed consistently larger odds ratios, suggesting
that the amount of rainfall has a stronger effect on the
MVEV status in the Pilbara than in the Kimberley, both
monthly and seasonally. This may be linked to the eco-
logically different backgrounds the two regions provide
for virus activation and maintenance. In terms of rain-
fall, temperature regimes and hydrological landscape
characteristics [26,35,36], the Kimberley generally pro-
vides more favourable conditions for vectors and hosts
of MVEV than the Pilbara. Hence the virus is enzootic

Table 6 Logistic regression employing 500 km
aggregated ew to predict annual MVEV test site status in
the Pilbara

Variable Coefficient (SE) p Odds ratio (95%)

Intercept -2.8764 (0.6449) < 0.01 a

ew 500 km
aggregate
(× 100 mm)

1.4488 (0.3332) < 0.01 a 4.26 (2.34-8.81)b

AIC: 78.857.

ROC AUC: 0.83.
a Significance.
bInterpretation: 100 mm increases in 500 km aggregated ew increased the
odds of a site annually testing positive to MVEV by a factor of 4.26 (95% CI
2.34 - 8.81).

Table 7 Logistic regression employing lagged [lag = 3
months] mr to predict monthly MVEV test site status in
the Kimberley

Variable Coefficient (SE) p Odds ratio (95%)

Intercept -2.390 (0.1401) < 0.01 a

Lagged mr
(× 100 mm)

0.460 (0.0736) < 0.01 a 1.58 (1.37-1.83)b

AIC: 583.41.

ROC AUC: 0.72.
a Significance.
bInterpretation: 100 mm increases in lagged mr increased the odds of a site
monthly testing positive to MVEV by a factor of 1.58 (95% CI 1.37 - 1.83).

Table 8 Logistic regression employing lagged [lag = 3
months] mr to predict monthly MVEV test site status in
the Pilbara

Variable Coefficient (SE) p Odds ratio (95%)

Intercept -3.1939 (0.1660) < 0.01 a

Lagged mr
(× 100 mm)

1.3304 (0.1458) < 0.01 a 3.78 (2.86-5.07) b

AIC: 452.5.

ROC AUC: 0.81.
a Significance.
bInterpretation: 100 mm increases in lagged mr increased the odds of a site
monthly testing positive to MVEV by a factor of 3.78 (95% CI 2.86 - 5.07).

Table 9 Logistic regression employing lagged [lag = 3
months] md to predict monthly MVEV test site status in
the Pilbara

Variable Coefficient (SE) p Odds ratio (95%)

Intercept -2.759 (0.139) < 0.01 a

Lagged md
(× 100 mm)

1.597 (0.211) < 0.01 a 4.94 (3.29-7.53) b

AIC: 479.11.

ROC AUC: 0.72.
a Significance.
bInterpretation: 100 mm increases in lagged mdincreased the odds of a site
monthly testing positive to MVEV by a factor of 4.94 (95% CI 3.29 - 7.53).
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(constantly present) in the Kimberley, irrespective of the
intensity of the wet season, which may be one explana-
tion for a less pronounced statistical association between
rainfall and MVEV occurrence in the Kimberley. How-
ever, other environmental factors not considered in this
study influence MVEV ecology and may lead to above
average activity of MVEV in the Kimberley region dur-
ing some years.

Seasonal variables
The seasonal variables hw and the ehw for the Kimber-
ley and ew for the Pilbara were found to be more
important overall than the other seasonal variables
(Table 2). This can be related to the climatic regimes of
the two regions. Large amounts of rain in the Kimberley
between December and March contribute to the mainte-
nance of large wetland habitats during these months and
for longer time periods. The usually lower rainfall in the
Pilbara is spatially more heterogeneous. Inundated areas
in the Pilbara tend to be smaller and not as long-lasting
as in the Kimberley. In the Pilbara rain falls between

December and July but reaches comparatively high
values in January, February and March suggesting that
hwshould be significant. However, employing ew in the
logistic regression analysis (Tables 5 and 6) led to the
model providing the best fit to the data, suggesting that
additional cross-regional or cross-seasonal rainfall, or
non-rainfall related factors are also involved.

Spatially aggregated seasonal variables
Spatially aggregated seasonal variables (within a 100, 250
and 500 km circular neighbourhood of each flock loca-
tion) were utilised to consider larger areas around the
serological sample sites. This was done to account for
often widespread rainfall in the study area, potentially
leading to the creation of widely dispersed or extensive
wetlands, as well as for the ability of flood waters to
move over hundreds of kilometres into large drainage
basins [19]. Spatially aggregated variables also reflect the
responses of water birds to wetland distribution on a
local, catchment or beyond catchment scale. Water
birds are able to exploit widely dispersed wetland habi-
tats [32]. While all focal variables (100, 250 and
500 km) were significantly related to annual MVEV
activity in both regions, two of the variables seemed to

Table 10 Logistic regression employing lagged [lag = 2
months] mr plus lagged [lag = 3 months] daa to predict
monthly MVEV test site status in the Kimberley

Variable Coefficient (SE) p Odds ratio (95%)

Intercept -2.854 (0.183) < 0.01 a

Lagged mr
(× 100 mm)

0.3767 (0.083) < 0.01 a 1.46 (1.24-1.72)b

Lagged daa 0.124 (0.026) < 0.01 a 1.13 (1.08-1.19)c

AIC: 557.5.

ROC AUC: 0.74.
a Significance.
bInterpretation: after adjusting for the effect of lagged daa, 100 mm increases
in lagged mr rainfall increased the odds of a site monthly testing positive to
MVEV by a factor of 1.46 (95% CI 1.24 - 1.72).
cInterpretation: after adjusting for the effect of lagged mr, single day increases
in daa increased the odds of a site monthly testing positive to MVEV by a
factor of 1.13 (95% CI 1.08 - 1.19).

Table 11 Logistic regression employing lagged [lag = 3
months] mr plus lagged [lag = 3 months] daa to predict
monthly MVEV test site status in the Pilbara

Variable Coefficient (SE) p Odds ratio (95%)

Intercept -3.411 (0.194) < 0.01 a

Lagged mr
(× 100 mm)

1.083 (0.167) < 0.01 a 2.95 (2.14-4.15)b

Laggeddaa 0.096 (0.0350) < 0.01 a 1.10 (1.02-1.18)c

AIC: 448.54.

ROC AUC: 0.80.
a Significance.
bInterpretation: after adjusting for the effect of lagged daa, 100 mm increases
in lagged mr rainfall increased the odds of a site monthly testing positive to
MVEV by a factor of 2.95 (95% CI 2.14 - 4.15).
cInterpretation: after adjusting for the effect of lagged mr, single day increases
in daa increased the odds of a site monthly testing positive to MVEV by a
factor of 1.10 (95% CI 1.02 - 1.18).
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Figure 5 MVEV status prediction for 2008 in the Kimberley
region. The monthly risk of testing positive to MVEV was predicted
for each location in the Kimberley for 2008 and 2009 based on the
logistic regression model presented in Table 10. The black solid line
shows the predicted risk (between 0.0 and 1.0). The presence of the
black dots indicates that a location tested positive during a month,
while the grey squares represent the monthly number of tests. For
some months for which an increased risk is predicted the number
of tests is very low. It is possible that the virus is present in an area
without being detected at the sentinel chicken test sites due to a
lack of sampling.
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be more crucial for virus activity, the 250 km variable
for the Kimberley and the 500 km variable for the Pil-
bara region, respectively (Tables 2, 4 and 6). This again,
may be related to the different climate and land forms
dominating the two regions. While relatively large quan-
tities of rainfall together with extensive water absorbing
environments are found in the Kimberley, the land
forms of the Pilbara naturally restrict the spatial extent
of flooding caused by already more ephemeral precipita-
tion events and a larger overall area may be required for
the creation of suitable mosquito vector and host habitat
to the same extent.

Time-lagged monthly rainfall variables
The lack of association between monthly MVEV activity
and monthly rainfall variables (Figure 3) is explained by
the temporal characteristics of the ecology of the virus.
Time lags of two to three months were significantly
associated with virus detection in sentinel chicken sera
in this study (Tables 7, 8, 9, 10 and 11). There may be
several factors responsible for the significant relationship
between lagged rainfall and MVEV activity. When wet-
lands fill with water due to heavy rainfall, two main eco-
logical processes are initiated that facilitate virus
amplification in the bird-mosquito-bird cycle; the
assembly of water bird flocks, and the establishment of

mosquito vector populations. Certain amounts of time
are required for each of these ecological processes to
occur. Exact times are still poorly understood and
strongly depend on the environmental circumstances as
well as cross-linked sub-processes such as competition.
The response of most bird species to flood related
resource pulses is likely to be within days or weeks [37].
Whelan et al. [16] showed increased numbers of the
principal vector Cx. annulirostris two to three weeks
after heavy rainfall and widespread flooding in the
Northern Territory. Cx. annulirostris requires certain
environmental conditions for breeding, such as shallow
water with emerging vegetation [3] which in turn
depend on rainfall quantities. These conditions are
highly variable over space and time. Therefore, times for
the development of large vector populations may vary in
response to environmental conditions (e.g. rainfall,
humidity and temperature) at different locations. For
example if less mosquito breeding habitat is available it
might take longer for large mosquito populations to
establish [38]. Vector breeding and survival is also
strongly related to temperature and the presence of pre-
dators. A study by McDonald and Buchanan [39], car-
ried out under controlled environmental conditions,
showed that Cx. annulirostris mosquitoes exploited shal-
low water pools with emerging vegetation within hours
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Figure 6 MVEV status prediction for 2008 and 2009 in the Pilbara region. The monthly risk of testing positive to MVEV was predicted for
each of the Pilbara sentinel chicken locations for 2008 and 2009 using the logistic regression model presented in Table 11. The presence of the
black dots indicates that a location tested positive during a month, while the grey squares represent the monthly number of tests. There were
very few seroconversions detected in the Pilbara in 2008, which were insufficiently predicted by the model. However the number of samples
varied dramatically and there is the possibility of the virus being present according to the modelled risk without being detected. MVEV activity
during 2009 was accurately predicted for most sample sites.
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of their formation. Larvae have been found within two
to three days [40]. The development from larvae to
adult mosquitoes may take from one week to 25 days
[40]. Russell [38] showed that times from blood feeding
to oviposition in Cx. annulirostris ranged from four to
twelve days. However these times can only be used as
an approximate guide and are expected to be different
depending on time and location. Furthermore, the time
required for development of large vector populations
depends on whether and how many vectors are perma-
nently present during the dry season, either in perma-
nent smaller local water bodies (e.g. permanent pools,
sewage ponds or irrigated areas) or as long-lived adult
mosquitoes, or whether the vector needs to be re-intro-
duced into an area. Furthermore, vector survival, and
perhaps virus survival, is possible in the form of desicca-
tion resistant eggs of other species such as Aedes
normanensis [41].
The two and three-months time lags suggest that

more than one cycle of amplification, as illustrated by
Konno [42] for Japanese encephalitis virus, is needed for
the virus to become established in an area after an
initial environmental signal, such as a rainfall event.
Once host and vector populations have established it
may take several cycles for the virus to amplify to
detectable levels. After the host has been infected by an
adult female mosquito, viraemia develops within one to
two days and may last for three to five days [43,44].
Only during this time can other mosquitoes blood-feed-
ing on the host become infected, before the host’s
immune response clears the virus from circulation.
Virus amplification is influenced by a number of fac-

tors such as whether or not the virus is already present
in an area, the abundance and population structures of
competent vectors and susceptible hosts as well as the
development of viraemia in the host, depending on the
host species and age [43]. The presence of large propor-
tions of immune hosts in a population one or more
years after a season with intense virus activity might
limit the amplification cycle as these hosts will not
develop viraemia [45]. In addition there might be differ-
ences in vector competence within the same species
depending on the origin of the vector [46].

Prediction
The predictions performed for 1 January 2008 until 31
December 2009 (Figures 5 and 6) show a good ability of
the models to predict the risk of MVEV presence. In
some cases the models overestimated the risk of MVEV
activity (Figures 5 and 6). In other cases temporal dis-
crepancies existed between the predicted risk of activity
and the actual detection of seroconversions. Explana-
tions for overestimates and temporal discrepancies relate
to the sampling. First, the virus may be present in an

area without necessarily being detected in the sentinel
chickens at the sample site. Second, the serological sam-
pling was not always carried out regularly and the num-
ber of chickens tested varied between the test dates and
locations, such that virus activity may therefore have
occurred without being detected or being detected later,
when sampling recommenced after a testing-free period
as shown in Figure 6 for Tom Price in 2009. A poten-
tially beneficial area of future research would be to sam-
ple more intensively in areas where MVEV risk appears
to have been overestimated (e.g. Halls Creek and Derby
Site 1) to definitively rule out the presence of viral
activity.
The model results imply that due to the environmen-

tal conditions at a specific location and time, the risk of
virus activity may be increased. Other non-rainfall envir-
onmental conditions were not considered in this study,
but are known to influence MVEV activity. Incorpora-
tion of these factors might increase model accuracy.

Conclusions
Satellite based precipitation data represent a useful data
source for the analysis of spatio-temporal rainfall pat-
terns associated with arbovirus activity, especially for
larger (regional to continental) areas. Unlike point mea-
surements, or spatially interpolated surfaces based
thereon, which are expected to be inaccurate in areas
where ground measurements are sparse, satellite based
precipitation estimates are spatially regular and cover
remote and difficult to access areas.
The data are not only capable of spatially coherent

mapping of MVEV risk, but also enable the develop-
ment of spatio-temporal rainfall variables accounting for
the surrounding environment of a location of interest as
well as for the temporally lagged nature of ecological
processes responding to changing environmental condi-
tions. This is important, since the virus, mosquito vec-
tors and animal hosts are influenced by environmental
factors, which are often extremely spatially and tempo-
rally variable. Furthermore, the utilisation of the satellite
precipitation data enables the consideration of regional
and super-regional scale processes such as the assembly
of water birds, which are known to move across large
areas depending on habitat availability, and also of the
influence of rainfall in larger catchment areas.
TRMM 3B42 data are currently available one month

delayed, which given the significance of the 3-monthly
lagged rainfall variables, still enables on-time risk map-
ping and is therefore capable of providing early warning.
The analysis and modelling of MVEV dynamics in

response to environmental variability are limited by the
scarcity of ground truth information on mosquito vector
and host abundance required for verification of the
identified relationships. The likely involvement of other
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mosquito vector and host species [3,44] with different
ecologies that may be less controlled by the variables
incorporated into the models developed in this study are
also confounding factors.
Nevertheless, based on the knowledge of the ecology

of the principle vector and hosts, it was possible to
develop key rainfall variables and to employ these in the
prediction of the risk of MVEV activity at the serological
sample sites. The results shown here are consistent with
a range of studies [40,47,48], illustrating that other non-
rainfall related environmental variables such as tempera-
ture, humidity, wind and vegetation are also likely to be
important in MVEV ecology. Work on the incorporation
of these additional variables into new models is in
progress.
In the future the prediction models presented in this

paper should be further validated by employing spatially
denser ground truth information on virus activity col-
lected in selected sample areas which are easier to
access. This would then allow RS rainfall data to be rou-
tinely used as a tool to predict the spatial distribution
MVEV activity which, in turn, should provide the gen-
eral public with important information about disease
transmission risk. However the acquisition of ground
truth data on virus presence/absence in an area is
expensive and might therefore be restricted.
The frame work of data and methods described in this

paper may be valuable for similar applications for other
medically important arboviruses with complex ecologies
such as WNV and SLEV.

Acknowledgements
The research presented is funded by the Australian Biosecurity Corporative
Research Centre (AB-CRC), represented by the project partners Curtin
University, Department of Agriculture and Food Western Australia (DAFWA),
Berrimah Veterinary Laboratories, Department of Primary Industry Fisheries
and Mines, Northern Territory (DPIFM), the University of Western Australia
(Arbovirus Surveillance and Research Laboratory) and the Mosquito Borne
Disease Control Unit, WA Department of Health. The sentinel chicken
flavivirus surveillance program has been approved by The University of
Western Australia Animal Ethics Committee (RA/3/100/857). We thank
Bernhard Klingseisen from the Curtin University Spatial Sciences Department
for his valuable contributions towards the project. We would like to express
our gratitude to Luigi Renzullo from CSIRO Land and Water, Canberra for
providing us with the daily compilations of the TRMM 3B42 data for the
whole study period. Furthermore, we thank Evan Sergeant from AusVet
Animal Health Services for his support. We would like to acknowledge all
contributors of the Western Australian Arbovirus Surveillance and Research
Program and the National Arbovirus Monitoring Program. We also thank
Michael Lindsay (Mosquito Borne Disease Control Unit, WA Department of
Health) for helpful discussions.
The satellite precipitation data used in this study were acquired by the
Tropical Rainfall Measurement Mission (TRMM). TRMM is a joint mission of
the Japan National Space Development Agency (NASDA) and the United
States National Aeronautics and Space Administration (NASA). The
algorithms for the processing of the rainfall data products carried out by the
TRMM Science Data and Information System (TSDIS) and the TRMM Office
are developed by the TRMM Science Team. The data are archived and
distributed by the Goddard Distributed Active Archive Center (DAAC), free of
charge.

Author details
1Department of Spatial Sciences, Curtin University, GPO Box U1987, Perth,
Western Australia 6845, Australia. 2Weather and Environmental Prediction
Centre for Australian Weather and Climate Research (CAWCR), Bureau of
Meteorology, GPO Box 1289, Melbourne, Victoria 3001, Australia. 3EpiCentre,
Private Bag 11 222, Massey University, Palmerston North, New Zealand.
4Arbovirus Surveillance and Research Laboratory, School of Biomedical,
Biomolecular and Chemical Sciences, The University of Western Australia,
Nedlands, Western Australia 6009, Australia.

Authors’ contributions
GS designed the study and acquired the RS data. She processed the RS and
sentinel chicken data, derived the environmental variables, carried out the
statistical analysis and drafted the manuscript. EEE evaluated and validated
the satellite precipitation data on which this research is based and
participated in drafting the manuscript. MAS assisted in the construction of
the statistical analysis framework as well as in drafting the manuscript. RJC
significantly contributed to design the study and to the preparation the
manuscript. CAJ participated in conceptualisation of the study design, the
interpretation of the analyses and the preparation of the manuscript. The
sentinel chicken data were acquired by the Western Australian Arbovirus
Surveillance and Research Program lead by CAJ. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 12 November 2010 Accepted: 22 January 2011
Published: 22 January 2011

References
1. Arboviral encephalitis (MVE, Kunjin, JE, other: specify) fact sheet. [http://

www.public.health.wa.gov.au/2/488/2/
arboviral_encephalitis_mve_kunjin_je_other_specify.pm].

2. Broom A, Whelan P: Sentinel Chicken Surveillance Program in Australia,
July 2003 to June 2004. Commun Dis Intell 2005, 29:65-69.

3. Marshall I: Murray Valley and Kunjin Encephalitis. In The Arboviruses:
Epidemiology and Ecology. Volume 3. Edited by: Monath T. Florida, United
States: CRC Press; 1988:151-189.

4. Broom A, Lindsay M, Harrington S, Smith D: Investigation of the southern
limits of Murray Valley encephalitis activity in Western Australia during
the 2000 wet season. Vector Borne Zoonotic Dis 2002, 2:87-95.

5. Reiter P: Weather, vector biology and arboviral recrudescence. In The
Arboviruses: Epidemiology and Ecology. Edited by: Monath T. Florida, United
States: CRC Press; 1988:245-255.

6. Scott T: Vertebrate host ecology. In The Arboviruses: Epidemiology and
Ecology. Edited by: Monath T. Florida, United States: CRC Press;
1988:257-280.

7. Lee D & The Commonwealth Institute of Health (Australia): The Culicidae of
the Australasian region Canberra: Australian Govt Pub Service; 1980,
Entomology Monograph No. 2.

8. Johansen C, Broom A, Lindsay M, Avery V, Power S, Dixon G, Sturrock K,
Maley F, McFall S, Geerlings K, Zammit C, Masters L, Bestall A, Smith D:
Arbovirus and vector surveillance in Western Australia, 2004/05 to 2007/
08. Arbovirus Res Aust 2009, 10:76-81.

9. Broom A, Sturrock K, van Heuzen B, Lindsay M, Smith D: Seroconversions
in sentinel chickens provide an early warning of Murray Valley
encephalitis virus activity in Western Australia. Arbovirus Res Aust 2001,
10:43-47.

10. Broom A, Johansen C, Sturrock K, Susai V, Lindsay M, Smith D: An overview
of the flavivirus surveillance program in Western Australia, 2001-2004.
Arbovirus Res Aust 2005, 9:64-69.

11. Olson J, Scott T, Lorenz L, Hubbard J: Enzyme immunoassay for detection
of antibodies against eastern equine encephalomyelitis virus in sentinel
chickens. J Clin Microbiol 1991, 29:1457-1461.

12. Day J, Winner R, Parsons R, Zhang J: Distribution of St. Louis encephalitis
viral antibody in sentinel chickens maintained in Sarasota County,
Florida: 1978-1988. J Med Entomol 1991, 28:19-23.

13. Reisen W, Lundstrom J, Scott T, Eldridge B, Chiles R, Cusack R, Martinez V,
Lothrop H, Gutierrez D, Wright S, Boyce K, Hill B: Patterns of avian

Schuster et al. International Journal of Health Geographics 2011, 10:8
http://www.ij-healthgeographics.com/content/10/1/8

Page 13 of 14

http://www.public.health.wa.gov.au/2/488/2/arboviral_encephalitis_mve_kunjin_je_other_specify.pm
http://www.public.health.wa.gov.au/2/488/2/arboviral_encephalitis_mve_kunjin_je_other_specify.pm
http://www.public.health.wa.gov.au/2/488/2/arboviral_encephalitis_mve_kunjin_je_other_specify.pm
http://www.ncbi.nlm.nih.gov/pubmed/15966677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15966677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12653302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12653302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12653302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1885741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1885741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1885741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2033613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2033613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2033613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10916291?dopt=Abstract


seroprevalence to western equine encephalomyelitis and Saint Louis
encephalitis viruses in California, USA. J Med Entomol 2000, 37:507-527.

14. Jozan M, Evans R, McLean R, Hall R, Tangredi B, Reed L, Scott J: Detection
of West Nile Virus infection in birds in the United States by blocking
ELISA and immunohistochemistry. Vector Borne Zoonotic Dis 2003,
3:99-110.

15. Kwan J, Kluh S, Madon M, Nguyen D, Barker C, Reisen W: Sentinel chicken
seroconversions track tangential transmission of West Nile Virus to
humans in the greater Los Angeles area of California. Am J Trop Med Hyg
2010, 83:1137-1145.

16. Whelan P, Jacups S, Melville L, Broom A, Currie B, Krause V, Brogan B,
Smith F, Porigneaux P: Rainfall and vector mosquito numbers as risk
indicators for mosquito-borne disease in Central Australia. Commun Dis
Intell 2003, 27:110-116.

17. Chalke T: The utilisation of remote sensing and spatial analysis for
prediction of Murray Valley encephalitis activity in Western Australia.
Curtin University of Technology, Department of Spatial Sciences; 2006,
Thesis (M. Sc.).

18. Smith Stafford D, Morton S: A framework for the ecology of arid Australi.
J Arid Environ 1990, 18:255-278.

19. Roshier D, Whetton P, Allan R, Robertson A: Distribution and persistence
of temporary wetland habitats in arid Australia in relation to climate.
Austral Ecology 2001, 26:371-384.

20. Weymouth G, Mills G, Jones D, Ebert E, Manton M: A continental-scale
daily rainfall analysis system. Aust Meteor Mag 1999, 48:169-179.

21. Kalluri S, Gilruth P, Rogers D, Szczur M: Surveillance of arthropod vector-
borne infectious diseases using remote sensing techniques: a review.
PLoS Pathog 2007, 3:1361-1371.

22. Yan H, Wang J, Wu M, Zhou W: A Comparison of MODIS Infrared
Technique and AMSR-E Microwave Technique for Overland Rainfall
Estimates in Midlatitude. Proceedings of the Geoscience and Remote Sensing
Symposium 25-29 July 2005; Seoul IEEE International; 2005.

23. Ebert E, Janowiak J, Kidd C: Comparison of near real time precipitation
estimates from satellite observations and numerical models. Bull Am Met
Soc 2007, 88:47-64.

24. Kidd C: Validation of satellite rainfall estimates over mid-latitudes. 2nd
International Precipitation Working Group Workshop: 25-28 October 2004
Monterey, California, United States; 2004.

25. Janowiak J: Validation of satellite-derived rainfall estimates and
numerical model forecasts of precipitation over the United States. 2nd
International Precipitation Working Group Workshop: 25-28 October 2004
Monterey, California, United States; 2004.

26. Validation/intercomparison of daily satellite precipitation estimates - An
IPWG project. [http://cawcr.gov.au/bmrc/SatRainVal/validation-
intercomparison.html].

27. Huffman G, Adler R, Bolvin D, Gu G, Nelkin E, Bowman K, Hong Y, Stocker E,
Wolff D: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-
Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine
Scales. J Hydrometeorol 2007, 8:38-55.

28. Joyce R, Janowiak J, Arkin P, Xie P: CMORPH: A Method that Produces
Global Precipitation Estimates from Passive Microwave and Infrared Data
at High Spatial and Temporal Resolution. J Hydrometeorol 2004, 5:487-503.

29. R: A Language and Environment for Statistical Computing. [http://www.
R-project.org].

30. Renzullo L: Considerations for the blending of multiple precipitation
datasets for hydrological applications. 4th International Precipitation
Working Group Workshop: 13-17 October 2008 Beijing, China; 2008, 286-293.

31. Tomlin D: Geographic information systems and cartographic modelling New
Jersey: Prentice Hall; 1990.

32. Roshier D, Robertson A, Kingsford R: Responses of waterbirds to flooding
in an arid region of Australia and implications for conservation. Biol Cons
2002, 106:399-411.

33. Roshier D, Reid J: On animal distributions in dynamic landscapes.
Ecography 2003, 26:539-544.

34. Fawcett T: An introduction to ROC analysis. Pattern Recogn Lett 2006,
27:861-874.

35. Van Vreeswyk A, Payne A, Leighton K, Hennig P: An inventory and
condition survey of the Pilbara region, Western Australia. Technical
Bulletin No. 92 Department of Agriculture, Government of Western Australia;
2004.

36. Pilgrim A: Landforms. In Western landscapes. Edited by: Gentilli J. Nedlands,
Western Australia: University of Western Australia Press; 1979:49-87.

37. Pavey C, Nano C: Bird assemblages of arid Australia: Vegetation patterns
have a greater effect than disturbance and resource pulses. J Arid
Environ 2009, 73:634-642.

38. Russell R: Culex annulirostrisSkuse (Diptera: Culicidae) at Appin, NSW. -
Bionomics and Behaviour. J Aus ent Soc 1986, 25:103-109.

39. McDonald G, Buchanan G: The mosquito and predatory insect fauna
inhabiting fresh-water ponds, with particular reference to Culex
annulirostrisSkuse (Diptera: Culicidae). Austral Ecology 1981, 6:21-27.

40. Mottram P, Kettle D: Development and survival of immature Culex
annulirostrismosquitoes in southeast Queensland. Medical and Veterinary
Entomology 1997, 11:181-186.

41. Broom A, Lindsay M, Johansen C, Wright A: Two possible mechanisms for
survival and initiation of Murray Valley encephalitis virus activity in the
Kimberley region of Western Australia. Am J Trop Med Hyg 1995, 53:95-99.

42. Konno J, Endo K, Hitoshi A, Ishida N: Cyclic Outbreaks of Japanese
Encephalitis Among Pigs and Humans. Am J Epidemiol 1966, 84:10.

43. Boyle D, Dickerman R, Marshall I: Primary Viraemia Responses of Herons
to Experimental Infection with Murray Valley Encephalitis Viruses. Aust J
Exp Biol 1983, 61:655-664.

44. Kay B, Standfast H: Ecology of Arboviruses and Their Vectors in Australia.
In Current Topics in Vector Research. Volume 3. Edited by: Kerry FH. New
York: Springer Verlag; 1987:1-36.

45. Kwan J, Kluh S, Madon M, Reisen W: West Nile virus emergence and
persistence in Los Angeles, California, 2003-2008. Am J Trop Med Hyg
2010, 83:400-412.

46. Hemmerter S, Slapeta J, van den Hurk A, Cooper R, Whelan P, Russell R,
Johansen C, Beebe N: A curious coincidence: mosquito biodiversity and
the limits of the Japanese encephalitis virus in Australasia. BMC Evol Biol
2007, 7:100.

47. Broom A, Lindsay M, Wright A, Smith D, Mackenzie J: Epizootic activity of
Murray Valley encephalitis and Kunjin viruses in an aboriginal
community in the southeast Kimberley region of Western Australia:
results of mosquito fauna and virus isolation studies. Am J Trop Med Hyg
2003, 69:277-283.

48. Johansen C, Farrow R, Morrisen A, Foley P, Bellis G, Van Den Hurk A,
Montgomery B, Mackenzie J, Ritchie S: Collection of wind-borne
haematophagous insects in the Torres Strait, Australia. Med Vet Entomol
2003, 17:102-111.

doi:10.1186/1476-072X-10-8
Cite this article as: Schuster et al.: Application of satellite precipitation
data to analyse and model arbovirus activity in the tropics. International
Journal of Health Geographics 2011 10:8.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Schuster et al. International Journal of Health Geographics 2011, 10:8
http://www.ij-healthgeographics.com/content/10/1/8

Page 14 of 14

http://www.ncbi.nlm.nih.gov/pubmed/10916291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10916291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14511579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14511579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14511579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21036853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21036853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21036853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12725512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12725512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17967056?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17967056?dopt=Abstract
http://cawcr.gov.au/bmrc/SatRainVal/validation-intercomparison.html
http://cawcr.gov.au/bmrc/SatRainVal/validation-intercomparison.html
http://www.R-project.org
http://www.R-project.org
http://www.ncbi.nlm.nih.gov/pubmed/9226650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9226650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7625542?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7625542?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7625542?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4287641?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4287641?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20682890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20682890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17598922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17598922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14628944?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14628944?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14628944?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14628944?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12680932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12680932?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Methods
	Preparation of serological data
	Evaluation of TRMM3B42, TRMM 3B42RT and CMORPH
	Processing of TRMM 3B42
	Development of spatio-temporal variables
	Seasonal rainfall variables
	Monthly time-series
	Rainfall anomaly variables
	Statistical analysis of spatio-temporal variables
	Logistic regression modelling

	Results
	Investigation of satellite precipitation data
	Significance of rainfall variables
	Seasonal logistic regression models
	Monthly logistic regression models
	Monthly prediction of risk MVEV activity

	Discussion
	Selection of satellite precipitation data
	The effect of rainfall on MVEV test site status
	Seasonal variables
	Spatially aggregated seasonal variables
	Time-lagged monthly rainfall variables
	Prediction

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


